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X-ray photon correlation spectroscopy during homogenous shear flow
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We report x-ray photon correlation spectroscopy measurements of advective and diffusive dynamics in a
dispersion of colloidal particles subjected to homogeneous shear flow in a rotating-disk shear cell. Intensity
autocorrelation functions from scattering data collected using homodyne detection respond to the variation in
velocity across the scattering volume when the scattering vector has a component parallel to the flow direction.
Theoretical expressions for the impact of homogenous shear flow on the correlation function provide a quantitative
prediction of the dependence of correlation functions on the scattering vector and shear rate. Under most
circumstances, the applied shear deformation dominates the decay of the intensity correlation function. When
scattering data are collected perpendicular to the flow direction, it is possible to measure the diffusive dynamics
of the particles free from effects of the superimposed shear flow; however, this approach only works below some
upper shear rate limit, beyond which data are affected either by shear effects (caused by the finite width of the
detector) or by particle transit through the scattering volume.
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I. INTRODUCTION

X-ray photon correlation spectroscopy (XPCS) has
emerged as a powerful tool for studying dynamic processes
in colloidal [1–5] and polymeric [6–10] materials. XPCS
exploits the partial coherence of x-ray beams produced at
third generation synchrotron sources, resulting in speckle
x-ray scattering patterns characteristic of the instantaneous
distribution of electron density within the sample. Time
correlations of such speckle patterns are related directly to
microscopic motions within the sample, usually associated
with Brownian diffusion. Similar in principle to dynamic light
scattering [11], XPCS may readily be used to probe opaque
samples and to provide access to dynamics at smaller length
scales.

Although XPCS may be applied to study dynamics in di-
verse classes of materials, it has found particularly widespread
application in studies of soft materials in the small-angle
scattering regime, probing structural dynamics on length
scales of tens to hundreds of nanometers and time scales of
∼0.01–100 s. This same range of scales figures prominently
in the structure and rheology of many classes of complex
fluids [12]. Since it enables the study of microscopic dynamics
in the equilibrium state, XPCS is conceptually similar to
linear viscoelasticity [8,9], while offering the advantages that
(i) XPCS probes structural dynamics directly rather than
measuring their manifestation in the relaxation of mechanical
stress; and (ii) the length scale dependence of structural
dynamics may readily be assessed by performing measure-
ments over a range of scattering vectors, (q = |q| = 4π

λ
sin θ ;

here, λ is the x-ray wavelength, and 2θ is the scattering
angle).

This complementarity between XPCS and rheology raises
the question of whether opportunities may be afforded by
a direct combination of XPCS and applied shear flow. An
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ultimate goal might be to use XPCS to probe how microscopic
dynamic processes change in response to flow-induced defor-
mation or orientation of fluid microstructure in the nonlinear
viscoelastic regime, similar in spirit to studies of shear-induced
diffusion in dispersions of larger particles using direct real-
space imaging via confocal microscopy [13]. Any such effort
is complicated by the fact that deterministic motions associated
with the applied shear directly affect the measured intensity
autocorrelation function measured in coherent scattering.
Such effects provide the basis for one form of laser-Doppler
velocimetry where the autocorrelation function of a scattered
intensity signal measured via heterodyne detection (e.g.,
mixing the scattered beam with a reference beam) exhibits a
beat frequency directly related to the velocity of the scatterers
[14]. This principle has been adapted to XPCS by Livet
et al., who demonstrated the ability to measure extremely
small velocities of filler particles in elastomers following
applied deformation [15]. Conventionally, however, XPCS
measurements use homodyne detection, in which case, it is not
the velocity itself, but rather the variation in velocity across
the scattering volume that affects the intensity autocorrelation
function [16–18]. Fuller et al. [16] proposed and demonstrated
the use of homodyne laser light scattering as a tool to
measure velocity gradients in laminar flows under conditions
in which the applied deformation dominates the autocorrela-
tion function. Fluerasu and co-workers have recently applied
these principles to XPCS measurements in inhomogeneous
(pressure-driven) shear flows [19–21]. While Fuller et al.
emphasized conditions in which data were dominated by the
effects of shear [16], Fluerasu and co-workers demonstrated
that it was possible to perform experiments under conditions
in which the native diffusive motions in the sample may be
measured free from effects associated with the applied flow
[19–21]. From a rheological perspective, it usually is prefer-
able to employ homogeneous shear flow (that is, flows with a
single spatially uniform velocity gradient). In this paper, we
explore the application of XPCS during homogeneous shear
flow.
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II. BACKGROUND

The theory relevant to XPCS measurements during shear
is described in depth elsewhere [16–21]; here, we present a
brief overview of the salient points. The experimental quantity
measured in XPCS is the intensity autocorrelation function,

g2(q,t) = 〈I (q,t0)I (q,t0 + t)〉t0
〈I (q,t0)〉2

t0

(1)

computed from a time series of intensity measurements; angle
brackets denote averages over points t0 in the series. This, in
turn, is related to the intermediate scattering function g1(q,t )
through the Siegert relationship [11],

g2(q,t ) = 1 + β |g1(q,t )|2 . (2)

Here, β is a contrast factor that depends on the coherence
properties of the beam and the scattering geometry. Due
to the partial coherence of synchrotron beams, this factor
generally is smaller in XPCS than in dynamic light scattering.
The intermediate scattering function provides fundamental
information about dynamics in a sample. For instance, for
a system of N identical particles, g1(q,t ) is given by [11]

g1(q,t) =
N∑

k=1

〈E∗
k (0)Ek(t) exp[−iq · (rk(0) − rk(t))]〉, (3)

where Ek(t) is the amplitude of scattering from particle k at
time t and rk(t) is the particle’s position. For the case of simple
particle diffusion in a dilute suspension,

|g1(q,t)|2 = exp[−2Dq2t], (4)

where D is the particle’s Stokes-Einstein diffusivity.
For colloidal dispersions under shear, Fluerasu and co-

workers show that the decay of the homodyne intensity auto-
correlation function reflects three processes: particle diffusion
(D), as in conventional XPCS, particle transit (T ) through
the scattering volume, and shear deformation (S) within the
scattering volume [19],

|g1(q,t)|2 = |g1,D(q,t)|2|g1,T (q,t)|2|g1,S(q,t)|2. (5)

(This simple form in which the three contributions are factored
may be justified under conditions in which the relevant time
scales are widely separated [16,19].) Ackerson and Clark
describe modifications to the diffusive term predicted in the
presence of the applied shear flow [17]; however, under
the conditions used in this paper, these terms are negligible, so
we simply use Eq. (4) to describe the diffusive contributions
to the autocorrelation function, which involves a characteristic
time τD ∼ 1/Dq2.

The transit term arises as a result of de-correlation induced
as particles enter and leave the scattering volume. It produces
decay of the correlation function over a characteristic time
τT ∼ w/V , where w is the beamwidth and V is a characteristic
velocity, taken here to be the velocity of the moving plate in the
homogeneous shear flow (Fig. 1). The detailed functional form
for

∣∣g1,T (q,t)
∣∣2

will depend on the intensity profile across the
beam [19]. As discussed below, however, transit time effects
should be negligible under the conditions used here.

Steady flow will make a predictable contribution to the
relationships among particle positions in Eq. (3) as time elapses

FIG. 1. Diagram of experiment, illustrating coordinates used to
define the applied shear flow field and showing the two different
positions and binning schemes used for XPCS data acquisition during
shear flow. The gray circle has a radius of q = 0.0082 Å−1, the
location of the first form factor minimum of the colloidal dispersion
of polystyrene latex particles used as a sample in this paper.

[19]. X rays scattered from moving particles are Doppler
shifted; a pair of particles with a difference in velocity δv
will produce a beat frequency q · δv when their scattered x
rays interfere at the detector. The shear contribution to the
correlation function is computed by averaging this effect for
all pairs of particles in the scattering volume. We consider
shear flow as illustrated in Fig. 1,

vx = V

H
y = γ̇ y, vy = vz = 0. (6)

In this geometry, q · δv = qxγ̇ δy, where δy is the displace-
ment between a pair of particles along the y direction. For
large N , the sum over all particle pairs may be represented as
a double integral over the scattering volume. Since velocity
only varies in the y direction for the flow under consideration
here, integration is only required in this direction, leading
to [18,19]

|g1,S(q,t)|2 = 1

H 2

∫ H

0

∫ H

0
cos[qxγ̇ (y2 − y1)t]dy1dy2

= sin2(qxγ̇H t/2)

(qxγ̇H t/2)2
. (7)

Fluerasu and co-workers derived and applied a more com-
plicated expression appropriate for parabolic velocity distri-
butions associated with pressure-driven laminar flows; the
relative simplicity of Eq. (7) is another advantage of the
homogeneous flow employed here. Neglecting transit effects,
the final expression governing intensity correlation functions
measured in homogeneous shear flow is as follows:

g2(q,t) = 1 + β exp[−2Dq2t]
sin2(qxγ̇H t/2)

(qxγ̇H t/2)2
. (8)
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III. EXPERIMENTAL METHODS

An aqueous dispersion of charge-stabilized polystyrene
particles with nominal diameters of 100 nm (Duke Scientific,
Inc.) was dispersed in glycerol, and the water was removed
by vacuum drying. Due to uncertainty in the concentration of
the parent aqueous PS latex, the particle loading could not be
controlled precisely; scattering data presented below suggest
a particle volume fraction of approximately 0.12. X-ray
scattering experiments were performed at the beamline 8ID-I
of the Advanced Photon Source, using a 20 × 20-μm x-ray
beam of energy 7.35 keV. Static small-angle x-ray scattering
(SAXS) data were collected using direct detection with a
PI LCX-1300 charge-coupled device (CCD) detector. XPCS
experiments were performed using a faster SMD 1M60 CCD
detector, again using direct detection of x rays. To maximize
time resolution, data were collected using a region of interest
128-pixels tall and 1024-pixels wide on the CCD, leading
to an image acquisition rate of 330 frames/s. XPCS data
were collected in sequences of 2048 data frames. Within each
sequence, intensity autocorrelation functions are computed for
each pixel and then, are averaged over bins defining the desired
qx and qz values (described below) to improve signal to noise.
Further noise reduction is achieved by averaging correlation
functions computed using a large number (between 60 and 90)
of data sequences obtained under identical conditions. Applied
shear flow helps mitigate concerns of radiation-induced sample
damage, but as a precaution, the shear cell is displaced slightly
between successive sequences to avoid prolonged illumination
of the same spot.

Due to the influence of shear flow, the decay of the
autocorrelation function is predicted to be anisotropic. To
test predictions of Eq. (8), experiments were performed using
two different detector positions and associated pixel binning
schemes (Fig. 1). In position 1, the active area of the detector
was aligned symmetrically along the flow direction such that
q ≈ qx . Separate experiments were conducted in position 2,
where the detector was oriented parallel to, but was displaced
away from, the qx axis. Here, smaller pixel bins were used
allowing qx and qz to be independently varied. Bins were
arranged such that data collected for positive and negative
qx values of equal magnitude could be compared and to allow
analysis of data collected at locations along the qz axis (qx ≈ 0)
where it should be possible to measure diffusive dynamics free
from the influence of the applied shear [19].

Shear flow was produced using a rotating-disk shear cell
that, locally, produces the flow illustrated in Fig. 1. In this shear
cell, thin Kapton R© windows are glued to aluminum supporting
surfaces. The fixed support plate has a small aperture, whereas,
the moving plate has three slots arranged circumferentially to
allow transmission of x rays as the shear cell rotates. The
sample thickness H in these studies was 0.8 mm. Shear cell
rotation was driven through a timing belt by a microstepping
motor operating at a resolution of 50 000 steps per revolution.
To provide smooth motion at the low shear rates employed
here, a 20:1 gear reducer was used; further reduction by a
factor of 2.5 was imparted by the sizing of timing belt pulleys
on the shear cell and motor. Even with these precautions, the
discrete nature of the applied motion is still a potential concern.
Further discussion in the Supplemental Material for this paper

[22] suggests that its impact should be negligible in these
experiments.

IV. RESULTS

Static SAXS data on the polystyrene latex dispersion in
glycerol exhibit behavior typical of moderately concentrated
dispersions of monodisperse colloids (Fig. 2). Data were
well described by a scattering model with a hard-sphere
structure factor and a spherical particle form factor modified to
account for polydispersity. XPCS experiments were restricted
to relatively small q where the sample scattered most strongly
and where the dynamics were sufficiently slow to resolve.
Correlation function data obtained under quiescent conditions
were fit well by the single exponential function of Eq. (4)
[Fig. 3(a)]. Diffusivity values extracted from the curve fits
show a weak dependence on scattering vector [Fig. 3(b)].
Comparison of diffusivity against the static structure factor
suggests that this q dependence arises from de Gennes nar-
rowing where dynamics are slowed at length scales associated
with structure factor peaks [2].

Over the q range studied here, the characteristic diffusive
time scale τD ranges from 0.05 to 0.33 s. Conversely, over
the shear rate range 0.001 to 0.02 s−1, the transit time τT

ranges from 1.25 to 25 s. Since this is large compared to
τD , the neglect of transit time effects in Eq. (8) is justified.
In fact, in the experiments reported here, shear effects will
always dominate over transit time effects. The characteristic
time scale for shear τS ∼ 1/qxγ̇H = 1/qxV , hence, the ratio
of shear to transit time scales is given by

τS

τT

∼ 1

wqx

. (9)

This ratio will be small except for extremely small qx values
where qx ∼ 1/w (for a beam of width 20 μm, this requires

FIG. 2. Static small-angle x-ray scattering from the polystyrene
latex particle dispersion. The data were fit to a scattering model
using a form factor for polydisperse spheres and a hard sphere
structure factor, with the following parameters: mean particle radius =
54.6 nm, distribution breadth = 5.5 nm (FWHM), particle volume
fraction = 0.12.
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FIG. 3. Dynamics of polystyrene latex particle dispersion in the
quiescent state. (a) Intensity autocorrelation function measured at
q = 0.001 54 (•), 0.002 15 (	), 0.002 79 (�), 0.003 43 (�), 0.004 13
(�), and 0.004 80 Å−1 (×). Data were measured at detector position
1 (Fig. 1). Solid lines represent single-exponential fits using Eq. (4).
(b) Diffusivity as a function of scattering vector, overlayed with a plot
of structure factor, S(q) determined from the model fit to the data in
Fig. 2.

qx ∼ 5 × 10−6 Å−1). Thus, during shear flow, the impact of
the shear term will dominate over the transit term in Eq. (5).

Application of shear flow dramatically accelerates the
decay and changes the shape of the correlation function
(Fig. 4). After fitting the diffusivity to the quiescent data, there
are no remaining fitting parameters in Eq. (8); solid lines in
Fig. 4 represent true predictions, which quantitatively describe
both shear rate and qx dependencies of the correlation function
(further examples of data and predictions are provided in the
Supplemental Material [22]). At the lowest shear rate used in
Fig. 4, slight deviations appear between data and predictions.
At low rates, the characteristic diffusion and shear times
become comparable, which may undermine the separation of
time scales required for the factorability present in Eq. (5).

Equation (8) continues to describe data well for detector
position 2 in which q and qx are no longer equivalent
(Fig. 5). Although the diffusive term depends on the full
magnitude of q, the shear term depends only on the component

FIG. 4. Intensity autocorrelation functions measured in
polystyrene latex particle dispersion during shear using detector
position 1 (qz ≈ 0, Fig. 1) at (a) q ≈ qx = 0.002 15 and (b) q ≈ qx =
0.004 13 Å−1. Applied shear rate: 0 (•), 0.002 (	), 0.005 (�), 0.01
(�), and 0.02 s−1 (�). Solid curves are predictions of Eq. (8), using
D = 9430 and 6520 nm2/s in parts (a), and (b), respectively.

of q along the flow direction. Data collected for positive
and negative qx values of equal magnitude are in excellent
agreement and are well described by Eq. (8) [Figs. 5(c) and
5(d)]. This lateral positioning of the detector also allows
experiments perpendicular to the flow direction (qx = 0),
where Eq. (8) predicts no effect of the applied shear flow
[Fig. 5(a)]. Up to a shear rate of 0.01 s−1, the measured
correlation functions are, indeed, indistinguishable to within
experimental error. However, at the highest shear rate of
0.02 s−1, the correlation function decay is visibly accelerated.
This is attributed to the finite width of the pixel bin used to
average correlation functions in this position (Fig. 1), which
leads to contributions to the averaged correlation function
from detector positions with finite |qx |, allowing shear effects
to leak into the measurement. To illustrate this, the dashed
line in Fig. 5(a) presents the prediction of Eq. (8) using a
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FIG. 5. Intensity autocorrelation functions measured in
polystyrene latex particle dispersion during shear using detector
position 2 (Fig. 1) at (a) qz = 0.0017, |qx | = 0; (b) qz =
0.0017, |qx | = 0.0012; and (c) qz = 0.0017, |qx | = 0.0024 Å−1.
Applied shear rate: 0 (•,◦), 0.003 (�,	), 0.007 (�,�), 0.01 (�,�), and
0.02 s−1 (�,�). Open and closed symbols in parts (b) and (c) represent
data collected for positive and negative values of qx . The solid curves
in parts (b) and (c) are predictions of Eq. (8) using, respectively,
D = 11 200 and 7440 nm2/s. The dashed curve in part (a) represents
predictions of Eq. (8) using D = 15 400 nm2/s and a representative
value of |qx | = 0.000 15 Å−1.

representative value of qx (taken to be the average of |qx | across
the bin), which is found to capture the accelerated time scale
reasonably well. While a crude simplification, this calculation
demonstrates that, even at locations perpendicular to the
flow direction, shear effects will impede measurements of
diffusive dynamics unless either shear rate or the range of |qx |

sampled by the detector is kept sufficiently small. Fluerasu and
co-workers have examined this question in detail and report
diagrams of parameter space for which diffusive dynamics
may be measured during shear flow [19–21]. (Measurements
conducted in a second row of pixel bins for this lateral detector
position show qualitatively the same behavior; additional data
are presented in the Supplemental Material [22].)

V. DISCUSSION

Results presented above demonstrate the feasibility of
XPCS measurements in homogeneous shear and confirm
that the impact of shear of the measured intensity corre-
lation function is reliably predictable. From a rheological
perspective, the shear rate range studied here is limited to
rather low values; even slow shear flows have a dramatic
effect on the correlation time. This limitation arises, in
part, due to the limited data acquisition rate possible when
measuring XPCS correlation functions using CCD-based area
detectors. It is possible to measure much faster dynamics
using point detectors and conventional hardware correlators,
but loss of the signal average afforded by large numbers of
(approximately) equivalent pixels in an area detector would
limit such measurements to very strongly scattering samples.

The high sensitivity to shear gradients also means that
measurements of the intrinsic diffusive dynamics of the sample
(i.e., measuring correlation functions using data collected in
the qz direction, perpendicular to the flow) are possible only
at fairly low shear rates. This problem may, in principle, be
managed by increasingly narrow definition of the detector area
so as to limit |qx |. Drawing on Eq. (9), the best that can be
done in this vein is to reduce |qx | to the point where τS ∼ τT ,
beyond this, the transit term becomes the limiting factor.
Reaching this condition would, however, require restriction
to an extraordinary sharply defined band of reciprocal space
along the qz direction. In our experiments, for instance, an
increment of q ∼ 1/w = 5 × 10−6 Å−1 corresponds to
less than the width of a single pixel on the CCD detector.
Even if this condition was satisfied, the presence of the transit
term dictates that clean measurements of a sample’s diffusive
dynamics would require that

τD � τT ⇒ τD � w

γ̇H
⇒ τDγ̇ � w

H
. (10)

In the shear flow geometry employed here, w/H 
 1, and
Eq. (10) represents a strong restriction on the strength of
the applied flow for which it is possible to measure diffusive
dynamics under shear. The requirement that τDγ̇ 
 1 means
that flow will generally be too weak to significantly perturb the
underlying structure or microscopic dynamics. For instance,
in the experiments reported here, the maximum Peclet number
(Pe = γ̇ a2/D, a = particle radius) is about 0.007. In this ge-
ometry, then, it appears that only measurements of essentially
equilibrium dynamics are possible in the presence of shear
flow. Of course, even this fact may be beneficial in a practical
setting where shear flow may be used as a strategy to mitigate
beam damage of a sensitive sample [19].

It is instructive to consider alternate experimental ar-
rangements that may offer improved opportunities for XPCS
during shear. The characteristic shear time is determined
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FIG. 6. Schematic of a possible alternate configuration for XPCS
measurements during shear. Here, the beamwidth w determines the
characteristic correlation time associated with shear: τS ∼ 1/qxγ̇w.

by the dimension of the scattering volume in the direction
of the velocity gradient [16]. In the geometry used in this
paper (Fig. 1), the long dimension of the scattering volume
(H ) points along the velocity gradient, which contributes to
the short correlation times observed at even modest shear
rates. Figure 6 presents a possible alternative configuration
in which the incident (narrow) beam passes sideways (along
the z direction) through a homogenous shear flow. In this
case, the dimension of the scattering volume in the gradient
direction is much smaller such that τS ∼ 1/qxγ̇w rather than
1/qxγ̇H. Such an arrangement would facilitate measurements
of correlation functions under shear over a wider range of rates
than is possible using the configuration of Fig. 1. Furthermore,
if one wished to use the intrinsic capability of homodyne XPCS
to measure velocity gradients in complex flow situations,
such as shear banding [23], this arrangement would offer
advantages. The concept shown in Fig. 6 does, however,
present new challenges. Any parasitic velocity gradients along
the beam direction likely would dominate the autocorrelation
function due to the longer dimension of the scattering volume
in this direction. Thus, it would be necessary to maintain
zero-stress-free surfaces at the sides of the flow. A second
issue is that the mathematical form of the shear autocorrelation
function in this scenario would depend on the lateral intensity
distribution in the beam, making quantitative work more
difficult [16]. While higher shear rates may be possible with
this arrangement, an analysis analogous to that presented above
leads to the conclusion that, in a best case scenario, constraints
on measuring diffusive dynamics free from the direct influence
of the applied flow require that τDγ̇ � 1. While this is an
improvement over Eq. (10), it still indicates that opportunities
to use XPCS to monitor microscopic dynamics in a sample
that has been pushed far from its equilibrium state by applied

shear are limited. Despite these limitations, there are other
ways in which the intersection of applied shear flow and
XPCS can offer fruitful avenues of inquiry. For instance,
XPCS may be used to study the time evolution of structural
dynamics in complex fluids that have been perturbed far from
equilibrium by prior flow [3]. In addition, the combination
of XPCS with other modes of shear flow, such as oscillatory
shear or step strain, may offer opportunities to probe strain-
dependent phenomena in various complex fluids. For instance,
the dynamic light scattering echo technique employed by
Petekidis et al. [24] could be adapted to XPCS.

VI. CONCLUSIONS

XPCS has been implemented successfully to measure
advective and diffusive dynamics in a colloidal dispersion
during homogeneous shear flow. Even at modest deformation
rates, the applied shear deformation dominates decay of the
intensity autocorrelation function under most conditions; these
effects may be predicted quantitatively by relevant theories.
When scattering data are measured perpendicular to the flow
direction, it is possible to measure the diffusive dynamics of
the colloidal particles free from interference from the effects of
the applied flow. Even for data measured in this configuration,
however, the finite width of pixel bins on the detector results in
shear effects on correlation functions measured at higher rates
due to the inclusion of detector pixels with a small component
of q parallel to the flow direction. Transit of particles through
the scattering volume also can affect correlation functions
measured in the perpendicular direction, although under most
circumstances, shear effects will dominate over transit effects.
These factors place limits on the strength of the flow for which
measurements of purely microscopic dynamics are possible; in
particular, it appears unlikely that XPCS measurements during
shear can access conditions under which flow strongly perturbs
the fluid structure away from its equilibrium state.
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