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Effect of dynamic and static friction on an asymmetric granular piston
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We investigate the influence of dry friction on an asymmetric, granular piston of mass M , composed of
two materials, undergoing inelastic collisions with bath particles of mass m. Numerical simulations of the
Boltzmann-Lorentz equation reveal the existence of two scaling regimes depending on the friction strength. In
the large friction limit, we introduce an exact model giving the asymptotic behavior of the Boltzmann-Lorentz
equation. For small friction and for large mass ratio M/m, we derive a Fokker-Planck equation for which the
exact solution is also obtained. Static friction attenuates the motor effect and results in a discontinuous velocity
distribution.
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I. INTRODUCTION

An adiabatic piston separating two compartments of gases
is a widely studied model in statistical physics. The initial
interest arose from the observation that the equilibrium state
cannot be predicted by application of the first and second laws
of thermodynamics [1–5]. It was shown that dynamics contains
different time scales before the system reaches equilibrium (for
finite-size compartments) or a steady state where the piston ac-
quires a nonzero drift velocity (for infinite compartments) [6].

The granular version of the system, where the gas parti-
cles undergo dissipative collisions, also displays interesting
behavior. Brito et al. [7] showed that the piston eventually
collapses to one side and Brey and Khalil [8] showed that the
steady state is characterized by equal cooling rates in the two
compartments.

The model was investigated in the context of a granular
motor by Costantini et al. [9]. They considered a piston com-
posed of two different materials and showed that fluctuations
on the right and left sides result in noise rectification that can
be converted into mechanical work. When the bath density
is low, the appropriate kinetic description of the system is
the Boltzmann-Lorentz equation. However, an exact solution
cannot be obtained even for this simple model. Costantini
et al. [10] proposed an ansatz of the velocity distribution, where
parameters are obtained by calculating successive moments of
the kinetic equation. Comparisons with numerical simulations
showed that the approach is reasonable, but it fails in the
limit of large piston mass (the Brownian limit). Talbot et al.
[11] introduced a mechanical treatment that gives an exact
expression for the drift velocity in the Brownian limit.

Recently, Eshuis et al. [12] presented the first experimental
realization of a macroscopic, rotational ratchet in a granular
gas. The device, which consists of four vanes, is reminiscent of
that imagined by Smoluchowski [13,14]. When a soft coating
was applied to one side of each vane, a motor effect was
observed above a critical granular temperature. While this was
the first experimental realization of a granular motor, similar
Brownian ratchets exist in many diverse applications, e.g.,
photovoltaic devices and biological motors; see [15–17]. All
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of these motors share the common features of nonequilibrium
conditions and spatial symmetry breaking. Several recent
theoretical studies of idealized models of granular motors,
which use a Boltzmann-Lorentz description [10,11,18–20],
confirm that the motor effect is particularly pronounced when
the device is constructed from two different materials, as was
the case in the recent experiment [12]. The existing theories,
however, predict a motor effect for any temperature of the
granular gas while in the experiment the phenomenon is
observed only if the bath temperature is sufficiently large.

Friction likely plays an important role in the experiment
[12] as it does in other systems with stochastic dynamics
[21–24]. Theoretical studies addressing the effect of dry
(Coulombic) friction on Brownian motion were pioneered by
Caughey and co-workers [25,26] and later by de Gennes [27]
and Hayakawa [28]. Subsequently, Kawarada and Hayakawa
[29] showed that the signature of Coulombic friction is an
exponentially decaying velocity distribution function. Menzel
and Goldenfeld [30] studied a Fokker-Planck equation and
noted a formal connection to the Schrödinger equation for the
quantum mechanical oscillator with a δ potential. Mauger [31]
showed that Coulomb friction is responsible for an exponential
decay of the velocity distribution when dynamics is described
by a Fokker-Planck equation. Touchette and co-workers
[32–34] obtained a solution of a model with dry friction
and viscous damping. Experimental studies have examined
droplets on nonwettable surfaces subjected to an asymmetric
lateral vibration [35], as well as the biased motion of a water
drop on a tilted surface subject to vibration [22,23,36].

Recently, we used numerical simulation and kinetic theory
to examine the effect of dynamic friction on a chiral rotor
within the framework of the Boltzmann-Lorentz equation [37].
The numerical simulations revealed the existence of two
scaling regimes at low and high bath temperatures. For large
rotor masses and small friction the model can be mapped onto
a Fokker-Planck equation that can be solved analytically. We
also obtained analytic solutions for the mean angular velocity
and the angular velocity distribution function in the limit of
large friction. The purpose of the present paper is to present a
complete analysis of the effect of dynamic and static friction
on the asymmetric granular piston.

In Sec. II, we introduce the model of a granular piston with
friction. We perform numerical simulations of the Boltzmann-
Lorentz (BL) equation in Sec. III. A time scale analysis
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FIG. 1. (Color online) The asymmetric granular piston in a bath
of thermalized particles.

presented in Sec. IV suggests that the model can be solved in
two limiting cases. In Sec. V, we first consider the high friction
limit by introducing the independent kick model and compare
the exact solution of the model with numerical simulations of
the BL equation. In the Brownian limit and in the small friction
limit, we show that the Fokker-Planck equation, for which
analytical solutions can be obtained, provides an accurate
description of the BL equation. In Sec. VII, we generalize our
study by including the effect of static friction and we briefly
conclude in Sec. VIII.

II. THE MODEL

An infinite cylinder filled with a monodisperse gas com-
posed of particles of mass m is separated into two compart-
ments by a granular piston of mass M and of a cross-sectional
area S that is composed of two materials characterized by the
coefficients of restitution α+ and α−; see Fig. 1. The piston is
constrained to move along the symmetric axis of the container
and undergoes collisions with the gas particles. In addition, a
frictional force of constant strength F , which acts to oppose
the motion of the piston, is present. In the absence of the bath
particles the equation of motion of the piston is

M
dV

dt
= −σ (V )F, (1)

where V is the piston velocity and

σ (V ) =
⎧⎨
⎩

+1 if V > 0,

0 if V = 0,

−1 if V < 0.

(2)

Due to the translational invariance along the perpendicular axis
of the container and assuming that the cross-sectional area S

of the cylinder is sufficiently large, boundary effects can be
neglected. Consequently, the collision rules involve only the
velocity component along the the cylinder axis. If v is the

precollisional velocity of the bath particle, the postcollisional
velocities of the piston and gas particles are

V ′
α± = V + 1 + α±

1 + μ
(v − V ), (3)

v′
α± = v − μ(1 + α±)

1 + μ
(v − V ), (4)

where μ = M
m

is the mass ratio and α+ (α−) is selected if the
collision occurs on the left (right) hand side of the piston, i.e.,
if v − V > 0 (v − V < 0).

Precollisional (or restituting) velocities V ′′
α± ,v′′

α± can be

obtained from Eqs. (3) and (4) by replacing α± with α−1
± .

The kinetic properties of the piston are described by means
of the Boltzmann-Lorentz equation. Let us denote by f (V ; t)
the probability density of finding the piston moving with
velocity V and let φ(v) represent the velocity distribution of
the bath particles at time t ; then one has

∂

∂t
f (V ; t) − F

σ (V )

M

∂

∂V
f (V ; t) = J [φ,f ], (5)

where J [φ,f ] is the collision operator expressed as

J [f,φ] = ρ

∫ ∞

−∞
dv |v − V |

[
θ (v − V )

f (V ′′
α+ ; t)

α2+
φ(v′′)

+ θ (V − v)
f (V ′′

α− ; t)

α2−
φ(v′′)

]
− ρν(V )f (V ; t),

(6)

where the bath density per unit length is ρ = Sn, n being the
number density of bath particles and the Heaviside function.
(Note that the model can also describe a two-dimensional
system. Due to the translational invariance in the direction
perpendicular to the horizontal axis, the Boltzmann-Lorentz
equation is unchanged, but ρ = Ln where n is then the
two-dimensional density and L is the vertical length of the
piston.)

ρν(V ) = ρ

∫ ∞

−∞
dv|v − V |φ(v) (7)

is the collision rate of bath particles with (both sides of) the
piston moving with a velocity V . Note that the Boltzmann-
Lorentz equation neglects recollisions. This assumption is
valid if the bath density ρ is low and when the mass of the piston
is larger than the mass of bath particles. We note that temper-
ature gradients are typically present in experiments [38,39]
(but can be minimized or eliminated in quasi-two-dimensional
systems [40,41]). They can, in principle, be included in the
Boltzmann-Lorentz description, but we neglect them here for
the sake of simplicity. Finally, the bath distribution φ(v) is
assumed stationary and symmetric such that 〈v〉 = 0.

By using appropriate changes of variables [42], the kinetic
equation can be rewritten as

1

ρ

∂

∂t
f (V ; t) − Fσ (V )

Mρ

∂

∂V
f (V ; t) =

∫ ∞

0
dy y

[
f

(
V − 1 + α+

1 + μ
y; t

)
φ

(
V + μ − α+

1 + μ
y

)
+ f

(
V + 1 + α−

1 + μ
y; t

)

×φ

(
V − μ − α−

1 + μ
y

) ]
− f (V ; t)

∫ ∞

0
dy y[φ(V + y) + φ(V − y)].

(8)
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It is convenient to introduce the reduced variables F ∗ =
F/(ρT ) and V ∗ = √

m/T V , where T denotes the granular
temperature of the bath particles. With this choice the average
drift velocity depends only on F ∗, M/m, and α±. In an
experiment, the frictional force depends on the physical
properties of the motor and is not easily changed. On the
other hand, the granular temperature of the bath particles may
be varied by increasing or decreasing the vibration amplitude
or frequency of the mechanical shaker driving the granular gas
particles. The relationship is not simple, however, due to the
presence of temperature gradients in the experiments.

Where possible we give analytic results for a general bath
particle velocity distribution, φ(v). For illustrative purposes,
as well as to test the theory by comparison with numerical
simulation of the BL equation, we will use a Gaussian
distribution:

φ(v) =
√

m

2πT
exp

(
−mv2

2T

)
. (9)

III. NUMERICAL SIMULATION

We performed numerical simulations of the Boltzmann-
Lorentz equation using the Gillespie method [43] for different
mass ratios and for a large range of dry friction. The Gillespie
method is equivalent to the Direct Simulation Monte Carlo
(DSMC) method [44–47]; both provide stochastic solutions of
the Boltzmann-Lorentz equation. The Gillespie algorithm gen-
erates collision events separated by exponentially distributed
waiting intervals. Specifically, the probability that no event
(collision) occurs in the time interval (0,�t) is given by

P (�t) = exp

(
−ρ

∫ �t

0
ν(t ′)dt ′

)
. (10)

In the present application the mean collision flux ρν(t) is
time dependent as the piston decelerates between collisions.
A collision time �t is generated by solving (numerically) the
implicit equation

ln(ξ ) = −ρ

∫ �t

0
ν(t ′)dt ′, (11)

where 0 < ξ < 1 is a uniformly distributed random number.
The system time is incremented by �t and the collision is
performed by sampling a velocity of the colliding bath particle
using the imposed velocity distribution φ(v) and updating the
piston’s velocity using the collision rule Eq. (3). Full details
can be found in Ref. [43].

Figure 2 shows a log-log plot of the mean velocity 〈V ∗〉
of an asymmetric piston (α+ = 1, α− = 0) as a function
of the dimensionless dry friction F ∗ for different mass
ratios μ = 1,2,5,10,20. We observe two scaling regimes: at
low dimensionless friction force F ∗ the dimensionless mean
velocity depends weakly on F ∗, whereas in the high friction
limit F ∗ > 1, 〈V ∗〉 decays as F ∗−1.

Useful insight can be obtained by observing the dynamics
for different values of F ∗; see Fig. 3. For F ∗ = 1.0 the motor
decelerates rapidly after each collision until it comes to rest. It
remains motionless until it is struck by another bath particle.
For the smallest value F ∗ = 0.01, the deceleration is weak and
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FIG. 2. (Color online) Log-log plot of the dimensionless mean

velocity 〈V ∗〉 of an asymmetric granular piston versus the dimen-
sionless friction force F ∗ with α+ = 1 and α− = 0, for different mass
ratios μ = 1,2,5,10,20, top to bottom. The dotted curves correspond
to the analytical expression of the large friction model and the solid
curves show simulation results.

the piston is always in motion. F ∗ = 0.1 is an intermediate
case.

We have also monitored the ratio R of the number of
collisions occurring when the piston is at rest to the total
number collisions. Figure 4 shows R as a function of F ∗ for
M/m = 1,2,10,20. As R approaches 1 the dynamics consists
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FIG. 3. (Color online) The dimensionless velocity V ∗ as a
function of the reduced time t∗ = ρν(0)t obtained from stochastic
simulations of the Boltzmann-Lorentz equation. F ∗ = 1.0,0.1,0.01
from top to bottom. μ = 10.
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FIG. 4. (Color online) Fraction of collisions occurring when the
piston is at rest over the number of collisions for different masses
from numerical simulations. From left to right, μ = 2,5,20.

of a series of independent displacements, each followed by a
period of rest before the next collision with a bath particle.

IV. TIME SCALE ANALYSIS

As we will show, the behavior of the system is governed by
the relative values of the mean collision time and the mean
stopping time. The mean intercollision time between bath
particles and the piston,

τc � 1

ρν(0)
, (12)

is τc � √
πm
2T

1
ρ

for a Gaussian bath distribution, and the mean

stopping time with friction present is τs = MV
F

, where V is
the average velocity after a collision. When the dimensionless
friction F ∗ is small, V ∗ ∼ (α+ − α−), while for F ∗ 
 1, V ∗ ∼
m
M

(α+ − α−), which gives

τs

τc

∼ α+ − α−
F ∗ ×

{
1, F ∗ 
 1,

μ, F ∗ � 1.
(13)

This behavior is illustrated in Fig. 3, where one observes that
τs � τc for F ∗ = 1, whereas τs 
 τc for F ∗ = 0.01.

Whenever the dynamics consists of successive slip-stick
motions, the velocity distribution function of the piston con-
tains a regular part and a δ singularity at V ∗ = 0 corresponding
to the situation where the piston is at rest for a finite time before
the next collision with a bath particle:

f (V ∗) = γfR(V ∗) + (1 − γ )δ(V ∗). (14)

Here fR(V ∗) is the regular part,
∫

dV ∗fR(V ∗) = 1, and γ

is a constant that can be determined from conservation of

the probability current (for simplicity we do not use the star
notation for the reduced distribution functions) at V ∗ = 0 [32]:

(1 − γ )
∫ ∞

−∞
dv∗|v∗|φ(v∗) = 2γfR(0)

F ∗

μ
, (15)

where v∗ = v
√

m/T , which gives

γ −1 = 1 + 2C
F ∗

μ
(16)

with C = 2fR(0)/
∫ ∞
−∞ dy|y|φ(y) a numerical constant.

When τc 
 τs the frictional force stops the piston before the
next collision, and the motor essentially evolves by following
a sequence of stick-slip motions. Most of the time, the piston
is at rest and the singular contribution is dominant, γ � 1/F ∗.
This regime can be described by the independent kick model
introduced below.

Conversely, when τc � τs , collisions are so frequent that
sliding dominates the piston dynamics. For all practical
purposes, the piston never stops or stops for an infinitesimal
duration and (1 − γ ) � F ∗. In this case, the dynamics is well
described by a Fokker-Planck equation for M/m 
 1.

V. INDEPENDENT KICK MODEL

When the friction force is large, the stopping time τs is
much shorter than the mean time between collisions, τc. The
piston dynamics is then a sequence of uncorrelated kicks
immediately followed by a decelerated motion that is stopped
before the next collision with a particle bath. (For a more
rigorous derivation of this model from the Boltzmann-Lorentz
equation, see the Appendix.) The mean velocity is the average
over all collisions:

〈V 〉 = ρ

∫ ∞

−∞
dv|v|φ(v)

∫ τ

0
V (t)dt, (17)

where V (t) = V0 − Fσ (V0)
M

t , τ = |V0|M
F

, and V0 is the velocity
after a collision, which is given by

V0 = (1 + α+)v

1 + μ
for v > 0 (18)

and

V0 = (1 + α−)v

1 + μ
for v < 0. (19)

Integrating over time, one obtains

〈V 〉 = Mρ[(1 + α+)2 − (1 + α−)2]

2F (1 + μ)2

∫ ∞

0
dv v3φ(v), (20)

where we have assumed that φ(v) is symmetric. With this
assumption the sign of the motor effect is independent of the
form of the bath velocity distribution. For a Gaussian bath
distribution, the dimensionless mean velocity 〈V ∗〉 is given
explicitly by

〈V ∗〉 = [(1 + α+)2 − (1 + α−)2]μ

2F ∗(1 + μ)2

√
2

π
. (21)
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A second quantity of interest is the integral of the velocity
distribution

If = ρ

∫ ∞

−∞
dv|v|φ(v)τ

= ρ(2 + α+ + α−)M

F (1 + μ)

∫ ∞

0
dv v2φ(v). (22)

For a Gaussian bath distribution, one has

If = (2 + α+ + α−)μ

2F ∗(1 + μ)
. (23)

This quantity corresponds to the value of γ in the limit
of large friction (or small ratio τs/τc). Figure 5 shows the
δ(V ∗) contribution to f (V ∗), 1 − γ , for two mass ratios
M/m = 10,20. The full curves correspond to the simulation of
the Boltzmann-Lorentz equation. The expression of the kick
model Eq. (23) (dotted curves) gives the correct asymptotic
behavior for large friction, but underestimates the δ(V ∗)
contribution to f (V ∗) at low friction. By using the exact
expression Eq. (16), where C is obtained from an exact
asymptotic expansion of Eq. (22) and matching with the
independent kick model Eq. (16), one obtains a very accurate
description for all friction (dot-dashed curves). The remaining
small excess is due to the fact C is set to a constant, but in
reality depends slightly on F ∗.

The characteristic function can also be calculated:

〈eikV 〉 = ρ

∫ ∞

−∞
dv|v|φ(v)

∫ τ

0
eikV (t)dt. (24)
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0.8
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γ

FIG. 5. (Color online) δ(V ∗) contribution to f (V ∗), 1 − γ , of an
asymmetric granular piston versus F ∗ with α+ = 1 and α− = 0, for
μ = 10,20. The full curves show the simulation results. The dotted
curves correspond to the analytical expression of the kick model, and
the dot-dashed curves to Eq. (16) where C is calculated from the
exact expression in the high friction limit.

Integrating over time, one obtains

〈eikV 〉 = Mρ

ikF

∫ ∞

0
dv vφ(v)

×
[

exp

(
ik(1 + α+)v

1 + μ

)
− exp

(−ik(1 + α−)v

1 + μ

)]
.

(25)

Taking the inverse Fourier transform, one infers the velocity
distribution fR(V ):

γfR(V ) = Mρ

F

[
θ (V )

∫ ∞

(1+μ)V
1+α+

dv|v|φ (v)

+ θ (−V )
∫ (1+μ)V

1+α−

−∞
dv|v|φ (v)

]
. (26)

Note that the regular velocity distribution fR(V ) is continuous
at V = 0. For a Gaussian bath distribution, the dimensionless
velocity distribution is then given by

γfR(V ∗) = μ

F ∗

√
1

2π

[
θ (V ∗) exp

(
− (1 + μ)2V ∗2

2(1 + α+)2

)

+ θ (−V ∗) exp

(
− (1 + μ)2V ∗2

2(1 + α−)2

)]
. (27)

Velocity distributions are displayed in Fig. 6 for different
values of the solid friction. As expected, the amplitude
decreases as this quantity increases. Rescaled distributions
F ∗γfR(V ∗) versus V ∗ are shown in Fig. 7, where one observes
that for F ∗ > 2, curves converge toward the exact result,
Eq. (27).
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FIG. 6. (Color online) Dimensionless velocity distributions
γf (V ∗) from simulation for various dimensionless friction forces
F ∗ = 2.72,6.05,6.6,9.02,13,6,20.09,30.0,44.7,66.7 (from top to
bottom).
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FIG. 7. (Color online) Rescaled velocity distributions F ∗γf (V ∗)
for the same values of F ∗ as in Fig. 6 but in reverse order. The dashed
curve shows the prediction of the independent kick model, Eq. (27).

VI. THE BROWNIAN LIMIT AND
THE FOKKER-PLANCK EQUATION

We now consider the opposite limit when the stopping time
τs is much larger than the mean time between bath collisions,
τc. For homogeneous granular motors where the mean velocity
goes to zero in the Brownian limit [18,48], a standard
Kramers-Moyal expansion of the BL integral operator leads
to the Fokker-Planck differential operator. For heterogeneous
granular motors, where the mean velocity remains finite
and independent of the mass ratio in the Brownian limit,
some caution is needed: The perturbative expansion must
be performed around the nonzero mean velocity (rather than
around zero) [49]. Finite mass corrections, however, cannot be
easily included.

The approach we proposed in Ref. [37] consists of reex-
pressing the BL operator as a complete series expansion in
terms of the derivatives of the velocity distribution function.
Applying the same method to the piston we have, e.g.,

f

(
V − 1 + α+

1 + μ
y

)
=

∞∑
n=0

(
1 + α+
1 + μ

)n (−y)n

n!

∂nf (V )

∂V n
,

(28)

with similar expressions for φ(V + y − 1+α+
1+μ

y), f (V +
1+α−
1+μ

y), and φ(V − y + 1+α−
1+μ

y). Inserting these in the BL
equation (8) allows us to write the collision operator as

J [f,φ] =
∞∑

n=1

1

n!μn

∂n[gn(V )f (V )]

∂V n
, (29)

where we have used the fact that the zero-order terms of the
expansion cancel the destruction term and where we have
introduced

gn(V ) = ρ

∫ ∞

0
dy yn+1

[(
−μ

1 + α+
1 + μ

)n

φ(V + y)

+
(

μ
1 + α−
1 + μ

)n

φ(V − y)

]
(30)

The functions gn(V ) can be obtained from the generating
function

g(V,a) = ρ

∫ ∞

0
dy y

[
exp

(−(1 + α+)μya

1 + μ

)
φ(V + y)

+ exp

(
(1 + α−)μya

1 + μ

)
φ(V − y)

]
(31)

Truncating the BL operator Eq. (29) at second order and
adding the dry friction leads to the following Fokker-Planck
equation:

∂f (V,t)

∂t
= 1

M

∂

∂V
{[Fσ (V ) + mg1(V )]f (V,t)}

+ 1

2M2

∂2

∂V 2
[m2g2(V )f (V,t)], (32)

in which all finite-mass corrections are incorporated, and
where deviations from a Gaussian distribution are present for
large finite masses. Recalling that the gn(V ) are proportional
to ρ, we see that for a given dry friction F increasing the
bath density reduces the effect of friction. The corresponding
Langevin equation [50] features a motor force with a nonlinear
dependence on V and an additive noise:

M
dV

dt
= −Fσ (V ) − mg1(V ) + m

√
g2(V )η(t), (33)

where η(t) is a white Gaussian noise with 〈η(t)〉 = 0 and
〈η(t)η(t ′)〉 = δ(t − t ′).

The steady-state solution of Eq. (32) is

f (V ) = Cf

g2(V )
exp

[
−2M

∫ V

0
du

(
mg1(u) + Fσ (u)

m2g2(u)

)]
,

(34)

where Cf is obtained from the normalization condition∫
dVf (V ) = 1. This result clearly shows that, even in the

absence of friction, the velocity distribution is non-Gaussian
for finite mass ratios.

In the Brownian limit g1(V ) ∼ g′
1(Ṽ )(V − Ṽ ) and g2(V ) =

2Tg/mg′
1(Ṽ ), where Tg (the granular temperature of the piston,

which is lower than the bath temperature T ) and Ṽ are given by
the Kramers-Moyal expansion [Eqs. (6) and (8) in Ref. [11]].
(Physically, Ṽ is the exact steady-state drift velocity of a piston
in the Brownian limit in the absence of friction.) This finally
gives a stationary distribution, at the lowest order in m/M ,

f (V ) = C exp

(
−M(V − Ṽ )2

2Tg

− μF |V |
g′

1(Ṽ )Tg

)
, (35)

where C is the normalization constant. Whereas one observes
a Gaussian decay of the velocity distribution at large velocity,
f (V ) decreases exponentially for small and intermediate
velocities due to friction [22,29,32].
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VII. STATIC FRICTION

Our analysis has so far been restricted to dynamic dry
friction that produces a constant retarding force on a moving
piston. A stationary piston acquires a nonzero velocity follow-
ing a collision with a bath particle, no matter how slowly the
latter is moving. In reality, static friction will also be present
and this will prevent the piston from moving unless it is struck
by a sufficiently fast-moving bath particle. To model this effect
correctly using a coefficient of static friction we would need
to know the time-dependent force acting on a stationary piston
during a collision with a bath particle. If this force exceeds
the force due to static friction, the piston starts to move. In
the present model, however, the collisions are assumed to be
instantaneous. When a bath particle collides with a stationary
piston it exerts on it an impulse I = −(mv′ − mv). We rep-
resent static friction in an approximate way, by introducing a
threshold impulse Im so that the piston is set into motion only if
|I | > Im.

The collision equation can be written as

I = −(mv′ − mv) = MV ′ + Is, (36)

where Is , which accounts for the loss of momentum due to
friction, is given by

Is =
{

I if |I | < Im,

σ (v)Im if |I | > Im.
(37)

Introducing the definition of the coefficient of restitution, v′ −
V ′ = −α±v, we obtain that

V ′ =

⎧⎪⎨
⎪⎩

m
m+M

(1 + α+)v − Im

m+M
if v > Im

m(1+α+) ,

m
m+M

(1 + α−)v + Im

m+M
if v < − Im

m(1+α−) ,

0 otherwise.

(38)

Therefore a bath particle moving with a velocity in the range
v−

m < v < v+
m where

v±
m = ± Im

m(1 + α±)
(39)

does not exert sufficient impulse and the piston remains
at rest after a collision. Note that the threshold velocity
decreases as the coefficient of restitution increases. The energy
change is

�E =
{− 1

2mv2(1 − α2
±), |I | < Im,

−mM(1−α2
±)v2−2m|v|Im+I 2

m

2(m+M) , |I | > Im.
(40)

We note that, because of the inclusion of static friction, �E �=
0 for α± = 1 (when I > Im) as part of the impulse is used to
do work against the static friction.

When the time scale ratio τs/τc 
 1, it is easy to generalize
the independent kick model by adding the static friction. The
drift velocity is given by

〈V 〉 = ρ

∫ ∞

v+
m

dv vφ(v)
∫ τ

0
dt V (t)

+ ρ

∫ v−
m

−∞
dv|v|φ(v)

∫ τ

0
dt V (t), (41)

where V (t) = V0 − Fσ (V )
M

t , τ = M|V0|
F

, and V0 is given by
Eq. (38).

Integrating over time, one obtains the following expression:

〈V 〉 = Mρ

2F (1 + μ)2

(
(1 + α+)2

∫ ∞

v+
m

dv v(v − v+
m)2φ(v)

− (1 + α−)2
∫ v−

m

−∞
dv |v|(v−

m − v)2φ(v)

)
. (42)

Let us introduce the dimensionless threshold impulse

I ∗
m = Im√

mT
. (43)

Then for a Gaussian bath velocity distribution the dimension-
less mean velocity is given by

〈V ∗〉 = μ

2F ∗(1 + μ)2
[h(I ∗

m,α+) − h(I ∗
m,α−)] (44)

with

h(I ∗
m,α) = (1 + α)2

√
2

π
exp

(
− I ∗2

m

2(1 + α)2

)

− (1 + α)I ∗
merfc

(
I ∗
m√

2(1 + α)

)
(45)

that correctly reduces to Eq. (21) if I ∗
m = 0. Figure 8 shows

that the theoretical result is in good agreement with numerical
simulations of the Boltzmann-Lorentz equation with static and
dynamic friction.

0 1 2 3 4 5 6 7

I
m

*

0

0.001

0.002

0.003

0.004

0.005

<
V

* >

FIG. 8. (Color online) Dimensionless mean velocity of an asym-
metric granular piston of mass ratio μ = 10 with a friction force
F ∗ = 20.01 with α+ = 1 and α− = 0, versus the threshold impulse.
The circles correspond to the simulation results with the static friction
and the solid lines show the theoretical result Eq. (44).
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Developing Eq. (44) as a power series about I ∗
m = 0, we

obtain

〈V ∗〉 = μ

2F ∗(1 + μ)2
(α+ − α−)

×
[

(2 + α+ + α−)

√
2

π
− I ∗

m + O
(
I ∗4
m

)]
. (46)

We note the absence of terms in I ∗2
m and I ∗3

m and from Fig. 8
we see that the mean velocity increases linearly for I ∗

m < 2.
Furthermore, a nonzero impulse threshold means that, in
addition to the simple scaling behavior (〈V 〉 ∼ T 3/2) with only
dynamic friction present, a subdominant term appears:

〈V 〉 ∝ (α+ − α−)

[
(2 + α+ + α−)

√
2

π
T 3/2 − Im√

m
T

]
.

(47)

The asymptotic behavior for large values of I ∗
m is

〈V ∗〉 = μ

2F ∗(1 + μ)2

1

I ∗2
m

√
2

π

[
(1 + α+)4 exp

× exp

(
− I ∗2

m

2(1 + α+)2

)
− (1 + α−)4

× exp

(
− I ∗2

m

2(1 + α−)2

) ]
. (48)

In this limit only fast-moving bath particles, which are
few since they correspond to the tails of the bath velocity
distribution, can actuate a stationary piston. Therefore, the
motor effect vanishes. The integral of the velocity distribution
is

If = Mρ

(1 + μ)F

[
(1 + α+)

∫ ∞

v+
m

dv v(v − v+
m)φ(v)

+ (1 + α−)
∫ v−

m

−∞
dv|v|(v−

m − v)φ(v)

]
, (49)

which, for a Gaussian bath velocity distribution, gives

If = μ

2(1 + μ)F ∗

[
(1 + α+)erfc

(
I ∗
m√

2(1 + α+)

)

+ (1 + α−)erfc

(
I ∗
m√

2(1 + α−)

)]
. (50)

This goes rapidly to zero for I ∗
m > 2.

Finally, the characteristic function 〈eikV 〉 is given by

〈eikV 〉 = ρM

F

[∫ ∞

v+
m

dv|v|φ(v)
ei[(1+α+)/(1+μ)]k(v−v+

m ) − 1

ik

−
∫ v−

m

−∞
dv|v|φ(v)

ei[(1+α−)/(1+μ)]k(v−v−
m ) − 1

ik

]
.

(51)

Taking the inverse Fourier transform, one obtains the
velocity distribution

γfR(V ) = ρM

F

[
θ (V )

∫ ∞

v+
m+ 1+μ

1+α+ V

dv|v|φ(v)

+ θ (−V )
∫ v−

m+ 1+μ

1+α− V

−∞
dv|v|φ(v)

]
. (52)

For a Gaussian distribution, the dimensionless velocity
distribution is expressed as

γfR(V ∗) = μ

F ∗

√
1

2π

[
θ (V ∗) exp

(
− [I ∗

m + (1 + μ)V ∗]2

2(1 + α+)2

)

+ θ (−V ∗) exp

(
− [−I ∗

m + (1 + μ)V ∗]2

2(1 + α−)2
)

]
.

(53)

We see that static friction has a dramatic qualitative effect
on the regular velocity distribution in the sense that it is
discontinuous at V ∗ = 0, a feature not present for I ∗

m = 0:

γfR(0+) − γfR(0−)

= μ

F ∗

√
1

2π

[
exp

(
− I ∗2

m

2(1 + α+)2

)

− exp

(
− I ∗2

m

2(1 + α−)2

)]
. (54)

Figure 9 shows velocity distributions obtained from sim-
ulations of the Boltzmann-Lorentz equation with static and

-0.4 -0.2 0 0.2 0.4 0.6

V
*

0

0.05

0.1

0.15

f R
(V

* )

FIG. 9. (Color online) Dimensionless velocity distributions of
an asymmetric granular piston of mass ratio μ = 10 a friction
force for α+ = 1 and α− = 0, with different impulse threshold
I ∗
m = 0.82,1.82,4.06, top to bottom. The dashed curves correspond

to the analytical expression of the independent kick model with the
static and dynamic frictions, Eq. (53), and the full curves show the
simulation results of the Boltzmann-Lorentz equation.
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dynamic friction when F ∗ = 20.01, μ = 10, and for different
values of the impulse threshold (full curves). The independent
kick model incorporating dynamic and static friction provides
an accurate description of the kinetic properties of the
Boltzmann-Lorentz equation. As expected, one observes a
finite discontinuity of the velocity distribution at V = 0.
Negative piston velocities occur less frequently than positive
ones due to the low efficiency of bath collisions on the right
side of the piston (α− = 0) and the momentum threshold
of the static friction. As the static friction increases, motion
of the piston to the left is reduced more rapidly than motion to
the right.

VIII. CONCLUSION

We have considered the effect of dynamic and static friction
on the kinetics of a granular asymmetric piston. When only
dynamic friction is present, the mean velocity exhibits two
scaling regimes depending on the strength of the friction force.
In the high friction limit, the Boltzmann-Lorentz equation
is asymptotically described by a solvable independent kick
model. Conversely, when the friction is small, and if the mass
ratio is large, the model can be mapped to Fokker-Planck
equation, for which exact results can be also obtained. When
static, as well as dynamic, friction is present the mean

piston velocity initially decreases linearly with the threshold
impulse, while for larger values of this parameter the motor
effect is rapidly suppressed, decreasing in a Gaussian fashion.
Further investigation could consider collective effects of motor
assemblies observed in biological systems [51–53] or dense
granular systems with active particles [54–57].
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APPENDIX: DERIVATION OF THE INDEPENDENT KICK
MODEL FROM THE BOLTZMANN-LORENTZ EQUATION

For the sake of simplicity, we consider here the Boltzmann-
Lorentz model with dynamic friction only, but the method can
be generalized to include static as well as dynamic friction and
for other granular motors. In the large friction limit the velocity
distribution, which is given by Eq. (14), corresponds to γ →
0. In this regime, the dominant contribution of the collision
integral of Eq. (8) is given by inserting the singular part of the
velocity distribution, and the stationary Boltzmann-Lorentz
equation can be expressed for V �= 0 as

− γ
Fσ (V )

Mρ

∂

∂V
fR(V ) = (1 − γ )

∫ ∞

0
dy y

[
δ

(
V − 1 + α+

1 + μ
y

)
φ

(
V + μ − α+

1 + μ
y

)
δ

(
V + 1 + α−

1 + μ
y

)
φ

(
V − μ − α−

1 + μ
y

) ]
.

(A1)

Note that the loss term of the Boltzmann equation does not appear here, because it gives a singular contribution at V = 0 and a
regular part proportional to γ , which is negligible in the large friction limit. By using the fact that 1 − γ � 1 and integrating the
right hand side of Eq. (A1) over y, one obtains

− γ
Fσ (V )

Mρ

∂

∂V
fR(V ) = θ (V )

(
1 + μ

1 + α+

)2

V φ

[
V

(
1 + μ

1 + α+

)]
+ θ (−V )

(
1 + μ

1 + α−

)2

V φ

[
V

(
1 + μ

1 + α−

)]
. (A2)

Finally, by integrating Eq. (A2) from V > 0 to ∞ and from −∞ to V < 0, and changing the variable u = V ( 1+μ

1+α±
), one recovers

Eq. (26).

[1] H. B. Callen, Thermodynamics (John Wiley and Sons, New York,
1960).

[2] J. Piasecki and C. Gruber, Physica A 265, 463 (1999).
[3] C. Gruber and J. Piasecki, Physica A 268, 412 (1999).
[4] C. Gruber, S. Pache, and A. Lesne, J. Stat. Phys. 108, 669 (2002).
[5] C. Gruber, S. Pache, and A. Lesne, J. Stat. Phys. 112, 1177

(2003).
[6] C. Gruber and A. Lesne, in Encyclopedia of Mathematical

Physics, edited by J.-P. Franoise, G. L. Naber, and T. S. Tsun
(Academic Press, Oxford, 2006), p. 160.

[7] R. Brito, M. J. Renne, and C. V. den Broeck, Europhys. Lett. 70,
29 (2005).

[8] J. J. Brey and N. Khalil, Phys. Rev. E 82, 051301 (2010).
[9] G. Costantini, U. M. B. Marconi, and A. Puglisi, Phys. Rev. E

75, 061124 (2007).

[10] G. Costantini, U. Marini Bettolo Marconi, and A. Puglisi,
Europhys. Lett. 82, 50008 (2008).

[11] J. Talbot, A. Burdeau, and P. Viot, Phys. Rev. E 82, 011135
(2010).

[12] P. Eshuis, K. van der Weele, D. Lohse, and D. van der Meer,
Phys. Rev. Lett. 104, 248001 (2010).

[13] M. Smoluchowski, Phys. Z. 13, 1069 (1912).
[14] R. P. Feynman, R. B. Leighton, and M. L. Sands, The

Feynman Lectures on Physics (Addison-Wesley, Reading, MA,
1963).

[15] P. Reimann, Phys. Rep. 361, 57 (2002).
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