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Segregation of an intruder in a heated granular dense gas
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A recent segregation criterion [Phys. Rev. E 78, 020301(R) (2008)] based on the thermal diffusion factor A of
an intruder in a heated granular gas described by the inelastic Enskog equation is revisited. The sign of A provides
a criterion for the transition between the Brazil-nut effect (BNE) and the reverse Brazil-nut effect (RBNE). The
present theory incorporates two extra ingredients not accounted for by the previous theoretical attempt. First,
the theory is based upon the second Sonine approximation to the transport coefficients of the mass flux of the
intruder. Second, the dependence of the temperature ratio (intruder temperature over that of the host granular gas)
on the solid volume fraction is taken into account in the first and second Sonine approximations. In order to check
the accuracy of the Sonine approximation considered, the Enskog equation is also numerically solved by means
of the direct simulation Monte Carlo method to get the kinetic diffusion coefficient Dy. The comparison between
theory and simulation shows that the second Sonine approximation to D, yields an improvement over the first
Sonine approximation when the intruder is lighter than the gas particles in the range of large inelasticity. With
respect to the form of the phase diagrams for the BNE-RBNE transition, the kinetic theory results for the factor
A indicate that while the form of these diagrams depends sensitively on the order of the Sonine approximation
considered when gravity is absent, no significant differences between both Sonine solutions appear in the opposite
limit (gravity dominates the thermal gradient). In the former case (no gravity), the first Sonine approximation

overestimates both the RBNE region and the influence of dissipation on thermal diffusion segregation.
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I. INTRODUCTION

The understanding of the physical mechanisms involved in
the segregation of an intruder in a granular fluid is perhaps
one of the most important open challenges of granular flow
research. This problem has spawned a number of important
experimental, computational, and theoretical works in the
field of granular media [1]. Among the different mechanisms
proposed to describe (size) segregation, thermal diffusion
becomes the most relevant if the system fulfills the conditions
of a granular gas. In this case, kinetic theory, properly modified
to account for the inelasticity of collisions, has proven to be a
reliable tool to analyze the dynamics of intruders.

Thermal diffusion (or thermophoresis in its single-particle
manifestation [2]) is the transport of matter due to the presence
of a thermal gradient. As a result of the motion of the
components of the mixture, a steady state can be reached in
which the separating effect arising from thermal diffusion is
balanced by the remixing effect of ordinary diffusion. As a
consequence, partial segregation is observed and described
by the so-called thermal diffusion factor A. While this
phenomenon has been widely studied in ordinary gases and
liquids [3], much less is known in the case of granular mixtures.
It must be noted that in the latter case thermal diffusion can
appear in vibrated systems even in the absence of an external
imposed temperature gradient, as a consequence of inelasticity.
In this case (energy supplied by vertical walls), the mean
kinetic energy of the grains decays away from the vibrating
plate, giving rise to a (granular) temperature gradient.
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In a nonconvecting steady state with gradients only along
the vertical direction (z axis), A is defined by the relation [4]

AT
A2 =iln<”—°>, (1)

9z 9z n

where T is the (granular) temperature, and ny and n are
the number densities of the intruder (or tracer particles in a
binary mixture) and gas particles, respectively. If one assumes
that gravity g and the temperature gradient point in parallel
directions (i.e., the bottom plate is hotter than the top plate,
9. InT < 0), then the intruder rises with respect to the gas
particles if A > 0 while the opposite happens if A < 0. When
the intruder is larger than the gas particles, the former situation
is referred to as the Brazil-nut effect (BNE) while the latter
is called the reverse Brazil-nut effect (RBNE). Therefore, the
sign of the thermal diffusion factor provides a criterion for
the transition between the BNE and the RBNE by varying the
parameters of the system (intruder plus granular gas).

A segregation criterion based on the knowledge of the
factor A has been recently obtained [5] from a solution of the
(inelastic) Enskog kinetic equation that applies to first order
in the spatial gradients (Navier-Stokes order). In contrast to
previous theoretical attempts [6,7], the approach is not limited
to near elastic particles and takes into account the combined
effect of thermal gradient and gravity. On the other hand,
the results reported in Ref. [5] are based on two simplifying
assumptions. First, although not explicitly stated, they were
obtained by neglecting the dependence of the temperature
ratio y = Ty/T between the intruder and the gas particles
on the volume fraction ¢. This assumption might be more
questionable as the gas becomes denser (see, for instance,
Fig. 1 below). Second, the results of Ref. [5] were derived by
using the first Sonine approximation to estimate the transport
coefficients associated with the mass flux of the intruder.
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However, recent results [8] obtained in the tracer limit for
an undriven granular gas clearly show that the accuracy of
the first Sonine solution can be worse for small values of
the coefficients of restitution and/or disparate values of the
mass and size ratios [9]. The question arises then as to
whether, and if so to what extent, the conclusions drawn from
Ref. [5] may be altered when the above two new ingredients
(density dependence of the temperature ratio and second
Sonine correction) are accounted for in the theory. In this paper
we address this question by determining the thermal diffusion
factor from the first and second Sonine approximations.

It is important to remark that the density dependence of
the temperature ratio affects both Sonine approximations.
In this sense, what is different in the present paper is not
only that the calculations are carried out to higher orders,
but also that the contributions coming from the term 94y
are completely accounted for in the first and second Sonine
solutions. This fundamental dependence was not considered
in previous works on thermal diffusion for driven [5,10]
and undriven [8] granular gases. As the results show, both
improvements (density dependence of temperature ratio and
second Sonine correction) have a major impact on the physics
of the system for large mechanical differences between host
and intruder particles.

On the other hand, it must be pointed out that the segregation
criterion derived here considers the temperature gradient as an
input and not created by the inelasticity of grains. Thus, if the
temperature gradient has a given form, then the segregation
criterion has a resultant form. However, it is known [11-14]
for vertically vibrated granular systems that after the decrease
in the value of the granular temperature as a function of
height above the floor, the temperature profile possesses a
minimum above which the temperature increases as a function
of height. Thus, given that 9,7 < 0in Eq. (1), our segregation
criterion can be useful to analyze situations where the system
is sufficiently small (shallow layers) so that the minimum in
the temperature profile is not reached or is very close to the
top of the sample.

The plan of the paper is as follows. First, the thermal
diffusion factor A is evaluated in Sec. II by using a hydro-
dynamic description. This factor is expressed in terms of the
pressure p of the gas, the transport coefficients Dy, D, and DT
associated with the mass flux of the intruder, and the (reduced)
gravity g*. As for ordinary gases [15], the above transport
coefficients obey a set of coupled linear integral equations that
can be approximately solved by using a Sonine polynomial
expansion. These coefficients are determined in Sec. III by
retaining terms up to the second Sonine approximation. Some
technical details of the calculations are relegated to the
Appendix. To assess the reliability of the first and second
Sonine approximations, we compare in Sec. IV the kinetic
theory predictions for the kinetic diffusion coefficient Dy with
numerical simulations of the Enskog equation by using the
direct simulation Monte Carlo (DSMC) method [16,17]. As in
the undriven case [8], the coefficient Dy is computed from the
mean-square displacement of intruders immersed in a heated
dense granular gas. The knowledge of Dy, D, and DT allows
one to express the factor A in terms of the parameter space of
the system: the mass (mo/m) and diameter (o /o) ratios, the
solid volume fraction ¢, and the coefficients of restitution o
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and «( characterizing dissipation of gas-gas and intruder-gas
collisions, respectively. In order to assess the impact of the
above parameters on segregation, in Sec. V the form of the
BNE-RBNE phase diagrams in the {oy/o,mo/m} plane is
investigated by varying the parameters of the system in the
case of hard spheres with a common coefficient of restitution
(¢ = «p). Two different limit situations are mainly analyzed:
(i) absence of gravity and (ii) thermalized systems (gravity
dominates the temperature gradient). The paper is closed in
Sec. VI with a discussion of the results.

II. THERMAL DIFFUSION OF AN INTRUDER.
HYDRODYNAMIC DESCRIPTION

Let us consider a binary mixture of inelastic hard disks
(d = 2) or spheres (d = 3) where the concentration of one
of the species (of mass m( and diameter oy) is very small
compared to that of the other (excess component of mass m and
diameter o < 0y). The inelasticity of collisions among gas-gas
and intruder-gas is accounted for by (constant) coefficients of
normal restitution & and g, respectively. The system (gas plus
intruder) is in the presence of the gravitational field g = —g€;,
where g is a positive constant and €, is the unit vector in the
positive direction of the z axis.

As mentioned in the Introduction, we consider an inhomo-
geneous nonconvecting steady state with gradients only in the
z direction. Since no shearing flows are present, the pressure
tensor P;; of the gas is diagonal, namely, P;; = pd;;, where p
is the hydrostatic pressure. In this case, the momentum balance
equation for the gas becomes [10]

o _ —Pg; 2
0z
where p = mn is the mass density of the gas particles. In the
context of the Enskog equation, the hydrostatic pressure p is
given by [18]

p=nT[1+2/2xp(1 + )], A3)

where y (¢) is the contact value of the pair correlation function
for the granular gas and ¢ = [7%/2/2971dT'(d/2)Ino? is the
solid volume fraction. According to the expression (3), the spa-
tial dependence of p is through its dependence on the number
density n (or equivalently, the volume fraction ¢) and the
granular temperature 7. Thus, in dimensionless form, Eq. (2)
yields

d;Inn . s
oInT (r*+sg", “)
where p* = p/nT, B = 04(¢pp*), and g* = pg/nad, T <0 is
a dimensionless parameter measuring the gravity relative to
the thermal gradient. In addition, since the mean flow velocity
of the gas vanishes, the mass balance equation for the number
density ng [10] implies jy . = 0, where jj ; is the mass flux of
intruders.

To close the determination of the thermal diffusion factor A,
a constitutive equation for the mass flux jo . is needed. To first
order in the spatial gradients (Navier-Stokes approximation),
the constitutive equation for the mass flux jo ; is [18]

B

2
m
oo = =20 poang — " pan— LpTar, (5
Jo o T
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where D is the kinetic diffusion coefficient, D is the
mutual diffusion coefficient, and D7 is the thermal diffusion
coefficient. The condition jy , = 0 leads to the relation

L 0z1Inng £ 0zInn _p', ©)

9. InT 9.InT
where we have introduced the reduced transport coeffi-
cients DT* = (pv/noT)DT, Dy = (mév/pT)Do, and D* =
(mov/noT)D. Here, v = no?"1/2T/m is an effective colli-
sion frequency.

The explicit form of A can be finally obtained from Egs. (4)
and (6). The result is [5]

BD"* — (p* + g*)(Dj + D*)

BD; '
It is quite apparent that in order to assess the impact of the
parameters of the system (masses, sizes, and coefficients of
restitution) and the volume fraction ¢ on the thermal diffusion
A, the explicit forms of the diffusion coefficients D*, D,
and DT* are needed. This can be achieved by solving the

Enskog kinetic equation by means of the Chapman-Enskog
method [15].

A=

)

III. ENSKOG KINETIC THEORY. FIRST AND SECOND
SONINE APPROXIMATIONS TO THE DIFFUSION
TRANSPORT COEFFICIENTS

In the tracer limit (ng/n — 0), it is expected that the state
of the granular gas (the solvent) is not affected by the presence
of tracer particles and that the mutual interactions of the latter
can be neglected as compared with their collisions with the
particles of the solvent. Consequently, at a kinetic theory
level, the tracer limit implies that the velocity distribution
function f(r,v,r) of the granular gas obeys the (closed)
nonlinear Enskog equation while the velocity distribution
function fy(r,v,t) of the intruder obeys the Enskog-Lorentz
equation [8].

Moreover, as in Ref. [5], in order to maintain the granular
medium in a fluidized state, an external energy source is
coupled to each particle in the form of a thermal bath. Here,
we consider the situation of energy supply through random
kicks [19]: the particles of the system are submitted between
collisions to an uncorrelated white noise. This external force
is written as F; = m;&, where the corresponding stochastic
acceleration £ is chosen to be the same for the intruder and
the gas particles [20]. The associated forcing term in the
Enskog equation is represented by a Fokker-Planck collision
operator [21] of the form —%({T/m)az/avz, where ¢ is the
cooling rate associated with the granular temperature 7. The
generalization of the force to the inhomogeneous case is
essentially a matter of choice and here, for simplicity, we
have assumed that the stochastic force has the same form as in
the homogeneous case, except that now ¢ and 7T are generally
functions of space and time. This simple generalization has
been widely used for ordinary gases in shearing problems
[22]. It must be emphasized that this kind of forcing, which
has been shown to be relevant for some two-dimensional
experimental configurations with a rough piston [23], has been
usually employed in computer simulations to analyze different
problems in the case of monodisperse systems [24].
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The application of the Chapman-Enskog method leads to
the constitutive equation (5) for the mass flux where the
transport coefficients D, Dy, and DT are given by

T Mo / dvy - Ao(v), ®)
pd
Dy=——" / vy - Boy(v), 9)
I’I’I()I’l()d
D = —%/dvv - Co(Vv). (10)

As for elastic collisions, the quantities Ag(v), Bo(v), and
Co(v) are the solutions of a set of coupled linear integral
equations [see Eqs. (A13)—(A15) of Ref. [10] for the driven
case]. The standard method consists of approximating the
above quantities by Maxwellians (at different temperatures)
times truncated Sonine polynomial expansions. For simplicity,
usually only the lowest Sonine polynomial (first Sonine
approximation) is retained [5,10,25] and the results obtained
from this simple approach agrees generally well with Monte
Carlo simulations [26]. Exceptions to this agreement are
extreme mass and size ratios in the range of large inelasticity,
although these discrepancies could be mitigated in part if
one considers higher-order terms in the Sonine polynomial
expansion. This has been recently shown [8] in the undriven
case (without thermostat) at the level of the transport coef-
ficient Djj, where the second Sonine approximation yields
a dramatic improvement (up to 50%) over the first Sonine
approximation for some extreme cases. For this reason, we
evaluate here the complete set of diffusion coefficients Df,
D*, and D"* up to the second Sonine approximation. The
procedure to determine the transport coefficients Dy, D, and
DT follows similar mathematical steps as those made in the
undriven case, and so we refer the interested reader to Ref. [8]
for more specific details. Here, only the final results are
displayed.

The first Sonine approximations Dj[1], DT*[1], and D*[1]
for the (reduced) coefficients D, DT*, and D*, respectively,
are given by

14

Dé‘[l]zv—*, (IT)
D
y—Mp* (+w)¥ M
DT[1] = 1 , (12
(1] o 20 1+MX0( +ag), (12)
. oy M
p=22r_Zg

vy 0 V)
1 y+M f d o
WHE1T4+MTN\ 0¢
where y = Ty/T is the temperature ratio, M = mo/m is the
mass ratio, w = op/o is the size ratio, xo is the intruder-gas

pair correlation function, wg is the chemical potential of the
intruder, and

VE = 277(d1)/2<1+w>d1 X0 <M+7’)1/2(1+a)
PToar(d) \ 2 1+M\ M o

) (I +ap), 13)
T,no

(14)

Since granular fluids lack a thermodynamic description, the
concept of chemical potential appearing in Eq. (13) could be
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questionable. The presence of o in our theory is justified
because we want to recover the results derived from the
revised Enskog kinetic equation for elastic mixtures [27] (see
Appendix C of Ref. [25] for an explanation of the choice of
some functional derivatives appearing in the inelastic Enskog
theory). Given that the explicit form of the chemical potential
must be known to evaluate the diffusion transport coefficients,
for practical purposes the expression considered here for
1o is the same as the one obtained for ordinary mixtures
(¢ = ap = 1). Although this derivation requires the use of
thermodynamic relations that apply only for elastic systems,
we expect that this approximation could be reliable for not too
strong values of dissipation. More comparisons with computer
simulations are needed to support the above expectation.

If we require the stochastic acceleration to be the same for
both species, it is straightforward to show that the temperature
ratio y fulfills [20,28]

Y&y = M¢*, (15)

where in the Gaussian approximation the cooling rates ¢* and
gy are

2072

e (1 —a?), 16
¢ ar(9) x(1—a”) (16)
*_4n<d—1>/2(1+w>d—' Xo <M+V>”2
f = ar(¢) \ 2 1+M\ M
M+
x (1 +Ol0)|:1 - 2)/(1—_’_1/1‘/1)(1 +0l0):|~ (17

The derivative dy) appearing in Eq. (13) for D* can be
obtained by taking the derivative with respect to ¢ under the
condition (15). This yields the relation

ay _ MG E) - v (G)(%) a8)
99 Gy

It must be also remarked that the steady-state condition
(15) has been also obtained by considering local boundary
conditions to the Enskog equation (see the Appendix of
Ref. [28]). More specifically, the boundary condition consid-
ered is a sawtooth vibration of one wall such that every particle
encountering the wall has a reflected speed increased by twice
the velocity of the wall in the component normal to the wall.
In the limit that the wall velocity is large compared to the
thermal velocities of each species (gas particles and intruder),
the condition (15) is recovered. This equivalence suggests
that the results derived from the relation (15) can be taken
as plausible first approximations for qualitative comparisons
with experimental results [20].

The expression (13) for the diffusion coefficient D*[1]
differs from the one derived previously in Ref. [5] by the
presence of the term dg). This contribution was implicitly
neglected in those calculations. Equation (13) corrects this
previous approximation. In order to assess the effect of this
new contribution, Fig. 1 shows the dependence of A = —¢d,y
on the solid volume fraction ¢ for three different values of the
(common) coefficient of restitution o« = «g. We observe that, at
a given value of ¢, A increases with increasing ¢. In addition,
at a given value of ¢, it is quite apparent that A also increases
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FIG. 1. (Color online) Plot of A = —¢d,¢ versus the solid
volume fraction ¢ for a hard-sphere gas in the case m/m = 8 and
oy/o = 2. Three different cases are considered: (a) @ = o9 = 0.9,
b)a =ay=0.8,and (c) ¢ = oy = 0.5.

with increasing collisional dissipation. Therefore the influence
of the density dependence of the temperature ratio on thermal
diffusion is expected to be important for moderate densities
and strong dissipation.

The evaluation of the second Sonine approximations Dgj[2],
DT*[2], and D*[2] is more involved. As mentioned before,
previous calculations carried out in the undriven case for the
second Sonine approach [8] allows one to easily extend these
expressions when the gas is heated by means of a stochastic
thermostat. Their explicit forms are provided in Appendix. In
general, the forms of Dj[2], DT*[2],and D*[2] have a complex
dependence on the parameter space of the problem (the mass
and size ratios, the solid fraction, and the coefficients of restitu-
tion). In the elastic limit (¢ = oy = 1) of a three-dimensional
gas, Egs. (A1)-(A3) for the above coefficients agree with
those previously obtained for a gas mixture of elastic hard
spheres [29]. Moreover, in the case of mechanically equivalent
particles (my = m,o0p = 0,00 = «), as expected, one obtains
D™[2] = 0 and D{[2] = —D*[2]. Both limit cases confirm
the self-consistency of the expressions derived here.

IV. COMPARISON WITH MONTE CARLO SIMULATIONS

It is important to note that, unless the Sonine expansion
is convergent, the introduction of the second order in the
Sonine polynomial expansion does not guarantee a priori
the improvement of the analytical results. In order to gauge
the theoretical predictions one would have to compare the
latter with computer simulations. This is the main goal of
this section, where the expressions (11) and (Al) of the
first and second Sonine approximations, respectively, for the
kinetic diffusion coefficient Dy are compared with Monte
Carlo simulations.

The diffusion coefficient Dy of intruders has been extracted
by solving numerically the homogeneous Enskog equation
by means of the DSMC method. As in the undriven case
[8,30], the coefficient Dy can be obtained from the
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mean-square displacement of the intruder after a time interval
t as [31]

0 2d D,
o AIr() = rO)F) = 2 (19)
t n

where |r() —r(0)| is the distance traveled by the intruder
from ¢ = 0 until time ¢. Equation (19) is the Einstein form
of the diffusion coefficient. This relation can be used also
in Monte Carlo simulations of granular gases to measure
the diffusion coefficient. In an unbounded system like ours,
the DSMC method has two steps that are repeated in each
time iteration. In the first step (free streaming stage), the
velocity v; of every particle (intruder and gas particles) is
changed to v; + w;, where w; is due to the stochastic force
F; and is randomly drawn from a Gaussian probability
distribution (see Ref. [32] for more details). The second step
accounts for the collisions among particles. Because the tracer
limit (ng/n — 0), during our simulations, collisions between
intruder particles themselves are not considered, and when a
collision between the intruder and a particle of the gas takes
place, the postcollisional velocity obtained from the scattering
rule is assigned only to the intruder. According to this scheme,
the numbers of particles have simply a statistical meaning, and
hence they can be chosen arbitrarily.

The extension of the DSMC method to study the diffusion
of intruders in a dense homogeneous granular gas requires the
changes J[f,f1— xJLf,f] and Sl fo,f1 — xoJolfo,f]
Here, J[f, f] and Jy[ fo, f] refer to the (closed) Boltzmann
and Boltzmann-Lorentz collision operators, respectively [33].
For the DSMC method to work appropriately, the time step
needs to be small in comparison with the microscopic time
scale of the problem (which is set by the inverse of the collision
frequency v) and we also need a sufficiently high number of
simulated particles [16]. We have used in the simulations of
this paper a time step 8t = 2.5 x 107* v~ and N =2 x 10°
simulated particles for each species.

Before studying the diffusion coefficient Dy, it is notewor-
thy to compare the theoretical predictions for the temperature
ratio y with computer simulations. Figure 2 shows y versus
the (common) coefficient of restitution oy = « for a three-

1.5 1
1.0—‘.*.*'*“*\‘\,
7
o~ //
7/
a
0.5 . 1
-
__-'——r".-_'——'
0.0k ‘ ‘ ‘ ‘ J
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 2. Temperature ratio y = Ty/T versus the (common) co-
efficient of restitution oy = o for a hard-sphere system (d = 3) in
the case 0p/0 = 2, ¢ = 0.2 and two values of the mass ratio my/m:
mo/m = 2 (solid line and circles) and my/m = % (dashed line and
squares). The lines are the theoretical results, and the symbols refer
to the numerical results obtained from the DSMC method.
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dimensional gas for w = 2, ¢ = 0.2 and two different values
of the mass ratio: M =2 and M = 1/8. For hard spheres,
a good approximation for the pair correlation function y is
provided by the Carnahan-Starling form [34]

1
— 19
2
X , (20)
(1—¢)
while the intruder-gas pair correlation function is given by [35]
1 w ¢ ? ¢?
= +3 +2 .
PET= T T v el =92 "0t (-¢p
2D

The excellent agreement found between the theory [obtained
from the condition (15)] and simulation is quite apparent,
showing again the accuracy of the approximations (16) and
(17) to estimate the temperature ratio. As expected [20],
the heavier particles carry generically more kinetic energy
than the lighter ones. Moreover, the deviations from the
energy equipartition increase as the mass differences between
intruders and particles of the gas increase. As we will show
later, in general the effect of the temperature differences on
the thermal diffusion segregation is quite significant.

Let us consider now the kinetic diffusion coefficient.
Figures 3 and 4 show the ratio Dy(«)/Do(1) as a function of
the (common) coefficient of restitution o = « for w = 2 and
¢ = 0.2 in the case of spheres (d = 3). We have reduced Dy(«)
with respect to its elastic value Dy(1) consistently obtained in
each Sonine approximation. The solid lines are the theoretical
results derived from the second Sonine approximation while
the dashed lines refer to the first Sonine approximation. We
observe that in general, while the second Sonine approximation
agrees very well with simulation data, some disagreement ap-
pears with the first Sonine approximation for strong dissipation
when the intruder is lighter than gas particles. In this case, the
first Sonine approximation underestimates the kinetic diffusion
coefficient. On the other hand, in the opposite case (when
the intruder is heavier than gas particles) the first and second
Sonine approximations are practically indistinguishable in the
complete range of values of o explored and both approaches
provide a good agreement with Monte Carlo simulations. All
these results clearly confirm the accuracy of the second Sonine
approximation for the coefficient Dy, even for low values of the
coefficient of restitution. Similar conclusions were obtained in
the undriven case [8] for the diffusion coefficient, although the
quantitative differences between both Sonine solutions were
more significant than the ones observed here.

V. PHASE DIAGRAMS FOR HARD SPHERES

The explicit dependence of the thermal diffusion factor A
on the parameter space of the problem can be obtained when
one substitutes the expressions of the transport coefficients D,
D*,and DT* [Egs. (11)—(13) for the first Sonine approximation
and Eqgs. (A1)-(A3) for the second Sonine approximation]
and the pressure p* (and its corresponding derivative ) into
Eq. (7). It is quite evident that the influence of the parameters
of the mixture (masses, diameters, density, and coefficients of
restitution) and the (reduced) gravity on the sign of A is rather
complicated, given the large number of parameters involved.
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a

FIG. 3. Reduced kinetic diffusion coefficient Dy(ct)/ Dy(1) as a function of the (common) coefficient of restitution o = ¢y for a system of
hard spheres with w = 2 and ¢ = 0.2. The left panel is for M = 1/8 while the right panel is for M = 2. The solid lines correspond to the
second Sonine approximation and the dashed lines refer to the first Sonine approximation. The symbols are the results obtained from Monte
Carlo simulations. Here, Dy (1) is the elastic value of the kinetic diffusion coefficient consistently obtained in each approximation.

In particular, the condition A = 0 provides the criterion for the
BNE-RBNE transition. Given that the results show that both
and D are positive, then, according to Eq. (7), the transition
criterion is

BD"* = (p* + g*)(D}; + D).

Note that the thermal diffusion factor is in general a nonuni-
form function since it depends on z through its dependence
on the volume fraction ¢(z) and the thermal gradient 9,7 (in
the case that the temperature profile is not linear). However,
since the expression (7) for A has been obtained up to the
Navier-Stokes order (first order in the spatial gradients), our
segregation criterion only strictly applies for regions where
the density and thermal gradients are quite small. Under these
conditions one can assume that the thermal diffusion factor is
practically constant, and so the criterion (22) can be considered
as a global feature of the system. In the case of arbitrary spatial
gradients, the numerical solution (beyond the Navier-Stokes
domain) of the Enskog equation via the DSMC method would
give better quantitative agreement with molecular dynamics
simulations or experiments than the Navier-Stokes results
reported here.

As expected, if the impurities are mechanically equivalent
to the host gas, the system is monodisperse and thermal
segregation does not occur (A = 0). This is consistent with

(22)

our results, since in this limiting case D7*[2] = 0 and Dj[2] =
—D*[2], so that the condition (22) applies for any value of ¢
and «. For a dilute gas (¢ = 0), the first Sonine approximation
to Eq. (22) simply yields

gy —M)=0, (23)

and so no segregation occurs in the absence of gravity.
This result is consistent with the criterion obtained from the
Boltzmann equation [36]. However, when the second Sonine
correction to the diffusion coefficients is retained, the results
show that thermal segregation appears (A # 0) for a dilute gas
even in the absence of gravity. This is illustrated in Fig. 5,
showing a nonmonotonic dependence of A on the diameter
ratio. In addition, when g* # 0, Eq. (23) leads to the criterion
y = M. This condition also agrees with the Boltzmann results
[13] of the undriven case.

To assess the impact of the Sonine approximation on
segregation, henceforth we only consider the physical case of
hard spheres (d = 3) with a common coefficient of restitution
(¢ = o). This reduces the parameter space of the problem
to five dimensionless parameters: g*, op/o, mo/m, ¢, and «.
In the case of hard spheres, the expression for the chemical

1.0
1.00}
0.9
I~ 2 095}
2038 S
] S
0.90}
0.7
0.85k ‘ ‘ ‘ ‘ J
0.0 0.0 0.2 0.4 0.6 0.8 1.0

a

FIG. 4. Reduced kinetic diffusion coefficient Dy(«)/ Dy(1) as a function of the (common) coefficient of restitution & = « for a system of
hard spheres with @ = 2 and ¢ = 0.2. The left panel is for M = 1/5 while the right panel is for M = 1/2. The solid lines correspond to the
second Sonine approximation, and the dashed lines refer to the first Sonine approximation. The symbols are the results obtained from Monte
Carlo simulations. Here, Dy(1) is the elastic value of the kinetic diffusion coefficient consistently obtained in each approximation.
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FIG. 5. (Color online) Plot of the thermal diffusion factor A
obtained from the second Sonine approximation as a function of
the diameter ratio oy/o for a dilute (¢ = 0) hard-sphere gas in the
absence of gravity (g* = 0) when the intruder and gas particles have
the same mass density [mo/m = (6y/0)*]. Two different cases are
considered: & = oy = 0.7 (solid line) and @ = 0.5, oy = 0.9 (dashed
line).

potential of the intruder consistent with the approximation (21)
is [37]

% = In(noAd) — In(1 — ¢) + 30)%
$(2 — @)
+3a)2|:ln(1 —¢)+ m}
o (1= 66+ 3¢
o [2111(1 0+ H } 24)

where Ao(T) is the (constant) de Broglie’s thermal wavelength
[37]. The forms (20), (21), and (24) for x, xo, and puo,
respectively, are the same as those used in our previous
calculations [5,10].

Figure 6 shows a phase diagram in the (my/m,o/0) plane
for a low-density gas (¢ = 0.1) in the absence of gravity (g* =
0) for ¢ = 0.8. This situation (thermal gradient dominates
over gravity) can be achieved in experiments of granular
mixtures subjected to horizontal vibration where the role of
gravity can be ignored [38]. The corresponding phase diagram
obtained from the first Sonine approximation by assuming
dpy = 0 [5] is also plotted for comparison. We observe first
that the latter assumption has no significant effect on the first
Sonine prediction, since both results (dotted and dashed lines)
practically coincide in the range of diameter ratios studied.
On the other hand, although the first Sonine approximation
reproduces qualitatively well the trends of the phase diagram,
the former dramatically overestimates the predictions of the
second Sonine approximation, especially at large mass and size
ratios. The results also show that the quantitative discrepancies
between both Sonine solutions decrease as the volume fraction
¢ increases. This is illustrated in Fig. 7 for the same system as
in Fig. 6. The above results suggest that the Sonine expansion
for thermal diffusion exhibits a poor convergence when gravity
is absent and the gas is moderately dense (say, for instance,
¢ < 0.2). In particular, the first Sonine approximation turns
out to be a very poor approximation to A in the case of dilute
gases. This conclusion agrees with the results obtained many
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FIG. 6. (Color online) Phase diagram for BNE-RBNE at ¢ = 0.1
in the absence of gravity with o = 0.8. Points above the curve
correspond to A > 0 (BNE), while points below the curve correspond
to A < 0 (RBNE). The dotted line is the result obtained in Ref. [5],
the dashed line is the result obtained here from the first Sonine
approximation, while the solid line is the result derived from the
second Sonine approximation.

years ago by Kincaid et al. [4] for ordinary binary mixtures,
since they concluded that the second Sonine approximation is
a much better approximation than the first one. On the other
hand, given that the first Sonine approximation to D, agrees
well with simulation data (see the right panel of Fig. 3) in
this parameter region (i.e., for mass ratios larger than one), the
poor convergence of the Sonine approximation in this region
is mainly due to the coefficients D and D7 .

We consider now the opposite limit [g*| — oo, namely,
when the temperature of the bed is assumed uniform so that the
segregation of the intruder is essentially driven by gravity. This
situation (gravity dominates over the temperature gradient)
has been previously studied by several authors [6,7] by using
kinetic theory and by means of computer simulations [39] and
experiments [40]. In this limit, the condition (22) reduces to
D§ + D* = 0. Figure 8 shows a phase diagram for ¢ = 0.2
and o = 0.9 for this limiting case. It is apparent that, in contrast
to the case g* =0, the RBNE regime appears essentially
now for both large mass ratio and/or small diameter ratio.
Regarding the influence of the assumption 95y = 0 in the

4 . . —
#=0.5 .
=0.8 g=0 .
3k e ]
& BNE
2L . . §
7 RBNE
1 g I I I
1.0 1.5 2.0 2.5 3.0
olc

FIG. 7. (Color online) The same as in Fig. 6 but at ¢ = 0.5.
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gl ¢=0.2 |
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FIG. 8. (Color online) Phase diagram for BNE-RBNE for ¢ =
0.2 in the absence of a thermal gradient (|g*| — oo) with & = 0.9.
The dotted and dashed lines refer to the results obtained in Ref. [5]
and here, respectively, from the first Sonine approximation while the
solid line is the result derived from the second Sonine approximation.

first Sonine approximation [5] and of the order of the Sonine
approximation used, Fig. 7 shows clearly that the form of the
phase diagram is practically independent of the approach used,
since the three curves collapse in a common curve.

Next, we analyze the influence of inelasticity on thermal
diffusion by considering only the most accurate approach
(the second Sonine approximation). To illustrate this effect,
two values of « are considered in Fig. 9 for ¢ = 0.1 and
g* = 0. We see that in the absence of gravity, the main effect
of collisional dissipation is to reduce the size of the BNE,
in contrast to what happens for finite concentration [41]. In
addition, comparison with the results obtained for o = 0.5
assuming energy equipartition (7y = 7') shows that the impact
of nonequipartition of granular energy on segregation is
important (when g* = 0), especially as the size ratio increases.
However, the influence of nonequipartition is smaller than
the one previously found from the first Sonine approximation
(see, for instance, Fig. 2 of Ref. [5]). Moreover, a comparison
of the second Sonine approximation (not shown here) with

¢:0'1 T T T
3L =0 =0.5 ]

= BNE
2L CLT 4

s <
P RBNE

1 Il Il Il

1.0 1.5 2.0 25 3.0

FIG. 9. (Color online) Phase diagram for BNE-RBNE at ¢ = 0.1
with ¢g* = 0 and two different values of «. The solid lines are the
results from the second Sonine approximation, while the dashed line
is the result derived from the latter approach for « = 0.5 but assuming
T() =T.
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previous theories [6,7] in the limit |g*| — oo shows similar
discrepancies as those previously reported (see Fig. 4 of Ref.
[5]). This is consistent with the results presented in Fig. 6,
where the first and second Sonine solutions are practically
indistinguishable.

VI. SUMMARY AND DISCUSSION

In spite of its practical importance, the understanding
of particle segregation within polydisperse, rapid granular
flows is still an open problem. This is due essentially to the
complexities that arise during the derivation of kinetic theory
models. Most of the previous theoretical works are based on
theories that consider systems constituted by nearly elastic par-
ticles [6,7,42,43], assume an equipartition of granular energy
[6,42,43], and/or they are restricted to dilute gases [13,14,36].
This paper has addressed the problem of segregation by
thermal diffusion of an intruder in a driven granular gas.
The analysis is based on Navier-Stokes constitutive equations
with diffusion coefficients derived from the revised Enskog
kinetic theory [18]. The theory is not restricted to nearly
elastic spheres, considers the influence of the nonequipartition
of granular energy on segregation, and applies to moderate
values of the solid volume fraction. In addition, in contrast
to the previous attempt carried out by one of the authors of
the present paper [5], the analysis incorporates the density
dependence of the temperature ratio (d4y) and considers the
second Sonine approximation (two polynomials in the Sonine
polynomial expansion) to the transport coefficients. These new
results are the most significant contribution of the present
work. In this context, this paper complements and extends
previous papers on segregation of an intruder in driven [5,10]
and undriven [8] dense granular gases.

In the steady state with gradients only along the vertical
direction, the sign of the thermal diffusion factor A [defined
by Eq. (1)] provides information on the tendency of the intruder
to move toward the colder (BNE) or hotter (RBNE) plate. The
factor A has been evaluated by following two complementary
approaches. First, by using the momentum balance equation
along with the constitutive equation (5) for the mass flux of
the intruder, A is expressed in terms of the pressure p (and
its derivative with respect to the solid volume fraction ¢) and
the transport coefficients D, DT, and D. Then the form of the
diffusion transport coefficients has been determined by solving
the Enskog equation from the Chapman-Enskog method up
to the second Sonine approximation. This finally gives A as
a function of the mass and the diameter ratios, the volume
fraction, the coefficients of restitution, and the (reduced)
gravity g* (a parameter measuring the gravity relative to the
thermal gradient).

In order to check the reliability of the first and second
Sonine approximations, a comparison with Monte Carlo
simulations of the Enskog equation for the kinetic diffusion
coefficient Dy has been performed. As for undriven gases [8],
the comparison with simulation data shows the superiority
of the second Sonine solution over the first one, especially
when the gas particles are heavier than the intruder. However,
the discrepancies found here between both Sonine approxi-
mations are less important than those previously reported for
undriven systems [8].
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The condition A = 0 [see Eq. (22)] provides the segregation
criterion for the transition BNE < RBNE. A systematic
study of the form of the BNE-RBNE phase diagrams in
the mass and diameter ratio plane has been carried out in
Sec. V for hard spheres (d = 3) in the case of a (common)
coefficient of restitution &« = «g. Regarding the form of the
phase diagrams, we observe first that the impact of the term
dpy on the first Sonine approximation is very small (see,
for instance, Figs. 6 and 7) so that the conclusions made in
Ref. [5] are not practically altered by the presence of this new
term. With respect to the effect of the Sonine approximation
considered, the results reported here show that in general
the influence of the order of the Sonine solution is much
more significant in the absence of gravity (g* = 0) than in
the opposite limit (|g*| — 00), where both approximations
yield practically the same diagrams (see, for instance, Fig. 6).
In particular, when g* = 0, the first Sonine approach clearly
overestimates the RBNE region (see Fig. 6), while it predicts a
bigger influence of collisional dissipation on the phase diagram
than the one obtained from the second Sonine correction
(compare Fig. 2 of Ref. [5] with Fig. 7 of the present paper).
Although the accuracy of the second Sonine approximation
to the diffusion coefficients has been tested only in the case
of the coefficient Dy, it can be reasonably expected that
the segregation criterion derived here in the second Sonine
approximation for a heated gas compares better with computer
simulations than segregation criteria from previous works in
the Navier-Stokes domain (small gradients of density and
temperature). A previous comparison [13] for dilute gases
confirms this expectation. Given that the present results apply
to moderate densities, it is hoped that this paper could stimulate
the performance of such simulations.

An important question addressed partially in this paper is
about the convergence of the Sonine polynomial expansions
considered here. This is a quite difficult question, especially
in the case of granular fluids where the studies of the impact
of higher-order terms on transport are more scarce than for
ordinary gases. In this latter case, for instance, the analysis of
transport properties of dense binary mixtures with one tracer
component [44] indicates that the convergence of the Sonine
expansion improves significantly with increasing values of the
mass ratio M. Similar trends have been found here at
the level of the tracer diffusion coefficient Dy. Unfortunately,
the lack of available simulation data for the remaining diffusion
transport coefficients D and D7 in the driven or undriven
cases prevent us from assessing the reliability of the first
and second Sonine approximations. Since those coefficients
are also involved in the expression of the thermal diffusion
factor A, no definitive conclusions on the accuracy of their
second Sonine forms can be drawn. However, the results
displayed in Sec. V for thermal diffusion segregation seem
to indicate that while the convergence of the Sonine expansion
for A is quite good when |g*| — oo (see, for instance, Fig. 8
where both Sonine approaches lead practically to the same
phase diagrams), it does not happen the same way for a
low-density gas in the opposite limit (g* = 0), since there
is an abrupt change in the form of the phase diagram for
BNE-RBNE (see, for instance, Fig. 6). In this situation one
should perhaps consider higher-order polynomial terms (even
beyond the second Sonine approximation) or one should

PHYSICAL REVIEW E 85, 021308 (2012)

consider alternative analytical routes, such as the so-called
modified Sonine approximation [45]. This latter method is
based on a modified version of the first Sonine approximation,
which replaces the Gaussian distribution weight function
(used in the standard Sonine method) by the homogeneous
cooling state distribution. In any case, more comparisons
between segregation results derived in the driven case between
computer simulations and the different approximate theories
are needed before quantitative conclusions can be offered on
the reliability of those kinetic theories.
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APPENDIX: SECOND SONINE EXPRESSIONS FOR THE
DIFFUSION COEFFICIENTS

The explicit expressions of the second Sonine approxima-
tions to the diffusion transport coefficients are displayed in this
Appendix. They are given by

Do vay Al
ol2] = T (A1)
* * ke, 200k * L
proppy = BXTZ @YD) — G — )
vivy — v (i —{ )
D)= HOT = VD — yROE v
vivy —vi(vi—¢%)
where
1
Xi==(Mp" =y)+ (1 + o) Moxod(1 +a0), (A4

X=v"* 5075 MO( + o)y 7 xop(1 + o)
% {My[(d+2)(/\/12_ 1)—|—(2d—5—9a’0)MOM

+ (d = 14 3ag + 605) M?] + 6M*(1 + o) }
(AS)

07 y+M ¢ (ko
Vi _¢a¢> M'B+2(1+M)T<8¢> >T’n0(1+“°)’

(A6)
2
= 2(d1+ 2 AM40¢(1 Te)5s <@>m
x {[(d + MG + (7 + 2d — op) MM + (2 + d
+ 30 — 3019) M?]0 + 3M*(1 + ap)*6°
+[(d + MG+ (2d — 5 — Ya)) MM + (d — 1
+3ag + 605) M?]0% — (d +2)0(1 + 0)}. (A7)

Here, M =m/(m + my), My = mo/(m + mg), and 0 =
moT /mTy is the mean-square velocity of the gas particles
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relative to that of the intruder particle. In addition, when the
gas is driven by the stochastic thermostat, the coefficients a*
and c¢* are given by [46]

d—3
* _ ox—1 2 _
at=v, (1+3(d+2)¢x(1+a) QQa 1)), (A8)
d-3
* gkl 2
= -=3y; (d+2)¢(2X + @dgx)a(l —a”), (A9)
where
8§ =112
* 1
e T dd +2) ﬁr(d/z)X( )
uJri(dJrs)(l— )) (A10)
“\72 T 16 @) -

PHYSICAL REVIEW E 85, 021308 (2012)

Finally, the expressions of the (reduced) collision frequencies
v}, v, vy, and v¥ can be found in the Appendix C of Ref. [8],
while v and v{ are given by [47]

A@D2 1\ AP < .
v = ——d<—> xo o (1 a0)6¥2(1 4 6) 77,
(A11)

s m@=D/2 <1+a)>d1 M
Vg = — —_— o
©T Tdd+ord)\ 2 O T

32
X (m) [C+(d+2)1+6)D], (A12)

where C and D are given by Egs. (C7) and (C8), respectively,
of Ref. [8].
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