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Sudden collapse of a colloidal gel
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Metastable gels formed by weakly attractive colloidal particles display a distinctive two-stage time-dependent
settling behavior under their own weight. Initially, a space-spanning network is formed that, for a characteristic
time, which we define as the lag time τd, resists compaction. This solidlike behavior persists only for a limited
time. Gels whose age tw is greater than τd yield and suddenly collapse. We use a combination of confocal
microscopy, rheology, and time-lapse video imaging to investigate both the process of sudden collapse and its
microscopic origin in a refractive-index matched emulsion-polymer system. We show that the height h of the gel
in the early stages of collapse is well described by the surprisingly simple expression, h(τ ) = h0 − Aτ

3
2 , with h0

the initial height and τ = tw − τd the time counted from the instant where the gel first yields. We propose that this
unexpected result arises because the colloidal network progressively builds up internal stress as a consequence
of localized rearrangement events, which leads ultimately to collapse as thermal equilibrium is reestablished.
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I. INTRODUCTION

Soft materials, such as colloidal suspensions and emulsions,
form a remarkably rich variety of nonergodic states [1–3]—
examples of which are familiar to us in our daily life in products
as diverse as foodstuffs, surface coatings, fabric conditioners,
and pesticides. Out-of-equilibrium phases occur when sus-
pensions are quenched deep into a region of thermodynamic
phase separation. Unable to phase separate, amorphous solids
form which are mechanically rigid but without the long-
range translational order characteristic of crystalline solids.
Slow relaxation dynamics prevents the system from reaching
its underlying global equilibrium configurations so these
amorphous solids evolve slowly in a complex energy landscape
with a high number of local minima and, as a result, display
glassy dynamics with a rich phenomenology of effects, such as
aging, nonlinear responses, and spatial and temporal dynamic
heterogeneities.

One of the most dramatic macroscopic manifestations of
aging is the phenomenon of sudden network collapse in gels.
Gels consist of a network of particles linked together by
long-lived attractive bonds. Sedimentation or creaming of the
particles within a gel imposes a buoyant stress on the network
which, since gels are intrinsically rather delicate, has dramatic
consequences for microscopic structure and dynamics [4–6].
Weak gels, where the strength of the attractive potential at
contact Uc is only a few kBT , show, for instance, a very unusual
mechanical response. Initially, the gel behaves as a solid but,
after a finite lag time τd, the gel yields and catastrophically
collapses. Sudden or “delayed” network collapse is observed
in a wide variety of materials [7–16] and seems to be
ubiquitous at small Uc/kBT . However, while sudden collapse
has been attributed to channel formation within the gel [12,13],
the microscopic processes operating have never been fully
established. A better microscopic understanding of the origin
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of sudden gel collapse is important not only because the
distinctive settling behavior is intriguing from a scientific
viewpoint, but also because a quantitative prediction of gel
stability is a critically important issue in the formulation and
manufacture of many commercial products.

The aim of this paper is to report a detailed experimental
study of the stability of gels under gravitational stress. We
use a colloidal suspension of nearly monodisperse emulsion
drops of radius a suspended in an index-matched mixture of
solvents, which has been well characterized elsewhere [17].
Gelation is induced by long-range attractive depletion forces.
Using time-lapse video imaging, we measure the dependence
of the height h of a gel upon its age tw, counted from
the moment when the gel was formed. No macroscopic
sedimentation is observed initially, but after a period of latency
the gel undergoes a rapid collapse as the system separates
into colloid-rich and colloid-poor phases. We investigate the
collapse dynamics as a function of the strength −Uc/kBT of
the attractive interactions and the initial height h0 of the gel.
Remarkably, we find that when collapse starts the change in
the height of the gel �h = h0 − h follows a simple universal
dependence on tw, which is independent of the initial height
h0 of the gel. The observation of height-independent collapse
is surprising and contrasts with the marked height dependence
seen in short-range gels studied to date [13,18,19]. Using a
combination of rheology, confocal microscopy, and time-lapse
video imaging, we speculate that the collapse of the gel
network occurs as a result of irreversible aging, via a spatially
heterogeneous process of localized “microcollapses,”which
leads to a buildup of internal stress within the gel and its
ultimate failure.

The paper is organized as follows. Section II discusses the
preparation of the emulsion gels studied and the experimental
techniques used. Section III details experimental results
from both macroscopic and microscopic measurements on
the settling behavior of suspensions of attractive particles.
The interpretation of the results in terms of internal stress
relaxations is discussed in Sec. IV before we summarize our
main findings in Sec. V.
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II. MATERIALS AND METHODS

A long-range attractive interaction was induced between
emulsion colloids by polymer depletion. The emulsion con-
sisted of poly(dimethyl siloxane) (PDMS) drops dispersed in
a solvent mixture of 1,2-ethane diol (ED) and water (mass
fraction of ED = 0.59). The solvent composition was adjusted
to closely match the refractive index of the emulsion to min-
imize van der Waals attractions between drops and to enable
confocal imaging to be conducted deep within the sample. A
particle radius of a = 316 ± 11 nm and a size polydispersity
of 0.17 ± 0.07 was determined from dynamic light-scattering
measurements. The thickness of the polymeric stabilizing layer
surrounding each emulsion drop was evaluated by centrifuging
a suspension and equating the packing fraction of the sediment
to the jamming density of a hard sphere system with the same
polydispersity [20]. This procedure gave a layer thickness of
≈7 ± 1 nm. The density mismatch between emulsion drops
and the continuous phase is �ρ = −130 ± 10 kg m−3. To
induce a depletion interaction, we added the nonadsorbing
anionic polymer xanthan (Kelco, Mw = 4.66 × 106 g mol−1).
The polymer radius of gyration was determined as rg = 194 ±
10 nm by light scattering and viscometry. The strength of the
depletion attraction generated is a function of the polymer
concentration and its range is controlled by the relative size
rg/a = 0.62 ± 0.04 of the polymer and particle. The polymer
concentration is quoted here in terms of the dimensionless ratio
cp/c

∗
p, where c∗

p = 3Mw/4πr3
g NA is the overlap concentration

(c∗
p = 0.25 mg/ml) and NA is Avogadro’s constant. Full details

of sample preparation are contained in Teece, Faers, and
Bartlett [17].

To monitor the collapse of the gels, we used time-lapse
video recording to record images of the emulsions as they
cream. A low magnification image of the settling gel was
projected onto a CCD camera (Allied Vision Technologies
F-080B). A regular sequence of images was captured every
20 s. The image series was corrected for optical distortion and
nonuniformities in illumination before being calibrated using
an accurate grid of lines. The images near the center of the
cells were analyzed and the interface separating the upper
(dark) phase from the lower (bright) phase was identified
automatically using an image analysis routine. The height
h of the interface was extracted as a function of time with
an accuracy of about ±0.3 mm. To aid visualization, a low
concentration (≈0.001 mg/ml) of an adsorbing black dye,
Sudan black, was added. The dye preferentially partitions
into the index-matched PDMS drops so that the colloid-rich
phase appears dark in transmitted light. The colloid-polymer
mixtures were thoroughly mixed at the start of the experiments
before being loaded into cylindrical glass vials with an internal
diameter of d = 17 mm. The cell diameter was varied between
15 and 23 mm and both cylindrical glass and poly(styrene) cells
were used, with no significant change in collapse behavior.
To eliminate air bubbles, which lead to irreproducible settling
dynamics, we used a gentle slow tumbling of the sample vial to
thoroughly mix the samples before observation. Repeat experi-
ments showed that following this protocol the collapse kinetics
could be measured with a reproducibility of about 10%–15%.

Rheological measurements were performed at 23 ◦C with
a Bohlin HR Nano rheometer (Malvern Instruments). To

study simultaneously the temporal evolution of the elastic
properties and the height of the gel a special rheometric vane
experiment was developed which allowed visual observation
of the gel as rheological measurements were performed. The
vane was made from stainless steel and consisted of four blades
(diameter 22.7 mm; height 10 mm). The vane was carefully in-
serted into clear polycarbonate sample vials (diameter 25 mm;
height 65 mm), 10 mm below the top surface of the gel,
and a thin layer of silicone oil added to minimize evapor-
ation. The vane remained inside the dense upper phase for
the duration of the rheological experiments, allowing the
collapse process to be continuously monitored. Oscillation
measurements were performed at 0.5 Hz at intervals of
200–250 s under controlled stress conditions, within the
experimentally determined linear viscoelastic region, while the
height of the gel was monitored simultaneously by time-lapse
video microscopy. The absence of wall slip was confirmed
by watching the movement of small air bubbles deliberately
introduced into samples.

To directly probe changes in the microscopic topology
of the gel during collapse, we used fluorescent confocal
microscopy. The continuous phase of the gel was labeled
with 0.02 mg/ml of the fluorescent dye rhodamine-B which,
combined with the high transparency of the emulsions pro-
vided by refractive-index matching, allowed high-resolution
optical visualization deep within the gel. A light microscope
(Zeiss, Axioskop S100) was mounted horizontally on its side,
at right angles to gravity, and two-dimensional fluorescent
images of regions 146 × 146 μm were acquired at 543 nm.
The gel was contained in a square cross-section glass vial,
with an internal dimension of 13 mm, mounted on a low
profile translation stage so that the gel could be imaged at
different vertical positions, throughout the full 30 mm height
of the sample [17]. Since the emulsion drop radius is below
the optical resolution limit of the confocal microscope, we
cannot identify individual drops. Instead, we concentrated
on the larger scale structure of the gel. The bicontinuous
network was identified by thresholding the confocal images
to determine the location of the interface separating the (dark)
emulsion phase from the (bright) continuous phase. To correct
for in-plane variation in the fluorescence yield, each image
was divided into 16 subimages and a local threshold for each
subimage was determined using a cluster-based algorithm [21].
A careful analysis of the resulting binary images, backed up by
direct observation, showed that this approach reliably located
the shape and positions of the emulsion and aqueous domains.

III. EXPERIMENTAL RESULTS

A. Collapse dynamics

To begin, the phase behavior of mixtures of emulsion and
polymer was investigated as a function of both the emulsion
volume fraction φ and polymer concentration cp/c

∗
p. The state

diagram plotted in Fig. 1 summarizes the results and shows
the locations of a stable liquid phase, a narrow region of
equilibrium gas-liquid demixing (I), and a broad zone of
nonequilibrium gelation (II). The generalized free volume
predictions [22] for a polymer-colloid size ratio rg/a = 0.62
in a good solvent are shown by the solid lines in Fig. 1.
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FIG. 1. (Color online) State diagram showing gels studied. The
solid curve corresponds to the gas-liquid binodal calculated from
the generalized free volume theory [22], for a polymer-colloid size
ratio rg/a = 0.62. The open triangles identify the experimentally
determined phase boundary. The theoretical prediction for the critical
point is shown by the filled circle. The region below the coexistence
line can be separated into two kinetic regimes: a region of complete
demixing (I) and gelation (II). Quenched into region II, suspensions
form a space-spanning network consisting of thick strands of
particles. The vertical line indicates the constant colloid volume
fraction gels studied (φ = 0.213). The colored symbols represent
estimates of φ for the strands of particles (blue squares) and the
coexisting gas (red squares) after phase separation is complete locally.
Error bars represent the age-dependent variation in φ from the same
sample.

The agreement between the calculated gas-liquid binodal and
experiments is good confirming that the experimental system
is accurately represented by a simple mixture of hard spheres
and nonadsorbing polymer chains.

The sudden collapse of gels was investigated as a function
of both the strength of the attractions −Uc/kBT and the initial
height h0 of the sample. In the absence of polymer, emulsions
remained stable and showed no noticeable separation, so the
mechanical instability seen is a consequence of aggregate
formation. The process of collapse is exemplified by the
time-lapse CCD images reproduced in Fig. 2(a). Qualitatively,
we identify three distinct stages, characterized by the interface
velocity ν = dh/dtw, where tw is the age of the gel. During
an initial lag period (I), the network of attractive particles
produces a mechanically stable solid, which is capable of
supporting its own weight. This regime of solidlike stability
persists, however, only for a limited duration. On times longer
than τd, the lag time, the network yields and a clear interface
appears [identified by the solid line in Fig. 2(a)]. The interface
velocity ν grows smoothly as the gel shrinks and the collapse
becomes progressively more rapid. This period (II) of rapid
collapse terminates when phase separation nears completion
and the interface approaches the final equilibrium plateau. In
the final consolidation stage (III), the settling velocity drops
markedly as the collapsed gel continues to slowly compress
like a solid under its own weight.

50 150 200 250 300 350 40010025
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FIG. 2. (Color online) Sudden collapse of a gel. (a) Time-lapse
images of an emulsion-polymer mixture, with composition φ = 0.21
and cp/c

∗
p = 3.6, as a function of the time after shaking. Each image is

labeled by the time elapsed tw, in units of 103 s. The initial height h0 of
the sample is 40 mm. The characteristic delay time τd after which the
network starts to collapse is indicated by the dashed arrow. The solid
line denotes the position of the interface between the upper colloid-
rich and lower polymer-rich phases. (b) The normalized height h/h0

of the gel shown in part (a) as a function of the elapsed time showing
the three stages of settling characteristic of sudden collapse.

The lag time τd is a strong function of the polymer
concentration and hence the strength of depletion attractions.
Figure 3(a) shows the time-dependent height h(tw) of gels
prepared with different polymer concentrations, but for the
fixed initial height h0 = 40 mm. Inspection reveals two
striking features. First, as reported in previous work [10,11], τd

grows strongly with increasing polymer concentration. Indeed,
the concentration dependence of the lag time is well described
by the exponential relationship, τd ∼ exp(cp/c

∗
p), as shown in

Fig. 3(c). Second, the sedimentation profiles are remarkably
similar in shape when plotted in a linear-log representation.
The height profile at a low polymer concentration may be
simply mapped onto a high concentration sample by shifting
the collapse profile to the right along the logarithmic time axis.
To explore this scaling behavior quantitatively, we focus purely
on the collapse regime and replot the change �h = h0 − h

in the height of the gel as a function of the shifted time
variable τ = tw − τd, the time counted from the instant when
the network first yields. Figure 3(b) demonstrates, rather
unexpectedly, that the initial change in the height of the gel
depends linearly upon τ 3/2, over a wide range of polymer
concentrations. In the early stages of gel collapse, where
�h � 0.5h0, the height of the gel follows approximately the
algebraic expression

h(τ ) = h0 − Aτ
3
2 , (1)
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FIG. 3. (Color online) Gel collapse at fixed height. (a) Time
evolution of gel height for different polymer concentrations. Only data
in the lag and collapse regimes is shown for clarity. (b) The change
�h in height as a function of τ 3/2, where τ = tw − τd is the time
elapsed from the start of collapse. Symbols and data are the same
as in (a). The solid lines are straight line fits. The inset shows an
expanded view of the short-time data. (c) Comparison between the
experimentally measured lag times τd (filled points) and the average
lifetime τesc of an individual particle bond (solid line). Lag times were
measured in both glass (triangles) and poly(styrene) vials (squares).
The dashed line, which reproduces the experimental data reasonably
well, equates to a fixed number of bond lifetimes (τd ≈ 240τesc).

where A is a polymer-dependent prefactor. The existence of
this simple relationship suggests a single common mechanism
is controlling the collapse of the gel at different polymer

concentrations. We return to a more detailed discussion of
this point in Sec. IV to speculate on a possible origin of the τ

3
2

scaling found here. Finally, we note that an alternative scaling
has been suggested by Kilfoil et al. [23]. We found, however,
that their approach failed when applied to the wide range of
polymer concentrations and heights studied here.

Previous studies [13,24] of gel collapse have suggested
that the mechanism of collapse depends sensitively on the
initial height h0 of the gel. Gels formed in short sample
cells display steady or “creeping” sedimentation, where the
height falls continuously with age at a rate which decays
exponentially with time, while taller samples show sudden
collapse. To test whether this behavior is intrinsic to the long-
range systems studied here, we have varied the initial height
h0 and monitored the evolution of the height of the gel with
time. In all the samples reported here, polymer concentration
from cp/c

∗
p = 2.4−4.0 and heights h0 = 22−63 mm, sudden

gel collapse was always observed and we saw no transition
to creeping sedimentation. Figure 4(a) shows a representative
set of data where the time evolution of the interface height
h(tw) is plotted for a range of initial heights and a single
polymer concentration (cp/c

∗
p = 3.6). Inspection of the data

reveals that, rather surprisingly, the time τd during which the
gel is solidlike is largely independent of the initial height
h0 of the sample. Measurement of the variation of τd with
height for a wide range of polymer concentrations, presented
in Fig. 4(b), confirms this observation. We have checked that
this is not due to solid friction between the gel and cell
wall [19] by repeating measurements at cp/c

∗
p = 2.4 using

cylindrical poly(styrene) cells to alter the degree of wall
adhesion. The results, shown as the filled data points in
Fig. 4(b), are in excellent agreement with the data obtained in
the glass vials (open points), demonstrating that wall friction is
unimportant.

Since the gel is initially a solid, the top of the sample
vial is subject to a gravitational stress σg, which is generated
by the full buoyant stress of all of the suspension below, so
σg = �ρgφh0. Taking φ = 0.21 and �ρ = −130 kg m−3,
we estimate that σg varies from approximately 5 to 15 Pa
for the heights used here. The values for the buoyant stress
considerably exceed the yield stress of the gel network, which
we estimate from rheological measurements as σy ∼ 0.1 Pa,
so even while σg is an order of magnitude larger than the stress
required to break the gel’s load-bearing structure, the gel does
not collapse macroscopically. The insensitivity of τd to h0

means we can rule out the possibility that the initial period of
latency of the gel is determined purely by the breaking of single
uncorrelated bonds. Collapse clearly requires a substantially
larger degree of restructuring of the network than is necessary
simply for mechanical yielding.

To explore the effect of height on the kinetics of collapse,
we focus on the initial rate of collapse of the gel with different
h0. Figure 5 shows that the power-law expression Eq. (1),
which captures well the height variation in gels with a fixed
h0, also holds for gels with a wide variety of different starting
heights. The gel does not collapse with a fixed time-invariant
velocity, but rather the interface velocity ν = dh/dτ behaves
at short times like τ 1/2, a behavior which hints at a surprisingly
different mechanism of collapse. To further investigate this
mechanism, we have studied the dependence of the prefactor
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FIG. 4. (Color online) Height-independent lag times. (a) Tem-
poral evolution of a gel with different initial heights but a fixed
composition, φ = 0.213, and cp/c

∗
p = 3.6. The arrows indicate the

lag time τd. (b) The lag time τd as a function of the initial height h0 of
the gel, for a number of different polymer concentrations. The open
symbols denote data obtained in glass-walled cells, while the filled
symbols indicate measurements in poly(styrene) cells. The nature of
the cell wall has no noticeable effect on the delay time measured.

A = d�h/dτ 3/2 on the height and polymer content of the
gel. Figure 5(c) shows that, rather remarkably, for all the gels
studied, the prefactor A does not change with the initial height
of the gel. Since the gravitational stress σg on the gel increases
linearly with its height, this result suggests that σg is relatively
unimportant in determining the process of collapse, at least
under the conditions of our experiments. The central role of
thermally induced bond dissociation is seen in Fig. 5(d), where
it is revealed that the prefactor A scales exponentially with cp,
equivalent to an exponential dependence on the depth of the
interaction potential. In conclusion, the process of collapse
appears to be thermally rather than stress activated.

To interpret these striking observations, we model the initial
deformation of a gel using the poroelastic formalism first
introduced by Buscall and White [25]. In this approach, the
gel is treated as a biphasic fluid-saturated porous continuum

with the pore pressure P as a state variable. A gel consists
of two distinct phases: a solid phase of connected strands of
emulsion particles and a second liquid phase consisting of a
fluid solution of a nonadsorbing polymer. In the early stages
of collapse, the gel is essentially uncompressed so there is no
elastic stress due to deformation and the rate of collapse is
limited essentially by the rate at which fluid is forced out of
the gel [18]. Defining v as the macroscopic velocity of the
fluid flow through the gel and w as the local displacement of
the solid network along the gravitational z axis then, using
Darcy’s law,

−∂zP = η(1 − φ)

k
(v − ∂tw), (2)

where k is the permeability of the network, which since we
are considering only the early stage of collapse we assume to
be height independent, and η is the viscosity of the continuous
phase. Continuity demands

(1 − φ)v = −φ∂tw, (3)

which, since φ < 1 − φ, implies that the fluid velocity |v|
must be small [18] in comparison to |∂tw|. Consequently, if
the displacement of the gel varies as τ 3/2 then, from Eq. (2),
the pressure gradient at the top of the gel, adjacent to the
interface, must be increasing as τ 1/2. This time dependence
rules out a simple compression of the gel as a consequence of
gravity because the pressure gradient would then be a constant,
∂zP = −�ρgφ, and the gel would accordingly shrink linearly
with time [18]. The τ 1/2 dependence of P suggests instead a
diffusive process may be responsible for the unusual collapse
dynamics seen. We can however rule out a bulk diffusive
process of conventional syneresis, akin to the shrinkage of
a polymer gel undergoing a phase transition [26]. In this case,
the contraction of the matrix as the phase separation ensues
would generate an increase in P , which leads to the expulsion
of fluid and a shrinkage of the gel as t1/2 [27] rather than the t3/2

dependence seen here. Furthermore, this process would require
fluid to be transported through the full length of the system,
so the rate of diffusion would depend on the height of the
gel, which is also incompatible with our data. Clearly, another
mechanism is required to correctly explain the observed data.

B. Microstructure

Sudden collapse reflects a dramatic loss of mechanical
integrity as the gel ages. To understand the nature of this
mechanical failure, we first examine the evolution of the elastic
properties of the gel while simultaneously recording the height
of the gel. Figure 6 shows the rheology and interface height
h(tw) during the settling of a representative gel. At the earliest
times recorded, the sample is solidlike with an elastic shear
modulus G′ that is larger than the viscous modulus G′′. The
measurements, however, reveal that the elasticity of the gel,
far from reducing with time, as one might naively expect,
actually increases continuously up to the point tw = τd when
the gel starts to collapse. Immediately when collapse starts,
G′ also drops, but only by a relatively small amount (less
than 10%), before finally growing steadily as the emulsion
volume fraction in the upper phase increases with the onset of
phase separation. We see no sign of large-scale hydrodynamic
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FIG. 5. (Color online) Initial τ 3/2-collapse dynamics. (a) The height h of a gel plotted as a function of the 3/2 power of the time elapsed
after the gel yields, for different initial heights h0. Curves are labeled by the initial height. The samples have fixed polymer concentration
cp/c

∗
p = 3.6, and colloid content φ = 0.213. (b) Similar time-dependent settling observed in gels with cp/c

∗
p = 2.4. (c) Invariance of the

prefactor A = − limτ→0 dh/dτ 3/2 with the height of the gel. Curves are labeled by cp/c
∗
p . (d) Exponential dependence of A on the polymer

concentration, highlighting the activated nature of the collapse process.

mixing, recirculation, and the development of channels which
have been seen in some other studies of gravitational collapse
[8,12,13]. It is intriguing that even though G′ drops at the
initiation of collapse, the overall mechanical response remains
predominantly elastic (G′ > G′′). We suspect that this reflects
the inhomogeneous nature of the network at collapse. If the
sample is heterogeneous, the response measured will be an
average over regions where the gel has broken apart, and is a
fluid, with other portions of the network which remain elastic.
The recorded response will then depend on the relative sizes
of the mechanical vane and the inhomogeneous regions within
the gel. To confirm that the sample becomes a fluid when the
gel begins to collapse, we have placed a small glass block
about half the width of the cell in the base of the cell. When
the gel begins to collapse the interface between the gel and the
bottom of the cell rapidly flattens, indicating that the base of
the gel becomes a fluid of aggregates as the gel collapses.

While the rheological measurements provide a mechanical
insight into gel settling, they do not clarify the link between
the macroscopic processes of collapse and the microscopic
structural reorganization occurring during aging and sedimen-
tation. Indeed, at first sight, it seems counterintuitive that a
gel which is becoming gradually stiffer with time should ever

collapse at all. To probe the link between the microscopic and
macroscopic length scales, we have examined the temporal
evolution of the gel microstructure using confocal microscopy.
The coarsening is illustrated by the binary two-dimensional
images reproduced in Fig. 7. In the rectangular cell used
for imaging experiments, the delay time was measured as
τd ≈ 1.3 × 105 s, so both images refer to the latency period
before collapse starts. Clearly, although the gel remains
mechanically stable during this period, there is a slow but
continuous evolution in the microscopic nature of the particle
network and the system is not arrested. A closer look at the
data in Fig. 7 reveals that the interface between the continuous
and particle phases is quite rough, suggesting that surface
tension is unimportant and the dense portion of the gel is
not a fluid. Direct observation shows that particle diffusion is
strongly suppressed and particles move infrequently between
the strands of the network, indicating that the interaction
network is probably glassy. The images in Fig. 7 illustrate two
further microstructural characteristics, which will be important
to our later discussion on the mechanism of network collapse.
First, it is evident that the thickness of the backbone of the
gel grows slowly but continuously with time, a fact which
probably explains the increase of G′ with tw seen in Fig. 6.
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FIG. 6. (Color online) Simultaneous measurements of linear
viscoelasticity and height h of gel as a function of time elapsed
since preparation tw. Gel had an initial composition of cp/c

∗
p = 3.6,

φ = 0.213 and a measured delay time of τd = 1.2 × 105 s (indicated
by dashed line). The elastic G′ and loss G′′ moduli were measured by
applying a oscillatory stress of magnitude 0.0025 Pa at a frequency
of 0.5 Hz and measuring the strain response. The gel stiffens
continuously with age until the elastic modulus drops at tw = τd as
the gel begins to collapse.

Second, the thickness of the network of particle strands is not
uniform. The gel contains a relatively large number of thin
junction points where two or three arms (in two dimensions)
are connected together. Simultaneous breakage of the particle
bonds at these relatively weak junction points would lead to a
rapid breakup of the whole network.

To quantify the change of the microstructure with time, we
use chord methods developed to analyze statistically random
heterogeneous materials [28]. We superimpose on the images
of Fig. 7 a uniform grid of horizontal and vertical lines. The
two-phase interfaces divide each grid line into chords that
are either inside the dense part of the network or else lie
within the solvent background. We define a chord as the line
segment between two consecutive intersections of the random
line with the bounding two-phase interface. Focusing only on
those chords that lie within the dense strands of the network,

20 20 µm20 20 µm

(a) (b)

FIG. 7. Continuous coarsening of gel with age. Two-dimensional
binary representation of a gel with composition cp/c

∗
p = 2.4, φ =

0.213 after (a) 3.6 × 103 s and (b) 1.12 × 105 s from preparation.
Gravity points vertically downward and the scale bar corresponds to
20 μm.

we count the number of chords N (l) with lengths in the range l

and l + dl. If N is the total number of chords, then the degree
of linear “connectedness” of the gel may be characterized in
terms of a probability density function, p(l), where

p(l)dl = N (l)

N
. (4)

The quantity p(l)dl is the probability that a randomly chosen
chord has a length between l and l + dl. We find that the
chord length distribution p(l) displays a characteristic shape,
with p(l) first increasing with growing l before reaching a
maximum at a finite l and finally decaying exponentially for
larger l. The diameter of the strands of particles within the gel
may be characterized either from the value at which p(l) takes
a maximum value or from the mean chord length lg

lg =
∫ ∞

0
lp(l)dl, (5)

which we use here because it displays a smaller statistical error.
Finally, the chord functions also provide an efficient means
to estimate the volume fraction of the high-density colloidal
regions in the gel. If we assume the gel is isotropic and the two-
dimensional images are chosen randomly, then the fraction χ

of the volume of the gel occupied by the dense regions is

χ = 1

L

∑
l

N (l)l, (6)

where L is the total length of the original lines. The volume
fraction of colloids, φg, in the dense regions of the gel is given
by the ratio φ/χ , where φ is the initial colloid volume fraction.

Next, we characterize the slow evolution of the gel structure.
Figure 8 shows the age dependence of the mean chord length lg
and the volume fraction φg prior to collapse. A key observation
is that during the latency period when the height of the gel is
unchanged structural reorganization is never fully arrested but
continues, albeit rather slowly. So, for instance, the growth of
the mean chord length is well described by a power law, lg ∼
tαw, with an exponent α. The growth law is always much slower
than the t

1/3
w dependence expected for the diffusive regime of

classical liquid-gas phase separation. The growth exponent α

depends rather strongly on the polymer concentration with α

decreasing markedly as cp/c
∗
p is increased. Similar slow growth

has been identified previously in simulations of deep quenched
Lennard-Jones systems [29] and has been interpreted as
indicating that the dense domains of the gel are actually glassy.

C. Origin of lag time

Having characterized the macroscopic process of collapse,
we now discuss the mechanism for the initial failure of the
particle network. A gel is a metastable phase with a high
free-energy density whose consolidation is driven ultimately
by the thermodynamic driving force for phase separation.
However, once a stable percolating network of strands of
particles is formed, the dynamics of phase separation is
slowed down considerably because, as evident from Fig. 7,
the strands of the network are many particles wide, so
large-scale rearrangements of the gel require the simultaneous
dissociation of all of the particle bonds within the cross
section of a strand, which will be very rare. The network
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FIG. 8. (Color online) Evolution of colloidal network with time.
(a) Average chord length lg in the colloid phase, in units of the
particle diameter. The rate of increase of lg is always slower than the
diffusive growth, lg ∼ t1/3

w (shown by dashed line) characteristic of
classical spinodal decomposition [29], and slows down considerably
with increasing polymer concentration cp/c

∗
p . (b) Average colloid

volume fraction φg within dense regions of the gel, as a function of
elapsed time. The density of the particle strands within the network
increases progressively with age before rising rapidly at the onset of
gel collapse.

accordingly lowers its free energy via a series of small-
scale structural reorganizations which proceed through the
rupture of essentially single particle bonds. The breakup of
an energetic bond between particles, diffusion to dense region
of the network, and a reformation of the broken bond allows
a net increase in the number of nearest-neighboring particles
with a concomitant lowering of the free energy of the system.
For the network to coarsen, the system must overcome the
energetic barrier associated with single bond rupture. This
could be achieved, in principle, either thermally or as a result
of an applied stress. The observation that the delay time is
unaffected by the initial height of the gel strongly suggests
that the delay time and hence the rupture of individual bonds is
controlled primarily by thermal fluctuations rather than being
stress driven.

To calculate the average lifetime τesc of an individual
particle bond due to thermal fluctuations, we assume that a
single bond ruptures on a scale comparable to the time it
takes a Brownian particle to escape from an attractive ramp
potential with the same range δ/a and depth −Uc/kBT as the
interparticle depletion potential. The mean escape time in the
overdamped limit is given by the Kramers expression [30]

τesc = δ2

Dt

exp(−Uc/kBT ) − (1 − Uc/kBT )

(Uc/kBT )2
, (7)

where Dt is a translational diffusion constant. We estimate
Dt from the short-time self-diffusion constant in a hard-sphere
suspension at the same φ, which, since the dense regions of the
gel have a volume fraction ≈0.55, is about 20% of the dilute
free particle limit, D0 = kBT/(6πηLa). The limiting low shear
viscosity ηL was determined by extrapolating measurements
of the steady-shear rheology of the polymer solution to a
vanishing shear rate and fitting to the Martin equation,

ηL

η0
= 1 + [η]cp exp(kH[η]cp), (8)

which has been found to correlate well viscosity in dilute and
semidilute polymer solutions (cp/c

∗
p < 10). Here [η] is the in-

trinsic viscosity, η0 is the viscosity of the mixed solvent, cp the
polymer mass concentration, and kH is a constant (equivalent
to the Huggins constant at low cp). Fitting data in the range
cp = 0.6−1.2 mg/ml to Eq. (8) gave [η] = 2.32 ml/mg and
kH = 1.2. The width of the depletion zone δ and the potential
at contact −Uc/kBT were estimated using the generalized
free volume theory for mixtures of hard-sphere colloids and
excluded-volume polymer chains, as detailed in Ref. [17].
Figure 3(c) shows a comparison between the measured delay
time τd and the average lifetime τesc of a single-particle bond,
estimated from Eq. (7). The ratio of the two time scales is very
nearly constant, for a wide range of polymer concentrations,
with the delay time approximately 240 times the estimated
single-particle Kramers escape time. This strong correlation
highlights the pivotal role of spontaneous thermal fluctuations
in determining the latency period of the gel. The fact that
the delay time is many times longer than the rupture of a
single bond probably reflects the cooperative nature of gel
failure. The strands of the network are several particles wide,
so failure requires the simultaneous dissociation of all of
the bonds in the cross section of a particle chain [31]. The
alternative picture proposed by Buscall et al. [32], that the
ratio τd/τesc is determined by the mean coordination number
of particles within the gel, could only be consistent with
our observations if the mean particle coordination number
varied with the depth of the attractive potential. To distinguish
completely between these two possibilities requires a more
detailed microscopic model of gel failure than is currently
available.

To explore the microscopic mechanism by which thermal
fluctuations lead to delayed failure, we used real-space
confocal imaging to follow the time evolution of the gel. Since
the load-bearing nature of the network is clearly important,
we concentrate on changes in the connectivity of the strands
of particles which constitute the gel. Figure 9(a) shows
two-dimensional confocal slices taken from the same physical
region within an aging gel before collapse occurs. Because
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FIG. 9. (Color online) (a) 2D confocal images of coarsening gel network formed at φ = 0.213 and cp/c
∗
p = 2.4. The particles are shown

in white. The solid circles indicate network junctions, which have formed in the preceding 3600 s. The dashed circles indicate positions where
the network has, in the same interval, broken. The scale bar is 30 μm long. Network collapse occurs at τd ∼ 120 × 103 s. (b) The number of
reassociation Nlink and rupture Nbreak events per hour as a function of the age tw of the gel. The dashed lines are guides to the eye. The inset
shows the tw dependence of the fraction f of rupture events.

of the finite bond energy, the network structure slowly but
continuously evolves, with fluctuations in both the number
and type of junction points. By comparing two-dimensional
(2D) images of the fine-stranded structure of the network at
hourly intervals, we identified discrete strand association and
dissociation events occurring over this period. Examples where
the strand network is ruptured are indicated by the dashed cir-
cles in Fig. 9(a), while the solid circles identify new cross links
formed by the reassociation of strands. Counting the number of
reassociation Nlink and rupture Nbreak events recorded per hour,
as a function of the age of the gel, results in the data shown in
Fig. 9(b). There is gradual reduction over time in the number of
reassociation events Nlink, as the network is formed in an open
high-energy state and then relaxes slowly into a lower more
compact structure. Strikingly, however, we see that the rate of
bond rupture does not show the same slowing down. Nbreak is
essentially independent of age, presumably because rupture is
an activated process that is dominated by the single-particle
bond energy barrier. The consequence of the different time de-
pendence seen for association and rupture is that the proportion
of breakage events f = Nbreak/(Nbreak + Nlink) [shown in the
inset of Fig. 9(b)] grows with the age of the gel. The increasing
proportion of strand ruptures ultimately leads to failure of
the stress-bearing backbone of the gel and the initiation of
collapse.

D. Appearance of structural heterogeneities

Work in the past decade [33,34] has shown that soft
glassy materials frequently display structural heterogeneities.
In materials where the elastic behavior of a material dominates
over its viscous response, any deformation due to a local
rearrangement can propagate macroscopic distances, so the
size of regions which undergo correlated rearrangements can
be sizable. If this holds true in our system, then it should be
feasible to see signs of the long-range distortion field generated
by local rearrangement events by microscopy.

To test these ideas, we have used confocal microscopy
to monitor the time evolution of the network structure as a
function of the vertical z position within a gel. A series of
2D-confocal images were collected at regularly spaced 1 mm
heights from a colloid-polymer gel with a total height of
h0 = 15 mm. Images were acquired for ≈7 h after the cessation
of mixing, until the point at which gel collapse occurred. The
characteristic domain size of the network Rc(h,tw) at a height
h and time tw was calculated from the static structure factor
S(q,tw),

S(q,tw) = 1

2πq�q

∫
q�|q′|�q+�q

dq′〈Ĩ (q′,tw)Ĩ (−q′,tw)〉, (9)

where Ĩ (q,tw) is the two-dimensional Fourier transform of the
image intensity I (r,tw) at time tw, �q = 2π/W , and W is the
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FIG. 10. (Color online) Domain size Rc in a gel of height h0 =
15 mm (cp/c

∗
p = 2.4) as a function of the distance measured from the

base of the cell. Note aging is hindered at the boundaries of the gel.
The effect continues over a distance λ which is of the order of a few
millimeters.

image width. The domain size is Rc = π/〈q〉, where 〈q〉 =∫
dq qS(q)/

∫
dq S(q). Measurements of Rc for different

sample ages tw are plotted in Fig. 10 and confirm that the
aging of the gel network shows considerable spatial diversity:
the domain size is large in some regions of space and small
in others. Immediately after mixing, we observe the formation
of a very uniform network with an average domain size of
〈Rc〉 = 17.5 μm and a spatial variation of just 1.4% (standard
deviation/〈Rc〉). However, after tw = 2 h, while the mean
size has grown only slightly to 〈Rc〉 = 21.3 μm, the spatial
variation in Rc has increased to 3%. After 5 h, the variation
in the domain size has increased still further to 9% (〈Rc〉 =
26.7 μm). Clearly, the data reveal that aging of the network
is heterogeneous with spatial variation increasing with the
sample age.

IV. DISCUSSION

The most striking feature of our results is the appearance
during collapse of the 3

2 -power-law dependence of the height
h(τ ) on the elapsed time τ . A natural question is the
physical origin of this unusual behavior. We propose that the
dominant mechanism for collapse is the appearance of random
microcollapsed regions throughout the gel. On a microscopic
level, the basic idea is that the particles comprising the gel
attract each other relatively strongly so, over time, the gel
spontaneously restructures locally to create small regions
of more dense packing. Since the collapsing particles are
attached quite strongly to strands of the network, as they
rearrange they induce a local pressure field. This induced
field, as a consequence of the poroelastic character of the
gel, expands relatively slowly into the bulk of the gel. It is this
long-range pressure field which we hypothesize generates the
characteristic collapse dynamics evident in our experiments.
Similar arguments have been invoked to account for the
anomalous microscopic motion evident in dynamical light
scattering of colloidal gels [33,34] but not, as far as we

are aware, for the macroscopic settling dynamics of gels.
While our discussion has some features in common with the
purely elastic models used previously [33,34], we focus here
on deformations at large (macroscopic) length scales where
poroelastic fluid flows are important.

For the moment, we idealize the gel as a one-dimensional
chain of particles. Then, if two particles leaves their equilib-
rium positions to stick together, the left-hand particle imposes a
force +f0 on the left part of the chain at z′, while the right-hand
particle imposes an equal and opposite force −f0 on the
right-hand side of the chain located at z′ + δz′. The net effect
of the rearrangement is therefore the creation of a local dipolar
force f (z′,t ′) at the random position z = z′. The intensity of
this dipolar force, the dipole moment μ, is the product of the
force f0 and the displacement vector δz′ in the limit as δz′ → 0.
At the dipolar stress center, the fluid pressure P rises rapidly to
a high value, while further away P is almost unchanged. The
resulting pressure gradient drives a flow through the porous
medium and, as fluid exits from around the applied force,
the gel deforms locally and more of the load is borne by
the network. Eventually, the pressure at all points reaches the
same value and the gel relaxes so that the applied load is
everywhere balanced by the elastic stresses in the network. The
time scale for this equilibration is determined by a diffusion
constant Dg, with the deformation in the gel occurring over a
length scale ≈ √

Dgt in a time t . The gel diffusion constant Dg

is [35,36]

Dg = Kk

ηL(1 − φ)
, (10)

where k is the permeability of the network, ηL is the viscosity
of the continuous phase, and K is the bulk modulus of the
network. Using measurements of the low shear viscosity
(ηL � 0.1 Pa s), the elastic modulus of the gels (K � 10 Pa),
and literature values for the permeability of similar density
gels [18] (k ∼ 10a2 � 10−12 m2), we estimate a diffusion
constant in our system of Dg � 10−10 m2s−1. Both the pore
pressure and, in general, the permeability will change with time
as the gel contracts locally. However, in the initial stages of
collapse, the gel is uncompressed, the permeability is constant,
and the equations of linear poroelasticity apply [37]. We
shall ignore all nonlinear effects. The bulk shrinkage of an
unconstrained gel is linear, so it is natural to assume that
the dipole intensity will also be a linear function of time,
μ(t) = μ0t .

For simplicity, we first consider the isotropic deformation
produced in the gel by the supposition of three contin-
uous orthogonal stress dipole centers (a single center of
compression [38]). Rudnicki [39] has shown that the pore
pressure at a distance r from a single continuous center
of compression in a fluid-saturated porous solid is of the
form

Ps(r,t) = Q

4πDgr
erfc(ξ/2), (11)

where ξ = r/(Dgt)1/2, Q is proportional to μ0, and erfc
is the complementary error function [40]. As t → 0,
ercf(r/2

√
Dgt) → 0, and the pressure is zero. At finite times,

the fluid has an opportunity to diffuse away from the origin, and
the spherically symmetric pressure wave expands. In Fig. 11,
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t = 0.25 t  = 1.00 t  = 4.00

FIG. 11. (Color online) Illustration of the pore pressure field generated by a continuous compression center placed at the origin of a gel.
Times and distances are scaled so the diffusion constant Dg is unity. The ring of radius r = 6(Dgt)1/2 parametrizes the spatial extent of the
induced pressure field.

we plot a time series of the spreading pressure field as it
diffuses away from the origin. The length scale where the
pressure is finite is controlled by fluid diffusion within the gel
and is thus time dependent. From the figure, it is clear that
the spatial extent of the pressure field is of order 6(Dgt)1/2.
Finally, as t → ∞, ercf(r/2

√
Dgt) → 1, and the pressure field

approaches the pure 1/r-elastostatic solution, expected for a
continuous dipole source [37].

We assume that, at the start of collapse, the gel contains
centers of compression that are randomly distributed through-
out the height of the gel, with a certain number ρ per unit
length. To calculate the velocity of the gel interface ∂tw we
note that, from Darcy’s law Eq. (2), ∂tw is fixed by the total
pressure gradient at the bottom of the gel. If we assume
that each microcollapse contributes independently, then the
pressure gradient is simply the sum of the gradients generated
by individual events occurring at different heights zj within
the gel. For simplicity, we ignore the true vectorial nature of
the problem and use a scalar approximation in which we
assume that the pressure field due to each independent micro-
collapse adds together coherently to produce the macroscopic
pressure field. Since the vertical pressure gradient must control
the process of collapse, we focus solely on the z direction. A
single center of compression located a distance zj from the gel
interface creates a pressure gradient, θj = ∂rPs , which from
Eq. (11) is

−θj (zj ,t) = Q

4πz2
jDg

erfc

(
zj

2
√

Dgt

)
+ Qe

− z2
j

4Dg t

4π3/2zjD
3/2
g

√
t
.

(12)

The growth data in Fig. 10 suggest that coarsening of the
network is suppressed near a surface, i.e., microcollapse
events appear preferentially at distances z � λ away from
a surface. This seems plausible since the energy barrier for
a rearrangement near an interface will probably be higher
than for the same event in the bulk of the gel, as the strain
induced by the creation of the dipole is larger. Inspection
of the data in Fig. 10 suggests that λ is of the order of
a few millimeters. Hence we assume that microcollapses
are uniformly distributed over the interval from z = λ to
z = h0 − λ. The total pressure gradient at the base of the gel

is, therefore,

∂zP |base = ρ

∫ h0−λ

λ

θ (z,t)dz. (13)

Since, experimentally, we have observed that the collapse
process does not vary with the total height h0 of the gel, the
upper limit of the integral can be extended to z = ∞ without
significant error. After inserting Eq. (12), the resulting integral
can be performed exactly with the following result:

−∂zP (t) = ρQ

4λ2π3/2D
1/2
g

√
te

− λ2

4Dg t + ρQ ln λ

4π3/2D
3/2
g

√
t
. (14)

In the regime where t  λ2/4Dg, which from our estimates
for Dg and λ equates to t  103 s and holds for all but the
shortest times studied, the expression for the pressure gradient
simplifies to

−∂zP (t) ≈
tλ2/4Dg

ρQ

4λ2π3/2D
1/2
g

√
t . (15)

On time scales t ≈ 103 s, the gel has typically not collapsed to
any significant degree (see, for instance, the data in Fig. 3), so
the permeability of the gel is not substantially changed from
its initial value and Dg is time independent.

The confocal data, presented in Sec. III C, reveals that
microcollapses first appear in gels with an age tw of ≈τd, so
the time t available for the propagation of the pressure wave in
Eq. (15) is τ = tw − τd. By combining Eqs. (2), (3), and (15),
we obtain

�h(τ ) =
[

ρkQ

4η(1 − φ)λ2π3/2D
1/2
g

]
τ 3/2. (16)

where we have assumed that the flow of fluid through the net-
work determines the initial rate of collapse, and t  λ2/4Dg.
This expression is in very good agreement with the exper-
imental results, where a similar exponent of 3/2 has been
found, thus providing convincing evidence for our simple
phenomenological model. In addition, our arguments predict
that the coefficient of τ 3/2, which we identify with the scale
factor A in Eq. (1), should be a system constant, independent
of the initial height of the gel. This agrees with the height
independence seen in the experimental data presented in
Fig. 5(c). We expect that the formation of microcollapses is
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thermally activated, so their number density ρ will be of the
form

ρ = ρ0exp

(
− �E

kBT

)
, (17)

where �E is an energy barrier for rearrangement. Since
�E/kBT will scale with the strength of the interparticle
potential Uc/kBT , one expects that the scale factor A

will depend exponentially on the interparticle potential, or
equivalently the polymer concentration, in agreement with
the experimental data plotted in Fig. 5(d). Finally, we note
that our model displays no explicit dependence on gravity,
since we hypothesize that gel collapse is a consequence of
irreversible aging of the particle network. Gravity simply
dictates the direction of gel collapse and we believe that,
in the current case, the gravitational stress on the network
is not sufficiently large to significantly enhance the thermal
relaxation of particle bonds. However, this conjecture still
awaits a direct experimental proof. A systematic investigation
of the collapse of transient gels as a function of the gravitational
stress, which could be achieved, for example, by changing the
density mismatch �ρ or by using microgravity conditions,
would confirm this prediction. Unfortunately, no such data is
currently available, although we plan in the near future to start
such measurements.

V. SUMMARY

We have studied the gravitational collapse of a colloidal
gel by a combination of confocal microscopy, time-lapse
video imaging, and rheology, focusing particularly on the
effect of the initial height h0 of the gel and the strength of
attractions Uc/kBT . The gels are made of emulsion drops
suspended in a refractive index-matched mixture of ethylene
glycol and water, with a high molecular polymer added to
induce a weak long-range attraction. For all systems, the height

h(tw) of the gel shows a characteristic two-step decay as a
function of age tw: for tw less than the lag time τd, the system
resists gravity and there is no significant deformation, but for
tw > τd the gel abruptly yields and collapses. The change
in the height �h = h0 − h(tw) of the gel during collapse
has a number of distinctive features. First, we find that the
initial degree of settling is well described by the expression,
�h ∼ τ 3/2, with τ the time counted from the moment when
collapse first starts. Second, both the process of collapse
and the lag time τd are independent of the initial height
of the gel. Microscopically, the gel consists of a network
of interconnected strands of particles. Confocal microscopy
reveals that continuous restructuring of this network occurs
which, with increasing age, leads to the breaking of bonds
between particle strands and a progressive weakening of
the network. The subsequent reduction in the large-scale
connectivity of the network eventually triggers a macroscopic
collapse. Measurement of the microscopic structure of the gel
during settling shows that the age-dependent changes in the
network are not isotropic, but are concentrated around large
inhomogeneities within the sample. We hypothesize that the
collapse of the gel is determined by the rate at which fluid can
be expelled from the gel. A simple phenomenological model
of fluid flow driven by the formation of random compression
centers within the gel correctly accounts for the behavior
experimentally observed.
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