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Gap-size and capture-zone distributions in one-dimensional point-island nucleation
and growth simulations: Asymptotics and models
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The nucleation and growth of point islands during submonolayer deposition on a one-dimensional substrate is
simulated for critical island size i = 0,1,2,3. The small- and large-size asymptotics for the gap-size and capture-
zone distributions (CZDs) are studied. Comparisons to theoretical predictions from fragmentation equation
analyses are made, along with those from the recently proposed generalized Wigner surmise (GWS). We find
that the simulation data can be fully understood in the framework provided by the fragmentation equations, while
highlighting the theoretical areas that require further development. The GWS works well for the small-size CZD
behavior, but completely fails to describe the large-size CZD asymptotics of the one-dimensional system.
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I. INTRODUCTION

The nucleation and growth of islands during submono-
layer deposition is of considerable theoretical interest as a
fundamental problem in the statistical mechanics of growth
processes [1–5]. The sizes and spatial organization of the
nucleated islands ultimately determine the higher-level struc-
tures, such as film and nanostructure array morphologies [6].
A long-established strategy in the analysis of the statistical
properties is to study capture zones of islands, since these
not only reflect spatial organization but also determine growth
rates of the islands [7–12]. Therefore, the evolution of capture
zones during the deposition process has been a focus of many
recent theoretical works [13–17].

Recently, Pimpinelli and Einstein introduced a new the-
ory for the capture-zone distribution (CZD) employing the
generalized Wigner surmise (GWS) from random matrix
theory [13], causing some controversy. Oliveira and Reis [17]
have presented simulation results for islands grown on a
two-dimensional substrate with critical island sizes i = 1 and
2, providing some support for the proposed Gaussian tail of
the CZD [13]. However, Li et al. [14] presented an alternative
theory which yields a modified form for the large-size CZD
behavior, supported by data for the simulated growth of
compact islands with i = 1. This form seems to agree with that
found by Oliveira and Reis, contradicting the GWS [17]. In
other work, Shi et al. [16] studied i = 1 models in d = 1,2,3,4
dimensions, finding that the CZD is more sharply peaked and
narrower than the GWS suggests. Therefore it is by no means
established whether the GWS provides a good theoretical basis
for understanding the distribution of capture zones found in
island nucleation and growth simulations.
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The simplified case of point-island nucleation and growth
in one dimension has proven to be a good test case for
theories. For example, Tokar and Dreyssé [18] have recently
used this model to illustrate their accelerated kinetic Monte
Carlo algorithm for diffusion limited kinetics, finding excellent
scale invariance in the island size distribution. Blackman and
Mulheran [19] studied the system with critical island size
i = 1, using a fragmentation equation approach. In this system,
we can view the substrate as a string of interisland gaps, and
new island nucleation caused by the deposited monomers as a
fragmentation of these gaps. Thus in order to understand the
CZD, it is important first to be able to describe the gap-size
distribution (GSD).

In recent work [20] we have extended the analysis of the
fragmentation equations of [19] to the case of general i =
0,1, . . . . We have been able to derive the small- and large-size
asymptotics of the GSD, and by assuming random mixing of
the gaps caused by the nucleation process, we have also derived
the small-size asymptotics for the CZD for general i and the
large-size behavior for i = 0.

One key feature to emerge from this work is that the
asymptotic behavior of the CZD is again different from that of
the GWS [13]. It therefore is appropriate to ask what support,
further to that in Ref. [19], for the fragmentation equation
approach is offered by Monte Carlo simulations of the system.
Recent work by Gonzalez et al. [21] has revisited the case of
i = 1, developing the original fragmentation equation [19] and
GWS arguments in response to deviations between prediction
and simulation. In this work we will explore simulation results
for the one-dimensional (1D) model with i = 0,1,2,3, and
consider the relative merits of the fragmentation theory [20]
and GWS [13] approaches.

The paper is organised as follows. In Sec. II we summarize
the relevant theoretical results [13,20]. In Sec. III we describe
the Monte Carlo methods used in our work, both for the full
simulation of the island nucleation and growth processes as
well as for nucleation within single gaps. Simulation results are
presented in Sec. IV and compared to theoretical predictions,
and we finish with a summary and our conclusions in Sec. V.
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FIG. 1. Summary of the features of the one-dimensional point-
island model with i = 1. Solid circles represent an island; open circles
are monomers. A capture zone is the separation of the bisectors of
neighboring gaps [19].

II. THEORY AND PREDICTIONS

The data from Monte Carlo (MC) simulations can be used
as a benchmark against which to test predictions of theories
for the GSD and CZD. In the next two subsections, we will
discuss the predictions of two competing theories, namely, the
fragmentation equation approach and the GWS.

A. Fragmentation equations

We follow the Blackman and Mulheran approach for the 1D
point-island model with i = 1 [19]. Island nucleation events
are viewed as the fragmentation of gaps between stable islands;
see Fig. 1. A nucleation that occurs in a parent gap of width y

will result in the creation of two daughter gaps of widths x and
y − x. The probability that the nucleation occurs at position
x < y is taken from the long-time (steady state) monomer
density profile in the gap,

n1(x) = 1

2R
x(y − x), (1)

where R = D/F is the ratio between the monomer diffusion
constant D and the monomer deposition rate F . In particular,
we assume that the nucleation probability is obtained from
this monomer density n1(x)α , with the value of α reflecting
the nucleation process. We then obtain [20]

∂

∂t
u(x,t) = −B(α + 1,α + 1)xλu(x,t)

+2
∫ ∞

x

[x(y − x)]αu(y,t)dy, (2)

where B(·,·) is the Beta function and λ = 2α + 1. Here, u(x,t)
is the number of gaps of size x at time t . The first term on
the right hand side of (2) is the rate at which gaps of size x

are removed from the population by a nucleation event. The
second term describes the creation of gaps of size x from
the fragmentation of larger gaps, with the factor 2 reflecting
the symmetry of the fragmentation kernel.

In [20] we set α = i + 1 under the assumption that
nucleation is a rare event solely driven by the diffusion of the
monomers. In doing this we implicitly assume that the i + 1
monomers necessary to create the nucleus are all in some sense
mature, each separately obeying the long-time steady-state
density profile n1(x). However, we shall also have need to
consider the case when nucleation is triggered by a deposition
event. Here a newly deposited monomer either lands close to

(or even directly onto) a pre-existing cluster of i > 0 mature
monomers. In this case, we set α = i.

Equation (2) admits similarity solutions of the form
[20,22–24]

u(x,t) = x̄(t)−2φ(x/x̄(t)), (3)

where x̄(t) is the average gap size. The following asymptotics
are then found [20]:

φ(z) ∼ kzα as z → 0, (4)

φ(z) ∼ kz−2 exp(−czλ) as z → ∞, (5)

for constants c > 0 and k. Here z = x/x̄(t) is the scaled gap
size.

We may use this information to understand the scaling
asymptotics of the CZD P (s) where s is the scaled capture-
zone size. On a 1D substrate, a point-island’s capture zone
is made up from half of the gap to its left combined with
half of its gap to the right (see Fig. 1). If there is no
correlation between the sizes of two neighboring gaps, we can
write [19]

P (s) = 2
∫ 2s

0
φ(z)φ(2s − z)dz. (6)

The factor 2 is included to preserve the normalization for P (s).
The small-size asymptotics of P (s) is then [20]

P (s) ∼ ks2α+1 as s → 0, (7)

for some constant k. The large-size scaling of P (s) can be
computed only for the special case α = 1,i = 0. It has been
shown that [20], for some constant k,

P (s) ∼ ks−9/2e−2s3/μ3
as s → ∞, (8)

where μ is a positive constant.
We note here that the large-size asymptotics of the GSD

and the CZD are thus the same for spontaneous nucleation.
Given the form of Eq. (6) for P (s), we conjecture that
the correspondence between the GSD and CZD large-size
asymptotics will hold for other values of α = 2,3,4 . . . ,

although it has not been proved.

B. Generalized Wigner surmise

Recently, Pimpinelli and Einstein [13] conjectured that the
CZD is well described by the generalized Wigner surmise
formula, which depends only on one parameter β that reflects
the critical island size i and the dimensionality d of the
substrate:

Pβ(s) = aβsβ exp(−bβs2), (9)

where β is given by

β =
{

2
d

(i + 1) if d = 1,2
(i + 1) if d = 3.

(10)

Here aβ and bβ are normalization constants so that∫ ∞

0
Pβ(s)ds =

∫ ∞

0
sPβ(s)ds = 1.

The remarkable feature of this conjecture is its universal
nature; unlike the fragmentation equation approach described
above, which is specific to the 1D substrate, the GWS is
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claimed to hold for all dimensions. Pimpinelli and Einstein
[13] demonstrated good agreement with simulation results
taken from the literature [10,19], but only with i = 1 in d = 1.
In their most recent work [21], this group analyzed the i = 1,
d = 1 model in more detail and modified Eqs. (9) and (10) in
response to their findings. Here we note that the asymptotics of
the fragmentation equation approach above and the GWS do
not agree [20] for all i, whether we adopt α = i or α = i + 1.
This in part motivates the present Monte Carlo study.

III. MONTE CARLO SIMULATIONS

We perform Monte Carlo simulations of point islands on a
1D substrate. We adopt the same methodology as in previous
work for i = 1 [19], but here we now also simulate a range
of values of the critical island size i = 0,1,2,3. In the first
subsection we describe the full simulation for island nucleation
and growth, and in the second we describe a variant for
obtaining nucleation rates within a single gap.

A. Full simulation

In the full simulation, monomers are randomly deposited
at rate F monolayers per unit time onto an initially empty
one-dimensional array of sites representing the substrate.
Deposited monomers diffuse at the rate D by performing
random hops between nearest neighbour lattice sites. We
use periodic boundary conditions. For i > 0, if the monomer
number at any site exceeds the critical island size, a new island
is nucleated. In the case of spontaneous nucleation (i = 0),
monomers have a small probability pn of nucleating a new
island each time they hop. Once nucleated, an island increases
in size by absorbing any monomer which hops onto it from a
nearest neighbor site. In the work discussed here, the islands
only ever occupy one lattice site whatever their size in absorbed
monomers. These processes are illustrated in Fig. 1.

As the deposition rate F increases, the average time a
monomer diffuses before meeting another monomer decreases.
Due to the competition between diffusion and deposition, the
statistical properties depend on the ratio R = D/F .

The nominal substrate coverage, θ = F t , is a useful
measure of the extent of the deposition process. Note that
because we simulate point islands, this coverage can be greater
than 100% even while most of the substrate remains free for
monomer diffusion. For a fixed value of θ , the average distance
between islands increases if R is increased. Similarly, for fixed
R, as coverage increases the island density also increases.
We are interested in the scaling properties of the aggregation
regime [25], where the island density exceeds the monomer
density. The value of θ for which this regime starts depends
on i and R, and we check that the values of θ employed
are sufficiently high to ensure that we are in the aggregation
regime.

Our simulations were performed on lattices with 106 sites,
with R = 8 × 106 up to coverage θ = 100%, averaging results
over 100 runs. For i = 0 we set the spontaneous nucleation
probability to pn = 10−7. With these parameters, we find
island densities of about 0.5%, 1.5%, 0.5%, and 0.25% for
i = 0,1,2,3, respectively, at θ = 100%. We note that this is a
long way short of the limit referred to by Ratsch et al. [26]

where scaling breaks down as the lattice becomes saturated
with islands. We also have no finite size effects with this
size of lattice, and do not need to implement accelerated
algorithms [18].

B. Single-gap nucleation rate simulation

In the single-gap simulation, we simulate island nucleation
events in gaps ranging from size g = 50 to g = 500, which
proves to be adequate to illustrate the nucleation mechanisms
at play. In this variant, monomers can diffuse as usual on a
lattice of length g, but are removed from the simulation if they
try to hop beyond the ends of the lattice.

We set the nominal monolayer deposition rate F to unity,
so that a monomer deposition increments the simulated
time by 1/g (recall that it is the ratio R = D/F which is
important, rather than the absolute value of either F or D).
Upon each step of the algorithm, we either deposit a new
monomer at a randomly chosen site in the gap, or diffuse
an existing monomer according to the relative rates of these
processes. Explicitly, a monomer is deposited into the gap
with probability Fg/(Fg + Dn) = 1/(1 + Rn/g), where n is
the number of monomers currently in the gap. If no deposition
occurs, a randomly chosen monomer hops to a nearest neighbor
site. If i + 1 monomers (for i = 1,2,3) coincide at a site to
form a stable nucleus, the simulation ends and the time to the
nucleation event is recorded. Repeat runs always start with an
empty lattice, and are used to obtain reliable statistics on the
nucleation times within each gap size.

We use R = 106 for i = 1,2, and R = 105 for i = 3 (due
to simulation time constraints). Finally, we also monitor the
average monomer density profile across the gaps, along with
the number of hops each monomer makes in the single-gap
simulations. The latter will indicate whether or not island
nucleation is influenced by deposition events. If nucleation is
caused solely by the diffusional fluctuations of monomers, then
the stable nuclei should only include monomers that have taken
many hops. If however nucleation closely follows a deposition
event, then the nuclei will contain monomers that have only
made few hops since their deposition.

IV. RESULTS

A. Single-gap nucleation rate

In Fig. 2 we show the results for the average monomer
density profile within gaps of size g = 100 and g = 300 for
i = 1. For the smaller gap size, we see that the profile agrees
well with the assumption made in the fragmentation equation
approach [19], coinciding with the long-time steady-state
solution of the diffusion equation with random deposition
[Eq. (1)]. This is typical for the lower end of the range of
gap sizes that occur in the full simulation at higher coverage,
for all the values of i that we have studied.

However, for the larger gap size g = 300 shown in Fig. 2,
we see that the monomer density profile falls a long way below
the long-time prediction. This behavior is typical for all values
of i at the upper end of gap sizes found in our full simulations.
The reason for the shortfall is the higher nucleation rate in the
larger gaps; the average monomer density profile does not have
sufficient time to reach its saturated level in Eq. (1) before a
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FIG. 2. Monomer density profile in a single gap of size (top)
g = 100 and (bottom) g = 300 for i = 1.

nucleation event occurs. As stated, the range of gap sizes g

used in the single-gap simulation is determined by the range
typically seen in our full simulations. Therefore, this failure to
reach the saturated monomer density profile with the large gaps
can also be seen in our full simulation results (data not shown).
This will have direct consequences for how the nucleation rate
varies with gap size for larger gaps, as we now show.

In Fig. 3 we show the average time for a nucleation event
to occur 〈tnuc〉 for all single gaps in the case of i = 1, 2, and
3 (note that the data for i = 2 and i = 3 have been shifted
horizontally to avoid overlapping curves). We note that the
data obeys the power-law form predicted by the fragmentation
equation approach for small-gap sizes g, but as expected
deviates strongly for larger gaps. In fact, the average time to
nucleation becomes much higher than predicted by the use of
the saturated monomer density profile, since the actual profile
for the larger gaps is lower, therefore presenting slower than
expected nucleation rates (but still fast compared to the time
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FIG. 3. Average time for a nucleation event to occur at all gaps.

it takes for the monomer density to grow from zero to its
saturation level).

The straight line fits in Fig. 3 are for the small-gap size
data only (g ∈ [50,150]). We use these to estimate how the
nucleation rate varies with gap size g through 1/〈tnuc〉 ∝ gγ ,
with the values of the power γ reported in Table I. We have
used bootstrap methods with 1000 samples of size as big as
80% of the original to find an approximate 95% confidence
interval in Table I.

The fragmentation equation approach (Sec. II A above)
suggests that this power should be 2i + 1 or 2i + 3, depending
on whether island nucleation is driven by monomer deposition
or solely by monomer diffusion. The results in Table I suggest
that the simulation reflects both these mechanisms, with the
small gap-size nucleation rate exponent lying between these
two possibilities.

In Fig. 4 we present histograms for the number of hops
taken by the youngest monomer in a nucleus for the g = 100
and g = 300, i = 1 simulations. The histogram has a long tail,
showing that in many cases all the monomers in the nucleus are
indeed mature in the sense that they have diffused many times
since their deposition. However, there is also a sharp increase

TABLE I. Small-gap nucleation rate exponents from the single-
gap simulations.

i λa λb Simulation

1 3 5 3.628 ± 0.035
2 5 7 6.606 ± 0.118
3 7 9 8.283 ± 0.266

aλ = 2i + 1.
bλ = 2i + 3.
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FIG. 4. Histograms of the number of hops taken by the youngest
monomer in a nucleus for i = 1, for gap sizes g = 100 (crosses) and
g = 300 (diamonds). In the main figure the number of monomers
is truncated at 100. The inset shows the same result at the lower
number of hops without a truncation of the number of monomers in
the histogram.

in likelihood of a monomer only taking very few diffusive steps
before being caught up in a nucleation event. In other words,
there are a significant number of nucleation events driven by
fluctuations due to deposition. This supports the conclusion
that nucleation in these simulations is driven by a combination
of deposition and diffusion fluctuations in monomer density,
helping to explain the intermediate values for the nucleation
rate exponents in Table I.
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FIG. 5. Small-size GSD in logarithmic scale for i = 0, 1, 2, and
3 at coverage θ = 20%. The dashed line is the straight line fit to data.
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FIG. 6. Small-size CZD in logarithmic scale for i = 0, 1, 2, and
3 at coverage θ = 20%. The dashed line is the straight line fit to data.

B. Full simulation behavior

Having established the nucleation behavior in single gaps,
we can now look at the results observed in our full Monte
Carlo simulations. The fragmentation equation approach again
provides concrete predictions for the small- and large-size
behaviors for the GSD and CZD. We will also be able to
compare the CZD properties with the GWS, and establish
which of the two theories provides the better framework to
understand the behavior observed.

1. Small-size scaling of the GSD and CZD

In Figs. 5 and 6, we report the small-size behavior of the
GSD [φ(z)] and CZD [P (s)] in a logarithmic scale at θ = 20%.
In order to fit the slopes in these plots, and obtain reliable
error estimates, we adopt the following numerical technique.
The size data are binned using regularly spaced bins on the
logarithmic abscissa, with bin widths bmc, where b and c are
fixed constants and m � 0. By choosing a range of values for
b = 1.1, 1.2, 1.3, and 1.4, and c = 0.0125, 0.025, and 0.05, all
of which provide reasonable choices for binning the data, we
obtain a number of straight-line fits. This allows us to calculate
the average of these gradients and a 95% confidence interval.
The results of this fitting procedure are shown in Tables II
and III.

For the small-size asymptotic behavior of the GSD and
CZD, we compare the data from MC simulations with the
fragmentation equation approach predictions of Sec. II A. For
the GSD, the dominant term is zα as z → 0 [see Eq. (4)].
Likewise, for the CZD the dominant term is s2α+1 [see Eq. (7)].
For the latter, we also have the competing prediction of the
GWS which is sβ [Eq. (9)]. The values from these theories are
also displayed in Tables II and III.

The results for the small-size scaling exponent of the GSD
in Table II show that the fragmentation equation approach
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TABLE II. Average gradient for the small-size scaling of the GSD
using different bin widths at coverage θ = 20% and 100%.

i αa αb GSDc GSDd

0 1 0.876 ± 0.033 0.905 ± 0.029
1 1 2 1.701 ± 0.045 1.579 ± 0.105
2 2 3 2.789 ± 0.080 2.718 ± 0.074
3 3 4 2.719 ± 0.082 3.271 ± 0.056

aα = i.
bα = i + 1.
cθ = 20%.
dθ = 100%.

provides a reasonably sound framework for understanding the
island nucleation and growth process. For i = 1,2,3 we see
that the exponent at θ = 100% lies between the two possible
values α = i and α = i + 1 suggested by the theory. This
is as expected following the single-gap nucleation results
presented above, which show that both the deposition- and
diffusion-driven nucleation mechanisms are at play in the sim-
ulations. We note that the θ = 20% results for i = 3 lie below
α = i = 3, but we believe that this is due to the fact that the
simulation has only just entered the aggregation regime in this
case. We also see that for i = 0, the exponent is close to the
α = i + 1 = 1 prediction (α = 0 is not a viable possibility),
being closer at θ = 100%.

The trends shown in the small-size scaling exponent
of the CZD in Table III are rather similar. We see the
i = 0 data are close to the λ = 2i + 3 = 3 prediction of the
fragmentation equation approach, being somewhat larger than
the β = 2(i + 1) = 2 predicted by the GWS. For i = 1,2 the
data are bracketed by the two alternatives suggested by the
fragmentation theory, as indeed is the GWS exponent which
appears to present a reasonable compromise given the two
alternative nucleation mechanisms. The case of i = 3 provides
an exception, which hints at the breakdown of the relation in
Eq. (6) between the GSD and the CZD. This will be discussed
further in the final section.

2. Large-size scaling of the GSD and CZD

In Figs. 7 and 8 we present the large-size behavior of
the GSD and CZD, respectively, from the full simulations.
The data are plotted in order to test the common large-size

TABLE III. Average gradient for the small-size scaling of the
CZD using different bin widths at coverage θ = 20% and 100%.

i 2α + 1a 2α + 1b GWSc CZDd CZDe

0 3 2 2.730 ± 0.030 2.751 ± 0.086
1 3 5 4 4.187 ± 0.050 4.372 ± 0.149
2 5 7 6 5.883 ± 0.207 5.957 ± 0.187
3 7 9 8 7.200 ± 0.382 6.138 ± 0.124

aα = i.
bα = i + 1.
cβ = 2(i + 1).
dθ = 20%.
eθ = 100%.
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FIG. 7. Large-size GSD in logarithmic scale for i = 0, 1, 2,
and 3. The dashed line is the straight line fit to the data.

functional form suggested by the fragmentation equation
approach for the GSD and by the GWS for the CZD, namely,
exp(−czp) [see Eqs. (5) and (9)]. In all cases, the data do
conform well to this functional form. In addition, we perform
fits to find the gradients p on these plots. In order to provide an
estimate of the error in these fits, we adopt a similar strategy to
that used above for the small-size scaling and bin the data using
bin widths of size 0.01k with k = 1,2, . . . ,20. The results of
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FIG. 8. Large-size CZD in logarithmic scale for i = 0, 1, 2,
and 3. The dashed line is the straight line fit to the data.
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TABLE IV. Average exponents for the large-size scaling of the
GSD using different bin widths at coverage θ = 20% and 100%.

i 2α + 1a 2α + 1b GSDc GSDd

0 3 2.515 ± 0.006 2.665 ± 0.007
1 3 5 3.130 ± 0.009 3.383 ± 0.008
2 5 7 4.364 ± 0.020 5.112 ± 0.025
3 7 9 5.094 ± 0.026 6.437 ± 0.034

aα = i.
bα = i + 1.
cθ = 20%.
dθ = 100%.

this fitting procedure are presented in Tables IV and V for the
GSD and CZD, respectively.

Once again we compare the exponents p from the Monte
Carlo simulation data with the theoretical predictions. For the
GSD, the fragmentation equation approach predicts values
of 2α + 1 for p. For the CZD, the fragmentation equation
prediction is p = 3 for i = 0 [Eq. (8)], and we conjecture
that the values for i > 0 will match those of the GSD. In
contrast, the GWS prediction for the CZD is the universal
value p = 2. The values from these theories are displayed in
Tables IV and V.

In Table IV we see that the fragmentation equation approach
provides a useful point of reference to the observed large-size
scaling exponents of the GSD. Again we see values that are
bracketed by the two possible nucleation mechanisms for i =
1,2, while the behavior for i = 0 is a little below the predicted
exponent of p = 3. For i = 3 the data’s exponent is below
even that of the deposition-induced nucleation case. However,
we have shown in Sec. III above that the monomer density
profile does not reach its saturation value in larger gaps, so
that the nucleation rate in these gaps is lower than predicted
by the theory. This seems to provide a rational explanation for
the discrepancies.

The results in Table V for the large-size scaling behavior
of the CZD are rather informative. We first observe that the
Monte Carlo data exponents do indeed mirror those of the
GSD in Table IV quite well. This means that the universal
GWS prediction for p = 2 is always wrong. We also see
that the concrete prediction for i = 0 from the fragmentation
equations, namely, p = 3, is well supported by the simulation
data.

TABLE V. Average exponents for the large-size scaling of the
CZD using different bin widths at coverage θ = 20% and 100%.

i 2i + 3a GWS CZDb CZDc

0 3 2 3.108 ± 0.012 3.043 ± 0.043
1 2 3.721 ± 0.020 3.826 ± 0.021
2 2 4.946 ± 0.029 5.536 ± 0.033
3 2 5.464 ± 0.041 6.530 ± 0.042

aλ = 2i + 3.
bθ = 20%.
cθ = 100%.

V. SUMMARY AND CONCLUSIONS

We have investigated one-dimensional (1D) point-island
nucleation and growth simulations in order to test predic-
tions for the asymptotics of the gap-size and capture-zone
distributions. The work shows that the fragmentation equation
approach provides a good framework in which to understand
the Monte Carlo simulation results. The theory can be used
to investigate two cases for the nucleation process for i > 0,
the first where nucleation is driven by deposition events, the
second where fluctuations caused solely by monomer diffusion
induce nucleation.

First we presented single-gap simulation results which
show that both these nucleation processes are active, so that the
observed nucleation rates are bracketed by these two extremes.
Furthermore, we showed that for larger gaps the average
monomer density profile does not reach the long-time steady
state assumed in the fragmentation equations. As a result, the
nucleation rates in large gaps are slower than predicted by the
theory, with the shortfall increasing with gap size. Therefore,
the simple power-law scaling of the nucleation rate with gap
size breaks down at larger sizes, with obvious consequences
for the fragmentation equation predictions for the GSD.

We note here that deviations from the original Blackman
and Mulheran [19] predictions for the nucleation rate depen-
dence on gap size have recently been observed for the i = 1 1D
model [21]. In this work, the authors report that the nucleation
rate has two regimes; for small sizes, it approximately obeys
s4, while at larger sizes it approximately follows s3. The latter
power law feeds into the asymptotic form of the GSD and
hence the CZD, yielding the functional form exp(−s3). We
note here that these values are close to those we find for i = 1
in Table I for the small-gap nucleation rates and Tables IV
and V for the large-size GSD and CZD scaling. We therefore
propose that the explanations presented here in terms of
competing nucleation mechanisms and unsaturated monomer
density profiles will also explain the results reported in [21].

We also presented data for the full-island nucleation and
growth simulation. For the small-size GSD scaling, we found
results consistent with the fragmentation equation predictions
for i = 0. For i = 1,2,3 the exponents were bracketed by the
values for the alternative nucleation mechanisms as expected.
For the large gap-size scaling, the Monte Carlo data followed
the functional form suggested by the fragmentation theory,
with the exponents again being largely bracketed by the
predicted values, although the breakdown of the nucleation
rate scaling is apparent, especially for larger i.

In the case of the CZD, we once again successfully placed
the observed simulation data into the context provided by the
fragmentation equations. Interestingly, the GWS predictions
for the small-size CZD scaling work extremely well since
they bisect the exponents from the alternative nucleation
mechanisms. As discussed elsewhere [20], the predicted
formula for the parameter β of the GWS can be brought into
line with either nucleation mechanism following the arguments
of Pimpinelli and Einstein [15], but the original prediction
of these authors Eq. (10) does seem to speak well for their
physical intuition [13].

However, the predicted GWS form for the large-size CZD
scaling fails badly when confronted with our 1D point-island
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simulation results. This is in contrast to recent tests performed
using two-dimensional substrates [17], which suggests that
there is something unique to the 1D case, possibly due to the
topological constraints in how capture zones are constructed
from the interisland gaps. This aspect is worthy of further
investigation.

In order to predict the asymptotics of the CZD, we have
assumed that the capture zones can be constructed from pairs
of gaps sampled randomly for the GSD [see Eq. (6)]. This
is valid provided that the nucleation has effectively mixed up
the gaps so that nearest neighbours are no longer correlated
[19]. One consequence is that the small-size exponents of
the CZD (say p1) are related to those of the GSD (say p2)
through p1 = 2p2 + 1. Looking at the results in Tables II
and III, we see that this relationship is reasonably obeyed for
i = 0,1 but starts to break down for i = 2,3. This is perhaps
understandable, since for the higher critical island sizes, the
nucleation rate slows down dramatically over time suggesting

less well-mixed systems. This is another point for further
consideration in future theory development work.

Despite the limitations of the fragmentation equation
approach used in this work, such as its failure to capture
the time-dependent nature of the monomer density profile
within gaps, it has provided an excellent theoretical framework
from which to consider the island nucleation process. Hence,
alongside the points discussed above, future work might also
look at how the fragmentation kernels can incorporate this time
dependency, and how the two nucleation mechanisms can be
combined into a consistent set of fragmentation equations.
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