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Unsteady non-Newtonian hydrodynamics in granular gases
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The temporal evolution of a dilute granular gas, both in a compressible flow (uniform longitudinal flow)
and in an incompressible flow (uniform shear flow), is investigated by means of the direct simulation Monte
Carlo method to solve the Boltzmann equation. Emphasis is laid on the identification of a first “kinetic” stage
(where the physical properties are strongly dependent on the initial state) subsequently followed by an unsteady
“hydrodynamic” stage (where the momentum fluxes are well-defined non-Newtonian functions of the rate of
strain). The simulation data are seen to support this two-stage scenario. Furthermore, the rheological functions
obtained from simulation are well described by an approximate analytical solution of a model kinetic equation.
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I. INTRODUCTION AND STATEMENT OF THE PROBLEM

Granular gases are dilute systems made of inelastic particles
that can be maintained in a fluidized state by the application
of external drivings to compensate for the dissipation of
kinetic energy due to collisions. These systems are always
out of equilibrium and exhibit a wealth of intriguing complex
phenomena [1-12]. They are important from an applied point
of view but also at the level of fundamental physics. As
Kadanoff stated in his review paper [4], “one might even say
that the study of granular materials gives one a chance to
reinvent statistical mechanics in a new context.”

One of the most controversial issues in granular fluids
refers to the validity of a hydrodynamic description [4,13]. In
conventional fluids, the densities of the conserved quantities
(mass, momentum, and energy) satisfy formally exact balance
(or continuity) equations involving the divergence of the
associated fluxes. In the case of granular fluids, however,
energy is dissipated on collisions and this gives rise to a
sink term in the energy balance equation. As a consequence,
except perhaps in quasielastic situations, the role of the energy
density (or, equivalently, of the granular temperature) as a
hydrodynamic variable is not evident. Both for conventional
and granular fluids, the mass, momentum, and energy balance
equations do not form a closed set due to the appearance
of the momentum and energy fluxes (plus the energy sink
in the granular case). On the other hand, by assuming
“hydrodynamic” conditions, the balance equations are closed
by the addition of approximate constitutive equations relating
the momentum and energy fluxes (again plus the energy sink
in the granular case) to the mass, momentum, and energy
fields.

The simplest constitutive equations consist of replacing the
fluxes by their local equilibrium forms, thus neglecting the
influence of the hydrodynamic gradients. This gives rise to
the Euler hydrodynamic equations, which fail to account for
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irreversible effects, even in the case of conventional fluids.
This is corrected by the Navier-Stokes (NS) constitutive
equations, where the fluxes are assumed to be linear in the
hydrodynamic gradients. On the other hand, if the gradients
are not weak enough (i.e., if the Knudsen number is not small
enough), the NS equations are insufficient and, thus, nonlinear
(i.e., non-Newtonian) constitutive equations are needed in a
hydrodynamic description [14,15].

In conventional fluids, applicability of a hydrodynamic
description (Euler, NS, or non-Newtonian) requires two basic
conditions, one spatial and another one temporal. On the
one hand, one must focus on the bulk region of the system,
i.e., outside the boundary layers, whose width is on the
order of the mean free path. On the other hand, one must
let the system age beyond the initial layer, whose duration
is on the order of the mean free time. Let us consider the
latter condition in more detail. In a conventional gas, the
typical evolution scenario starting from an arbitrary initial
state represented by an arbitrary initial velocity distribution
fo(r,v) proceeds along two successive stages [ 16]. First, during
the so-called kinetic stage, the velocity distribution f(r,v,t),
which depends functionally on fj, experiences a fast relaxation
(lasting a few collision times) toward a “normal” form
fIvln,u,T], where all the spatial and temporal dependence
occurs through a functional dependence on the hydrodynamic
fields (number density n, flow velocity u, and temperature 7).
Next, during the hydrodynamic stage, a slower evolution of the
hydrodynamic fields takes place until either equilibrium or an
externally imposed nonequilibrium steady state is eventually
reached. While the first stage is very sensitive to the initial
preparation of the system, the details of the initial state are
practically “forgotten” in the hydrodynamic regime. Figure 1
depicts a schematic summary of this two-stage evolution in a
conventional gas.

The absence of energy conservation in granular fluids sheds
some reasonable doubts on the applicability of the above
scenario beyond the quasielastic regime. While the usefulness
of a non-Newtonian hydrodynamic description in steady states
has been validated by computer simulations [17-20], it is not
obvious that a hydrodynamic treatment holds as well during
the transient regime toward the steady state.
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FIG. 1. (Color online) Schematic description of the two-stage
evolution of the velocity distribution function in a conventional gas.

In order to address the problem described in the preceding
paragraph, it seems convenient to focus on certain prototypical
classes of flows. Let us assume a (d-dimensional) granular gas
with uniform density n(¢), uniform temperature 7(¢), and a
flow velocity along a given axis (say x) with a linear spatial
variation with respect to a certain Cartesian coordinate ¢, i.e.,

(1.1

Here a(t) is a uniform rate of strain. Two distinct possibilities
arise: either ¢ # x (say £ =y) or £ =x. The first case
defines an incompressible flow (V - u = 0) commonly known
as simple or uniform shear flow (USF) [1,11,15,17,21-60], the
associated rate of strain a being the shear rate. The second
case is an example of compressible flow (V -u=a # 0)
that will be referred to as uniform longitudinal flow (ULF)
[60-67]; the corresponding rate of strain in this case will
be called longitudinal rate. These two states are particular
cases of a more general class of homoenergetic affine flows
characterized by 82ui/3xj dx; = 0 [21]. The USF and ULF
flows are sketched in Figs. 2 and 3, respectively.

Assuming that the velocity distribution function f(r,v,?)
depends on the spatial variable £ only, the Boltzmann equation
reads

Vjui(r,t) = a(t)cSiXS_ig.

af af
a‘i‘ve% =JIf. fl,

where J[f, f] is the (inelastic) Boltzmann collision oper-
ator, whose explicit form can be found, for instance, in
Refs. [68-70]. Multiplying both sides of Eq. (1.2) by {1,v,v?},
and integrating over velocity, we get the balance equations for
mass, momentum, and energy densities,

(1.2)

9
Din = —n%, (13)
1 0P,
D = T T T 1.4
i mn o4 (1.4
2/ ou; 9
D1T+§T:_E<Piiﬁ+§)~ (1.5)

In Egs. (1.3)—(1.5), D; = 9; + u¢9, is the material derivative,
and the number density n, flow velocity u, temperature T,
pressure tensor P;;, heat flux vector q, and cooling rate ¢ are

7/ uz(y) = ay

n = const
VT =0

A

FIG. 2. (Color online) Sketch of the USF.
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FIG. 3. (Color online) Sketch of the ULF for (a) a(¢) > 0 and (b)
a(t) < 0.

defined by
n(t,t) = /dvf(e,v,z), (1.6)
n(Z,t)u(Z,t)=/dvvf(£,v,t), (1.7)
n(€,0T(L.1) = p(L,1) = étrP(é,t), (1.8)

Pty =m / dvvi —u;(6,0)][v; —u;(L, )] f(L,v,1),
(1.9
ql,t) = %/dv [v— u(ﬂ,t)]z[v —ul,n)]f¢,v,t), (1.10)

n(@,OT (L) = —%/dvvzj[f,f]. (1.11)

The first equality of Eq. (1.8) defines the hydrostatic pressure
p, which is just given by the ideal-gas law in the Boltzmann
limit.

As said above, the density n(¢) and temperature 7'(¢), and
so the hydrostatic pressure p(t), are uniform in the (fully
developed) USF and ULF. On physical grounds, it can also
be assumed that the whole pressure tensor P;;(¢) is uniform
as well. Moreover, in the absence of thermal and density
gradients, the heat flux can be expected to vanish. Taking
all of this into account, as well as Eq. (1.1), the balance
equations (1.3)—(1.5) become

n(t) = —n()a(r)dye, (1.12)
a(t) = —a*(t)sy, (1.13)

. 2a(t)
T@®) = () () = ¢ (OT(@). (1.14)

In the case of the USF (¢ = y), Egs. (1.12) and (1.13) imply
that both the density and the shear rate are constant quantities.
As for the temperature, it evolves in time subject to two
competing effects: viscous heating [represented by the term
—(2/dn)a P, > 0] and inelastic cooling [represented by ¢ T'].
Both effects eventually cancel each other in the steady state.

In the case of the ULF (¢ = x), the solution to Egs. (1.12)
and (1.13) is

n() np ap

- ’ a(t) = ’
a(t) ag 1 + apt

(1.15)
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TABLE 1. Main characteristic features of the USF and the ULF.

USF ULF (@ >0) ULF(a <0)
Inelastic cooling Yes Yes Yes
Viscous heating Yes No Yes
T(t) | & |a*(@®)]| 1 Yes, if Yes Yes, if
> 2|udf;;ry| ¢ > 2\%3”
T() 1+ &la*@t)] | Yes, if No Yes, if
2|a Py xx
¢ < ladl; | ¢ < 2|ad\§
Steady state Yes No Yes

where ny is the initial density and ay is the initial longitudinal
rate. In contrast to the USF, the sign of a(¢) (or, equivalently,
the sign of ay) plays a relevant role and defines two separate
situations (see Fig. 3). The case a > 0 corresponds to a
progressively slower expansion of the gas from the plane x = 0
into all of space. On the other hand, the case a < 0 corresponds
to a progressively faster compression of the gas toward the
plane x = 0. The latter takes place over a finite time period
t = |ao|~!. However, since the collision frequency rapidly
increases with time, the finite period ¢ = |ag|~! comprises
an infinite number of collisions per particle [67]. Given that
P, > 0, the energy balance equation [see Eq. (1.14)] implies
that the temperature monotonically decreases with time in the
ULF with a > 0. On the other hand, if a < 0, we have again
a competition between viscous heating and inelastic cooling,
so the temperature either increases or decreases (depending
on the initial state) until a steady state is eventually reached.
The main characteristic features of the USF and the ULF are
summarized in Table 1.

Regardless of whether the rate of strain a is constant (USF)

or changes with time (ULF), the relevant parameter is the ratio
a0 = 20
v(t)
between a(¢) and a characteristic collision frequency v(r)
n(t)[T(t)]"/?. Note that the absolute value of a*(¢) represents
the Knudsen number of the problem, i.e., the ratio between the
mean free path and the characteristic length associated with
the velocity gradient [59,60]. Since a(t)/n(t) = const both in
the USF and the ULF, we have a*(t) o [T()]~'/%. Conse-
quently, the qualitative behavior of |a*(¢)| is the opposite to
that of T'(¢), as indicated in Table I.

The scenario depicted in Fig. 1, if applicable to a granular
gas in the USF or in the ULF, means that, after the kinetic stage,
the velocity distribution function f[r,v,f|fy] should adopt a
hydrodynamic (or normal) form

(1.16)

dn
f[r,v,r|fo]—>n(t)[i] FICEn.a 0l (1.17)

2T (1)
where
Cr.y = Y- u®D) (1.18)
D= AT om

is the peculiar velocity scaled with the thermal speed. For a
given value of the coefficient of restitution, the scaled velocity
distribution function f*(C,a*) must be independent of the
details of the initial state f; and depend on the applied shear
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or longitudinal rate a(¢) through the reduced scaled quantity a*
only. In other words, if a hydrodynamic description is possible,
the form (1.17) must “attract” the manifold of solutions
fIr,v,t| fol to the Boltzmann equation (1.2) for sufficiently
long times, even before the steady state (if it exists) is reached.
Equation (1.17) has its counterpart at the level of the velocity
moments. In particular, the pressure tensor P;;[¢|fy] would
become

Pijlt1 fol = n(OT @) Pjla™(1)] (1.19)

with well-defined hydrodynamic functions P7(a*).

A few years ago we reported a preliminary study [58]
where the validity of the unsteady hydrodynamic forms (1.17)
and (1.19) for the USF was confirmed by means of the
direct simulation Monte Carlo (DSMC) method to solve
the Boltzmann equation and by a simple rheological model.
The aim of the present paper is twofold. On the one hand, we
want to revisit the USF case by presenting a more extensive and
efficient set of simulations, by providing a detailed derivation
of the rheological model (which was just written down without
derivation in Ref. [58]), and by including in the analysis the
second viscometric function (which was omitted in Ref. [58]).
On the other hand, we perform a similar analysis (both
computational and theoretical) in the case of the ULF. This
second study is relevant because, despite the apparent similar-
ity between the USF and the ULF, the latter differs from the
former in that it is compressible, the two signs of a physically
differ, and a steady state is possible only for negative a.

The remainder of the paper is organized as follows. The
formal kinetic theory description for both types of flow is
presented in Sec. II within a unified framework. Next, Sec. III
offers a more specific treatment based on a simple model
kinetic equation. In particular, a fully analytical rheological
model is derived. Section IV describes the simulation method
employed to solve the Boltzmann equation and the classes of
initial conditions considered. The most relevant part of the
paper is contained in Sec. V, where the results obtained from
the simulations are presented and discussed. It is found that
the scenario depicted by Fig. 1 and Egs. (1.17) and (1.19) is
strongly supported by the simulations. Moreover, the simple
analytical rheological model is seen to agree quite well with
the simulation results. The paper is closed in Sec. VI with a
summary and conclusions.

II. BOLTZMANN EQUATION FOR USF AND ULF

Let us consider a granular gas modeled as a system of
smooth inelastic hard spheres (of mass m, diameter o, and
constant coefficient of normal restitution «), subject to the
USF or to the ULF sketched in Figs. 2 and 3, respectively. In
the dilute regime, the velocity distribution function f(¢,v,?)
obeys the Boltzmann equation (1.2). As is well known, the
adequate boundary conditions for the USF are Lees-Edwards’s
boundary conditions [71], which are not but periodic boundary
conditions in the comoving Lagrangian frame [72]. The
appropriate boundary conditions for the ULF are much less
obvious. In order to construct them, it is convenient to perform
a series of mathematical changes of variables. Also, we will
proceed by encompassing the ULF and the USF in a common
framework.
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A. Changes of variables

__ We start by defining scaled time and spatial variables 7 and
£ as

T=00), €=060@¢, Q2.1
where
t, USF( = y)
0(1) = o , (2.2)
In(1 + agt), ULF{ = x)
1, USF (¢ =
() = ( Y) . 2.3)
(1+apt)"!, ULF =x)
Also, a new velocity variable V is defined as
V=v-—a(t)le,, 2.4)

where e, is the unit vector in the x direction and we have
taken into account that a(z) = aof(z) both in the USF and in
the ULF. The velomty distribution function corresponding to
the variables Z v, and 7'is

f?v’f:—f(ur) (2.5)
6(1)
Consequently,
1 8f 8f af af
= 5 oo == — 2.6
62ar  ar ° x"[er (ae a”aux)} 26)
where we have taken into account that
b(1) = —aol6(1)]*8.. (2.7)
Similarly,
1af of af
2 L 2.8
629¢ ~ ot Cow, 2:8)
1 ~ ~
é—zf[f,f]:J[f,f]- (2.9)

Inserting Eqgs. (2.6), (2.8), and (2.9) into Eq. (1.2), and taking
into account Eq. (2.4), one finally gets

af _af 9 o~ o~
a’; +9, 8§ —age@H =TT @0

It is important to remark that no assumption has been made.
Therefore, Egs. (1.2) and (2.10) are mathematically equivalent,
so any solution to Eq. (1.2) can be mapped onto a solution to
Eq. (2.10) and vice versa. While Eq. (1.2) describes a gas in the
absence of external forces, Eq. (2.10) describes a gas under the
influence of a nonconservative external force F = —magv,e,.
Note that in the case of the ULF with ay < O the finite time
interval 0 < ¢ < |ap|™! translates into the infinite scaled time
interval 0 < 7 < 00. _ .

The density 71(£ ,t~),~ﬂ02v velocity U(¢,7), temperature T (£,1),
and pressure tensor P; j(Z,'tv) associated with the scaled distri-
bution (2.5) are defined analogously to Egs. (1.6)—(1.9). The
quantities with and without tilde are related by

e n(l,t) 5 P;;(L,t)
A7) = R P01 = TR (2.11)
WD =ul,t) —at)e, TEDH=TEH. (2.12)
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At a microscopic level, we now define the USF (¢ = y) and
the ULF (£ = x) as spatially uniform solutions to Eq. (2.10),
i.e.,

fEFDH = FED.

Thus, conservation of mass and momentum implies that 77’ =
const and U = const. Without loss of generality we can take
i = 0. It seems quite natural that periodic boundary conditions
(at (==L /2) are the appropriate ones to complement the
(scaled) Boltzmann equation (2.10) in order to ensure the
consistency with uniform solutions (2.13), i.e.,

2.13)

F=L23D = FT23D.

Assuming uniform solutions of Eq. (2.10) and going back
to the original variables, Egs. (2. 11) and (2.12) yleld n(t) =
(), ul,t) = a(t)le,, T(t) = T(t) and P;;(t) = G(t)P,j(t)
Therefore, uniform solutions to Eq. (2.10) map onto USF
(€ = y) or ULF (¢ = x) solutions to Eq. (1.2). The periodic
boundary conditions (2.14) translate into

(2.14)

~ ~

(——L t)— (L + a0l t>
N~ m™) =N\ gy ¥ T aokent):

In the case of the USFE, these are the well-known Lees-
Edwards’s boundary conditions [71].

While the forms (1.2) and (2.10) of the Boltzmann equation
are fully equivalent, as are the respective boundary conditions
(2.15) and (2.14), it is obvious that Egs. (2.10) and (2.14)
are much simpler to implement in computer simulations than
Egs. (1.2) and (2.15). This is especially important if one
restricts oneself to uniform solutions of the form (2.13). In
that case, Eq. (2.10) becomes

(2.15)

af ~ .~
a—{—ao = =JLf. S (2.16)
t
The corresponding energy balance equation is
~ o~ 2ap ~ ~ ~ o~~~
T(r)= I we(t) — S(OT (1), (2.17)
n
where
r= ——f VIS (2.18)
Note that
50 =60 (D) (2.19)

and, thus, Egs. (1.14) and (2.17) are equivalent. Although
T = T,in Eq. (2.17) we keep the notation 7' to emphasize that
here the temperature is seen as a function of the scaled time 7.

In cooling situations, i.e., in the USFif ¢ > 2|a P,|/dp, in
the ULF with a9 < 0 if ¢ > 2|a|Pyx/dp, or in the ULF with
ap > 0, the temperature can reach values much smaller than the
initial one, which can cause technical difficulties (low signal-
to-noise ratio) in the simulations. This is especially important
in the ULF with ag > 0 since no steady state exists and the
temperature keeps decreasing without any lower bound. To
manage this problem, it is convenient to introduce a velocity
rescaling (or thermostat). From a mathematical point of view,
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let us perform the additional change of variables

~ ~ v

t= l?(l), V= %, (220)
FED =DONFED, 2.21)

where so far 19(?) is an arbitrary (positive definite) protocol
function. The following identities are straightforward,

]dlaf_af 5 o

[ 0T o DOP aA(Af) (2.22)
[DOF I 1= JLf. fL. (2.23)

Therefore, Eq. (2.16) becomes

8f - 0 -~ o~
- O 7 (vzf) M@a—v@f) =JIf. [l (224)
where
_ 3 (1)

an = 19( 7 1O=Gop (22
The Boltzmann equation (2.24) represents the action of a non-
conservative external force F(V,7) = —ma(@)vre, — mu(@)v.

The relationship between the granular temperatures defined
from f and f, respectlvely, is TO T(z‘)/[f}(t)]2 Thus,
the thermostat choice ¥(7) o [T(1)]'/? keeps the rescaled
temperature TO constant. While, at a theoretical level,
Eq. (2.16) is simpler and more transparent than Eq. (2.24),
the latter is more useful from a computational point of view in
cooling situations.

B. Rheological functions

In order to characterize the non-Newtonian properties of
the unsteady USF and ULPF, it is convenient to introduce
generalized transport coefficients.

As is well known, the NS shear viscosity 7ns is defined
through the linear constitutive equation

2
P,'j = pgij — nNs(V,»uj + ijt,' — gV . ll(S,'j), (226)

where we have taken into account that the NS bulk viscosity is
zero in the low-density limit [14,73]. This is especially relevant
in compressible flows like the ULF. Making use of Eq. (1.1),
we define (dimensionless) non-Newtonian viscosities 1*(a*)
for the USF and the ULF by the relation

Pj(a*) = 8;; — n*(a*)a* <3ix3jz +8jx8ic — §8xl(3ij)~
(2.27)
More specifically, setting ij = x¢, Eq. (2.27) yields
8¢ — Ply(a®)
a*(1+ 228,)

The rheological function n*(a*) differs in the USF from that in
the ULF. In the latter flow it is related to the normal stress P}, .
In that case, by symmetry, one has P}, + (d — l)Py*y =d, so

(@) = (2.28)

P! — Py*y = —2n*(a*)a”. (2.29)
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Since 0 < P}, < d, the viscosity n*(a*) in the ULF must be
positive definite but upper bounded:
a* > 0,

_d
2(d Da* >

n*@*) < (2.30)

*
2Ia L a* < 0.

In contrast, in the USF the viscosity function is related to the

shear stress Pj},

P;y = —n*(@*)a*. (2.31)

In this state the normal stress differences are characterized by
the viscometric functions
P (a®) — Pf(a¥)
a*2
* * * *
P> (a*) — Py (a®)
2

via*) =

(2.32)

Wi (a*) =

(2.33)

a*

III. KINETIC MODEL AND NONLINEAR
HYDRODYNAMICS

A. Kinetic model

In order to progress on the theoretical understanding of the
USF and the ULF, it is convenient to adopt an extension of the
Bhatnagar-Gross-Krook (BGK) kinetic model [74], in which
the (inelastic) Boltzmann collision operator J[ f, f]is replaced
by a simpler form [75,76]:

a
U1 = =B@v(f — fues) + %_8 (v —wfl
v

Here fi is the local version of the homogeneous cooling state

distribution [12] and
|T
o1 [ L
m

8 @=1/2
=——"——n
d+2)Ird/2)
is a convenient choice for the effective collision frequency. The
factor B(«) can be freely chosen to optimize agreement with
the original Boltzmann equation. Although it is not necessary
to fix it in the remainder of this section, we will take

Bla) =31+ a) (3.3)

at the end [76]. The cooling rate is defined by Eq. (1.11) but
here we will take the expression obtained from the Maxwellian
approximation, namely

3.1)

(3.2)

_ 2
¢ = (l—a.

This is sufficiently accurate from a practical point of view [55],
especially at the level of the simple kinetic model (3.1).
Using the replacement (3.1), Eq. (2.16) becomes

of
T

(3.4)

N P
=—BV(f — foes) + 2= - (Vf), (3.5
2 9v
where 7 and E are given by Eqs. (3.2) and (3.4), respectively,
except for the change n — 1 (recall that T = T). Taking
second-order velocity moments on both sides of Eq. (3.5) one

gets
(3.6)

Fl] = —ay(P Z(Slx + Plfajx) ¢ ﬁij - ﬁT)’(
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From the trace of both sides of Eq. (3.6) we recover the
exact energy balance equation (2.17). The advantage of the
BGK-like model kinetic equation (3.5) is that it allows one
to complement Eq. (2.17) with a closed set of equations for
the elements of the pressure tensor [17,67]. It is interesting to
note that Eq. (3.6), with 8 = (1 + a)[d + 1 4+ (d — Da]/4d,
can also be derived from the original Boltzmann equation in
the Grad approximation [19,20,53].
As discussed in Sec. I [cf. Eq. (1.19)], the relevant quantity
is the reduced pressure tensor defined as
i) = Py _ Pyt) 3.7)
n(t)T(t) nT(t)

Combining Egs. (2.17) and (3.6) we obtain

= —a" (Plidis + Py + “ p Pty — B(PL — 8y,
(3.8)
where, according to Eq. (1.16),
~ t
arF =2 _ b (3.9)

v @)
is the reduced shear (£ = y) or longitudinal (£ = x) rate.
Taking ij = x€ and ij = £¢, Eq. (3.8) yields

2a*

Z = —a (Pt P + — (P = PP, = 80,
(3.10)

L= 2a*P}8. + 7P2;P;; — B(P}, = 1).
Note that Eq. (3.11) is identical to Eq. (3.10) in the ULF
(¢ = x). Equations (3.10) and (3 11) must be complemented
with the evolution equatlon for a*. We recall that 7 oc 77 and

a* o T~1 with q = 5. Thus, using Eq. (2.17), one simply

@3.11)

obtains
@ (2 pr 4 (3.12)
— =qga*| — , .
v T\ g et
where, according to Eq. (3.4),
, d+2
= —(1 — ) (3.13)

Here we will temporarily view g as a free parameter, so
the solutions to Egs. (3.10)—(3.12) depend parametrically on
q. The exponent g is directly related to the wide class of
dissipative gases introduced by Ernst et al. [77-79].

Equations (3.10)(3.12) constitute a closed set of nonlinear
equations for {P (7) P/, (t) a*(f)} that can be numerically
solved subject to a given 1n1t1a1 condition

Jo®) = (P} 0. Py onal). (3.14)

B. Steady state

Setting P¥, = 0, P}, = 0,and a* = 01in Egs. (3.10)~(3.12),
they become a set of three (USF) or two (ULF) independent
algebraic equations whose solution provides the steady-state
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values. In the case of the USF (£ = y) the solution is

= + 3.15
lag| = ,/ 26 (ﬁ ¢, (3.15)

x [dBS* sgn(ay) « B
P =— , Pl =— 3.16
Xy,s 2 ﬂ + é-* yy,s ,3 + ;* ( )

In contrast, the solution for the ULF (£ = x) is

. det B
a; = > Brde (3.17)
s = p+d¢ . (3.18)
R

Note that the steady-state values are independent of g. A linear
stability analysis in the case of the USF [53] shows that the
steady state, Eqs. (3.15) and (3.16), is indeed a stable solution
of Egs. (3.10)—(3.12). The proof can be easily extended to the
ULFE.

C. Unsteady hydrodynamic solution

In the USF (4 = y), Eq. (3.8) implies that (P;; -
(2a* Pj‘, /d — B)(P}, — P}). Since, on physical grounds,
a*Py <0, we conclude that P}, — P}, = 0 in the hydrody-
namlc regime. Therefore, accordlng to the kinetic model de-
scription, the second viscometric function identically vanishes,
ie.,

Pi)/V =

Wia*) =0 (3.19)

Next, by symmetry, P} + P}, + (d — 2)P}, = d. This math-
ematical identity, combmed w1th Pl = P}*), allows one to
rewrite Eq. (2.32) as

1—PJ

Ui =—d a*2) :

As sketched in Fig. 1 and described by Eqs. (1.17) and
(1.19), the hydrodynamic solution requires the whole time
dependence of P to be captured through a dependence on a*
common to every initial state. As a first step to obtain such a
hydrodynamic solution, let us eliminate time in favor of a* in
Egs. (3.10) and (3.11) with the help of Eq. (3.12), i.e.,

(3.20)

2a* 9P, ey ,
q dP£+§ 8* = =P, — P},8x + (Pe)
p P* —§ 3.21
_a_*( 50— Oxe)s (3.21)
2ar oP;, >
a\ — P+ __2Pu<3w+dpeszz
B
- S -, (3.22)

This set of two nonlinear coupled differential equations must
be solved in general with the initial conditions stemming from
Eq. (3.14), namely

a* =a; = (P}, = P}, (. P, = Pez o}- (3.23)

Equations (3.21) and (3.22) must be solved in agreement with
the physical direction of time. This means that the solutions
uncover the region |aj| < |a*| < |a}| in conditions of cooling
and the region |aj| > |a*| > |a}| in conditions of heating
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(see Table I). In the case of the ULF with aj > 0, one has aj <
a* < oo due to the absence of steady state. Equations (3.21)
and (3.22) describe both the kinetic and hydrodynamic
regimes. In order to isolate the hydrodynamic solution, one
must apply appropriate boundary conditions [53,67].

An alternative route to get the hydrodynamic solution
consists of expanding P}, and P}, in powers of a* (Chapman-
Enskog expansion),

g o0
Pl(a") = b + Z Cijz)a*", P}(a*) =1+ Z ngg)a*]-
j=1 =

(3.24)

Inserting the expansions in both sides of Eqgs. (3.21)and (3.22)
one can get the Chapman-Enskog coefficients cijg and CZ) in

a recursive way. The first- and second-order coefficients are
M _ _d+(d—=2)

“CT AR ac) W =cide (29
@ =cVs,, (3.26)
2(d = 1)(d — 24 q)8y¢ + d(8ep — 1
@ =2 ( ) +q)3x¢ +d(8xe — 1) (3.27)

d*(B +q&*)(B +29¢%)

Equation (3.25) gives NS coefficients, while Egs. (3.26) and
(3.27) correspond to Burnett coefficients. From Egs. (3.24),
(3.25), and (2.28) yields

lim n*(a*) = )
a*—0 (@) B+ql*
Thus, the NS viscosity coincides in the USF and in the ULF,
as expected. Regarding the USF first viscometric function,
Eqgs. (3.20), (3.24), and (3.27) gives the Burnett coefficient
2
(B+q¢")(B+295%)

In general, all the even (odd) coefficients of P;y (P;v) vanish
in the USF. In the ULF, however, all the coefficients of P}, are
nonzero. Itis interesting to remark that, in contrast to the elastic
case (¢* = 0) [66,80], the Chapman-Enskog expansions (3.24)
are convergent [59,60,67] if ¢* > 0. On the other hand, the
radius of convergence is finite and coincides with the stationary
value |aj|.

The series (3.24) clearly correspond to the hydrodynamic
solution since they give P}, and P/, as unambiguous functions
of a*, regardless of the details of the initial conditions (3.23).
However, the series have two shortcomings. First, since they
diverge for [a*| > |a}|, they donot provide P},(a*)and P/,(a*)
in a direct way for that region. Second, even if |a*| < |a]],
closed expressions for P},(a*) and P;,(a*) are not possible.

In order to get closed and explicit (albeit approximate)

solutions, we formally take g as a small parameter and perturb
around g = 0 [62,66],

(3.28)

lim Wi (a") = (3.29)

Pi@’) =P %) +qP @)+ (3.30)
Setting ¢ = 0 in Eqgs. (3.21) and (3.22) one gets
*
PrO — d[éxg — ﬂ”(*“ )], 3.31)
a
#(0) 1
= (3.32)

T T4 2p(a)’
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where y;(a*) is the physical solution of a cubic (USF, ¢ = y)
or a quadratic (ULF, £ = x) equation:

*2
2 a
B(l+ 2 = 2o, (3.33)
d(l — ﬂ’f)(l Foy) =1 (3.34)
a
The respective solutions are
@) = Zsinn? | L cosh=! (1427 i (3.35)
Ada = — - .
Yy 3 6 824 )|
@y L 1 f(a 1 > 2qr 336
ay=——-+=/[—+=) - . .
Ve 2 2" 2\ "2) " B
For small |a*| one has
%2
* a *4
") = 23+ 0, (3.37)
@)= (120N Loy, (338
(@) = ——— -— a*), .
’ a p\ Tdp
SO
d +(d —2)s,
PO = 5, — THE=D0 e 0, (3.39)

pd

in agreement with Eq. (3.25). Furthermore, it is easy to check
that in the steady state [cf. Egs. (3.15) and (3.17)] one gets

yylag) = 2 (3.40)
(a*)———d_1 & (3.41)
yla)) = ——— g )

so Egs. (3.31) and (3.32) yield Egs. (3.16) and (3.18), as
expected.

Once Pi’;(o) are known, Egs. (3.21) and (3.22) provide P;;(I).
In the USF case (£ = y) the results are

PV = =P Ohy(a"), (3.42)
PHY = 6 P10y (a*)Hy(a"), (3.43)
where
*/B —2y,(@®)][1 — 6y,(a*
ey = SO IO
[1 4 6yy(a*)]
* g*/ﬁ - 2)/}(61*)
Hy(a") = ——————, (3.45)
’ [1 + 6y, (@)
and use has been made of Eq. (3.33) and the relation
d * 2a* 1
) _ 2 (3.46)

da* B2 [1+ 2yy(@)][1 + 6y,(@*)]’
Analogously, taking into account Eq. (3.34), the final expres-
sion in the ULF case (£ = x) is

PV =2P: Oy (aMh.(a"), (3.47)

where

2a*/B —2yc(@*) +5*/B

@) = T 0 B+ Ay

(3.48)
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Note that in the steady state P;;.(I) = 0 both in the USF and
the ULF. This is consistent with the fact that the steady-state
values are independent of ¢. For small |a*|,

d+(d—2)
pd

which again agrees with Eq. (3.25).

In principle, it is possible to proceed further and get the

terms of orders ¢2, ¢°, ..., in Eq. (3.30) [66]. However, for
our purposes it is sufficient to retain the linear terms only.

PiV(a*) = c*a* + 0(@*),  (3.49)

D. Rheological model

The definitions of the rheological functions (2.28), (2.32),
and (2.33) are independent of any specific model employed to
obtain P (a*). Here we make use of the kinetic model (3.1)
and the expansion (3.30) truncated to first order in g. Next,
by means of a Padé approximant we construct (approximate)
explicit expressions for n*(a*). Let us start with the ULF
(€ = x), in which case Egs. (3.31) and (3.47) yield

yx(a®) 1
d —1a*[1+2y(a"] 1+ ghi(a®)

Analogously, in the USF case (£ = y), Egs. (3.31), (3.33), and
(3.42) give

(3.50)

n*(a*) ~

1 1
BIL +2yy(@)? 1+ ghy(a*)’

Let us analyze now the USF first viscometric function.
Using Eqgs. (3.32), (3.33), and (3.43), Eq. (3.20) gives

2
B*[1 + 2yy(a®)P?

n*(a*) ~

(3.51)

Ui(a*) = — [1 —3gH,(a")]+ 0(g>.

(3.52)

Again, it is convenient to construct a Padé approximant of
Wi(a*). Here we take

2 1

Ulia*) ~ —

(3.53)

In principle, one should have written 1+ 3gH, instead of
(1+g¢qH,)1+2gH,) in Eq. (3.53), but the form chosen has
the advantage of being consistent with the Burnett coefficient
(3.29) for any g.

In summary, our simplified rheological model consists of
Eq. (3.50), complemented with Egs. (3.36) and (3.48), for
the ULF and Eqgs. (3.51) and (3.53), complemented with
Egs. (3.35), (3.44), and (3.45), for the USF. Since we are
interested in hard spheres, we must take g :% in those
equations.

This approximation has a number of important proper-
ties. First, as said in connection with the Chapman-Enskog
expansion (3.24), Egs. (3.50), (3.51), and (3.53) qualify
as a (non-Newtonian) hydrodynamic description. Second, in
contrast to the full expansions (3.24) and (3.30), they provide
the relevant elements P}, of the pressure tensor as explicit
functions of both the shear or longitudinal rate a* and the
coefficient of normal restitution « (through 8 and ¢*). Third,
as seen from Egs. (3.28), (3.50), and (3.51) agree with the

B2+ 2y, (@) [1 + g Hy(@")][1 + 2q Hy(a")]’
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(@)
1.0+ 1

0
5
0.0 0.5 1.0 15 2.0
a*

FIG. 4. (Color online) Shear-rate dependence of (a) the viscosity
function and (b) the first viscometric function foroee = 0.5and@ = 0.9
in the USF with d = 3. The solid lines have been obtained from
numerical solutions of Egs. (3.21) and (3.22), while the dashed lines
correspond to the simplified rheological model (3.51) and (3.53). The
circles represent the steady-state values [cf. Egs. (3.15) and (3.16)].
Note that the simplified solution deviates practically from the
numerical solution only for the most inelastic system (o = 0.5) and
in the region a* < a;.

exact NS coefficients predicted by the kinetic model (3.1) for
arbitrary values of the parameter g; this agreement extends
to the Burnett-order coefficient (3.29). Next, the correct
steady-state values Egs. (3.15)—(3.18) are included in the
Padé approximants (3.50), (3.51), and (3.53). Finally, it can
be checked that the correct asymprotic forms in the limit
la*| — oo [53,67] are preserved.

*

n'(@)

0.0 . .

FIG. 5. (Color online) Longitudinal-rate dependence of the vis-
cosity for « = 0.5 and o = 0.9 in the ULF with d = 3. The solid
lines have been obtained from numerical solutions of Eq. (3.21),
while the dashed lines correspond to the simplified rheological model
(3.50). The circles represent the steady-state values [cf. Egs. (3.17)
and (3.18)].
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Moreover, even in the physical case of hard spheres
(g = %), Egs. (3.50), (3.51), and (3.53) represent an excellent
analytical approximation to the numerical solution of the set
of Eqgs. (3.21) and (3.22) with appropriate initial conditions
[53,67]. The results for « = 0.5 and o = 0.9 are presented
in Figs. 4 and 5 in the cases of the USF and the ULF,
respectively. We observe a generally good agreement between
the numerical and the simplified results. This is especially true
in the USF, where the limitations of the rheological model are
only apparent for the most inelastic system (o = 0.5) and for
shear rates smaller than the steady-state value, the agreement
being better for the viscosity than for the first viscometric
function. In the ULF case the differences are more important,
both for ¢ = 0.5 and o = 0.9, although they are restricted to
longitudinal rates near the maximum and also to values more
negative than that of the maximum.

IV. SIMULATION DETAILS

We have performed DSMC simulations of the three-
dimensional (d = 3) USF and ULF. The details are similar
to those described elsewhere [55], so here we provide only
some distinctive features.

Since the original Boltzmann equation (1.2) is fully
equivalent to the scaled form (2.10) [with the change of
variables (2.1)—(2.5)], we have solved the latter and have
applied the periodic boundary conditions (2.14). We call this
the * 1nh0m9gene0us problem since the scaled distribution
function f(£,V,7) is, in | principle, allowed to depend on the
scaled spatial variable £. On the other hand, if one restricts
oneself to uniform solutions (2.13), then Eq. (2.10) reduces to
Eq. (2.16). The solution to Eq. (2.16) by the DSMC method
will be referred to as the “homogeneous” problem. Most of
the results that will be presented in Sec. V correspond to the
homogeneous problem.

A wide sample of initial conditions fo(ﬂ V) has been
considered, as described below. Note that, since 0(0) =1
[cf. Eq. (2.3)], {=¢and V=v— aple, at t = 0. Conse-
quently, no(ﬁ) = no(¢) and uO(Z) =up(£) — aple,. However,
for consistency, we will keep the tildes in the expressions of
the initial state. An exception will be the initial temperature
because T = T for all times.

The inhomogeneous problem for the USF was already
analyzed in Ref. [55] and, thus, only the inhomogeneous
problem for the ULF is considered in this paper. The chosen
initial condition is
Fo@d) = 55— @) — /3To/m).
4 3TQ
where 6(x) is Dirac’s distribution and the initial density and
velocity fields are

0@ = ) (14 2 sin 225
no(x) = —sin —— |,
0 2 L
~ ~ ~ X 2
ug(x) = agL| cos =— — — ey,
L b4
respectively, while the initial temperature 7j is uniform. In

Eq. (4.2) (n) is the density spatially averaged between X =
—L/2 and X = L/2. This quantity is independent of time. In

A.1)

(4.2)

4.3)
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our simulations of the inhomogeneous problem we have taken
a = 0.5 for the coefficient of restitution, ag = —4/7 for the
initial longitudinal rate, and L =2.5x for the (scaled) box
length. Here,

1 A
- - 4.4
V27 (W)o? 2To/m “@.4)

are a characteristic mean free path and an initial characteristic
collision time, respectively.

As for the homogeneous problem (both for USF and UFL)
two classes of initial conditions have been chosen. First, we
have taken the local equilibrium state (initial condition A),
namely

3/2
i ={ ) e

4.5
2 TO ( )

The other class of initial conditions is of the anisotropic form

~ 1/2
E m e—mi’f/ZTg
2\ 2w T()

x [8(Vy — Vpcos 9)8(Vy, + Vpsin )
+ 8y + Vocos p)s(vy — Vosing)],  (4.6)

where Vy = /2Ty/m is the initial thermal speed and ¢ €
[0,7] is an angle characterizing each specific condition. The
pressure tensor corresponding to Eq. (4.6) is given by Pxx 0=
21Ty cos® ¢, Pyt 0 = 2iTysin’ ¢, P..o=nT,, and ny 0=
—nTy sin2¢. The four values of ¢ considered are ¢ = kx /4
with £ =0, 1, 2, and 3; we will denote the respective initial
conditions of type (4.6) as BO, B1, B2, and B3. The values
of the elements of the pressure tensor for these four initial
conditions are displayed in Table I1. In the fully developed USF
it is expected that Py, < 0 (if @ > 0) and Py, > P,,. As we
see from Table II, the four initial conditions are against those
inequalities, especially in the case of condition B3. As for the
fully developed ULF, the physical expectations are Py = 0,
Pyy = P , and P” < P\V if ay > 0 and Pxx > P}y ifay <0
[cf. Eq. (2 29)]. Again, none of the four initial conditions is
consistent with those physical expectations, especially in the
case of condition BOif gy > Oand B2 if ¢y < 0. The “artificial”
character of the initial conditions (4.6) represents a stringent
test of the scenario depicted in Fig. 1.

As summarlzed in Table I, when { > 2|a0Px) |/3nT in the
USF or when g“ > —2ay, Pxx / 37T in the ULF, the temperature
decreases with time (cooling states) either without lower bound
(ULF with ag > 0) or until reaching the steady state (ULF
with ayp < 0 and USF). In those cooling states the temperature
can decrease so much (relative to the initial value) that this

fo®) =

TABLE II. Values of the initial pressure tensor for the four initial
conditions of the class (4.6).

Label ¢ Pxx.O Pyy,O PZz.O ny,O
BO 0 2nTy 0 nTy 0
Bl 7'[/4 ﬁTo ?fT() ﬁTo —ﬁTo
B2 /2 0 2iTy 1Ty 0
B3 3ﬂ/4 ﬁTo ﬁT() ﬁTo ﬁT()
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might create technical problems (low signal-to-noise ratio),
as mentioned at the end of Sec. II. This can be corrected by
the application of a thermostatting mechanism, as represented
by Lhe change of variables (2.20) and (2.21) with 19(7) x
[T(¢)]'/?. The DSMC implementation of Eqs. (2.24) and (2.25)
is quite simple. Let us denote by {V;();i =1,...,N} the
(rescaled) velocities of the N simulated particles at time 7. The
corresponding rescaled temperature and shear (or longitudinal)
rate are 7(f) and a(7), respectively. During the time step
8t the velocities change due to the action of the (determin-
istic) nonconservative external force —ma(r)v,e, and also
due to the (stochastic) binary collisions. Let us denote by
{(Vi(t +81);i = 1,...,N} and by T'(r + 1) the velocities and
temperature after this stage. Thus, the action of the thermostat
force —mu(1)V is equivalent to the velocity rescaling /V\:G +

81 = Vi + 80 =V, T+ SDOVT @)/ T'G + 57), so T'(t+
§7) — T(7 + 87) = T (7). Similarly, the rescaled shear or lon-
gitudinal rate is updated as a(7 + 87) = a(t)y/T'(t + §1)/T (1),
soa(t +80)/VT'(t +81) =a@t) /T (@).

For each one of the five initial conditions for the ho-
mogeneous problem we have considered three coefficients
of restitution: o = 0.5, 0.7, and 0.9. In the case of the
USF, the values taken for the shear rate have been a =
0.01/ty, a =0.1/79, a = 4/19, and a = 10/7y. The two first
values (a = 0.01/ty and a = 0.1/79) are small enough to
correspond to cooling cases, even for the least inelastic
system («¢ = 0.9), while the other two values (¢ = 4/t and
a = 10/1p) are large enough to correspond to heating cases,
even for the most inelastic system (o = 0.5). In the case
of the ULF we have chosen ay = 0.01/7y, ag = —0.01/1,
and ap = —10/7y. The first and second values correspond
to cooling states (without and with a steady state, respec-
tively), while the third value corresponds to heating states.
Therefore, the total number of independent systems simulated
in the homogeneous problem is 60 for the USF and 45 for
the ULF.

The technical parameters of the simulations have been the
following ones: N = 10° simulated particles, an adaptive time
step 8t = 10319./T/(T), and a layer thickness (inhomoge-
neous problem) §xX = 0.05\. Moreover, in order to improve the
statistics, the results have been averaged over 100 independent
realizations.

V. RESULTS
A. USF: Homogeneous problem

We have simulated the Boltzmann equation describing the
homogeneous problem of the USF, i.e., Eq. (2.16) with £ = y,
by means of the DSMC method. As said in Sec. IV, three
coefficients of restitution (@ = 0.5, 0.7, and 0.9) and four
shear rates (a = 0.01/7g, 0.1/79, 4/79, and 10/7;) have been
considered. For each combination of « and a, five different
initial conditions (A and BO-B3) have been chosen. In the
course of the simulations we focus on the temporal evolution
of the elements of the reduced pressure tensor Pl’;, Eq. (3.7),
and of the reduced shear rate a*, Eq. (3.9). From these
quantities one can evaluate the viscosity n*, Eq. (2.31), the
first viscometric function Wy, Eq. (2.32), and the second
viscometric function W3, Eq. (2.33). The effective collision
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frequency v in Eq. (3.9) is defined by

P 1 1647 , [T
V= —g =T no<,[—.
ndy  1.016 5 m

The factor 1.016 comes from an elaborate Sonine approxima-
tion employed to determine the NS shear viscosity nf{}s of a gas
of elastic hard spheres [14]. For simplicity, and to be consistent
with the approximate character of the kinetic model (3.1), this
factor is not included in Eq. (3.2).

Note that the initial reduced shear rate is aj = atp/0.8885.
Time is monitored through the accumulated number of
collisions per particle, i.e., the total number of collisions in the
system since the initial state, divided by the total number of
particles. The reduced quantities and the number of collisions
per particle are not affected by the changes of variables
discussed in Sec. II.

As arepresentative case, we first present results for the most
inelastic system (o = 0.5). Figures 6 and 7 show the evolution
of a* and n* for the cooling states (@ = 0.01/7y and 0.1/1)
and the heating states (a =4/t and 10/79), respectively.
We clearly observe that after about 30 collisions per particle
(cooling states) or 20 collisions per particle (heating states)
both a* and n* have reached their stationary values.

Figure 6 shows that, for each value of a, the full temporal
evolution of a* oc T~1/2is practically independent of the initial
condition, especially in the case a = 0.01/7y. This is due to
the fact that for these low values of aty the viscous heating
term —2aP,,/dn in Eq. (1.14) can be neglected versus the
inelastic cooling term ¢ T for short times, so the temperature
initially evolves as in the homogeneous cooling state (decaying
practically exponentially with the number of collisions), hardly
affected by the details of the initial state. On the other hand,
the first stage in the evolution of the reduced viscosity n* is
widely dependent on the type of initial condition, as expected

5.1

(a) "lo=0.5

0.1F

0.01 E

0.1 1 10
collisions per particle

FIG. 6. (Color online) (a) Reduced shear rate a* and (b) reduced
viscosity n* versus the number of collisions per particle for the USF
with o = 0.5 in the cooling states a = 0.01 /7, [blue (dark gray) lines]
and a = 0.1/7y [orange (light gray) lines]. The legend refers to the
five initial conditions considered. The dotted horizontal line in panel
(a) denotes the value a; = 0.4 above which the hydrodynamic regime
is clearly established (see text).
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T ) ‘(x:O.S

0.1 1 10
collisions per particle

FIG. 7. (Color online) (a) Reduced shear rate a* and (b) reduced
viscosity n* versus the number of collisions per particle for the USF
with @ = 0.5 in the heating states a = 4/t [orange (light gray) lines]
and a = 10/t [blue (dark gray) lines]. The legend refers to the five
initial conditions considered. The dotted horizontal line in panel (a)
denotes the value a; = 1.25 below which the hydrodynamic regime
is clearly established (see text).

from the values of sz,o shown in Table II. In the heating cases,
Fig. 7 shows that the evolution followed by both a* and n* is
distinct for each initial condition, except when the steady state
is practically reached.

In any case, the interesting point is whether an unsteady
hydrodynamic regime is established prior to the steady state.
If so, a parametric plot of n* versus a* must approach a well-
defined function n*(a*), regardless of the initial condition.
Figures 8 and 9 present such a parametric plot, also for
the viscometric functions, for the cooling and heating states,
respectively. We observe that, for each class of states (either
cooling or heating), the 10 curves are attracted to a common
smooth “universal” curve, once the kinetic stage (characterized
by strong variations, especially in the case of the second
viscometric function for the cooling states) is over. One can
safely say that the hydrodynamic regime extends to the range
0.4 < a* < a} for the considered cooling states and to the
range 1.25 2 a* > a for the considered heating states. We
will denote the above threshold values of a* by aj. It is
expected that a; depends on the initial value aj (apart from a
weaker dependence on the details of the initial distribution);
in fact, Figs. 8 and 9 show that the hydrodynamic regime is
reached at a value a; < 0.4 by the states with a = 0.01/1
and at a value a;; > 1.25 by the states with a = 10/7y. Here,
however, we adopt a rather conservative criterion and take
a common value a; = 0.4 for a = 0.01/79 and 0.17¢ and a
common value a; = 1.25fora = 4 /79 and 107o. Itis also quite
apparent from Figs. 8 and 9 that the collapse to acommon curve
takes place earlier for n* than for W}, W} being the quantity
with the largest “aging” period.

From Fig. 6 it can be seen that the value a; = 0.4 is
reached after about 5 collisions per particle in the states with
a =0.1/7p and after about 15 collisions per particle in the
states with a = 0.01/7y. Similarly, Fig. 7 shows that the value
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FIG. 8. (Color online) (a) Reduced viscosity n*, (b) first visco-
metric function —W;, and (c) second viscometric function W} versus
the reduced shear rate a* for the USF with o = 0.5 in the cooling
states a = 0.01/7p [blue (dark gray) lines] and @ = 0.1/7y [orange
(light gray) lines]. The legend refers to the five initial conditions con-
sidered. The circles represent the steady-state points (a;,n}), (a;, —
Wi ), and (af, V5 ), respectively. The dotted vertical line denotes the
value a;; = 0.4 above which the curves collapse to a common one.

a; = 1.25is reached after about 5 collisions per particle in the
states witha = 4/79 and a = 10/7y. Given that, as said before,
the values a; = 0.4 and a;; = 1.25 are conservative estimates,
we find that, as expected, the duration of the kinetic stage
is shorter than the duration of the subsequent hydrodynamic
stage, before the steady state is eventually attained.

We have observed behaviors similar to those of Figs. 6-9
for the other two coefficients of restitution (¢ = 0.7 and
a = 0.9, not shown). Table III gives the values of a; and the
duration of the aging and transient periods for the 12 classes of
states analyzed. It turns out that the number of collisions per
particle the system needs to lose memory of its initial state is
practically independent of « for the heating states. However,
the total duration of the transient period increases with o [58].
In fact, there is no true steady state in the elastic limit @ — 1.
Therefore, the less inelastic the system, the smaller the fraction
of the transient period (as measured by the number of collisions
per particle) spent by the heating states in the kinetic regime.
In the cooling cases, both the aging and the transient periods
increase with «.

Figure 10 displays the viscosity n*(a*) and the viscometric
functions —W{(a*) and W} (a*) for @ = 0.5, 0.7, and 0.9, both
for the cooling and the heating states. Here we have focused on
the ranges of a* where the hydrodynamic regime can safely be
assumed to hold, namely 0.4 < a* < 1.25fora = 0.5,0.35 <
a* <1 for ¢« =0.7, and 0.2 < a* < 0.8 for « =0.9. The
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FIG. 9. (Color online) (a) Reduced viscosity n*, (b) first visco-
metric function —W;, and (c) second viscometric function W} versus
the reduced shear rate a* for the USF with o = 0.5 in the heating
states a = 10/7, [blue (dark gray) lines] and a = 4/t [orange (light
gray) lines]. The legend refers to the five initial conditions considered.
The circles represent the steady-state points (a},n}), (af, — V),
and (a;, V3 ), respectively. The dotted vertical line denotes the value
a; = 1.25 below which the curves collapse to a common one.

TABLE III. This table shows, for each value of the coefficient of
restitution « and each value of at, the duration of the aging period
toward the unsteady hydrodynamic regime and the total duration of
the transient period toward the steady state, both measured by the
number of collisions per particle. The aging period is defined as the
number of collisions per particle needed to reach a common threshold
value a; above (below) which the hydrodynamic regime is established
for the cooling (heating) states. The table also includes the stationary
value a; of the reduced shear rate.

o al avty ay Aging period ~ Transient period
05 092 0.01 0.4 15 30
0.1 0.4 5 20
4 1.25 5 20
10 1.25 5 20
07 068 0.0l 0.35 20 50
0.1 0.35 8 30
4 1 5 30
10 1 5 30
09 037 001 0.2 50 100
0.1 0.2 10 60
4 0.8 5 50
10 0.8 5 50
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FIG. 10. (Color online) (a) Reduced viscosity n*, (b) first visco-
metric function —W7, and (c) second viscometric function W} versus
the reduced shear rate a* for the USF with, from top to bottom,
a =05, =0.7,andoe = 0.9.In order to focus on the hydrodynamic
regime, the curves have been truncated at the values of a; given by
Table I11. The circles represent the steady-state points. The thin solid
lines in panels (a) and (b) represent the predictions of our simplified
rheological model, Eqs. (3.51) and (3.53). Note that the model is
unable to predict a nonzero second viscometric function.

curves describing the predictions of the simplified rheological
model for n*, Eq. (3.51), and for ¥}, Eq. (3.53), are also
included. We can see that the curves corresponding to the
cooling states (a* < a) and those corresponding to the heating
states (a* > a}) smoothly match at the steady-state point.
In the case of the nonlinear viscosity function n*, the 10
curves building each branch (cooling or heating) for each
value of o exhibit a very high degree of overlapping. Due to
fluctuations associated with the normal stress differences, the
common hydrodynamic curves for the viscometric functions
are much more coarse grained, especially in the case of W,
whose magnitude is at least 10 times smaller than that of W}.
The impact of fluctuations is higher in the cooling branches
(a* < a}) than in the heating branches (a* > a}). In fact,
the definition of the viscometric functions [see Eqgs. (2.32)
and (2.33)] shows that the signal-to-noise ratio is expected
to deteriorate as the reduced shear rate a* decreases. Since
n*, =Wy, and W] decrease with decreasing inelasticity, the
role played by fluctuations increase as « increases. It is also
interesting to remark that, despite its simplicity and analytical
character, the rheological model described by Egs. (3.51) and
(3.53) describes very well the nonlinear dependence of n*(a*)
and ¥ (a)*. On the other hand, the simple kinetic model (3.1)
does not capture any difference between the normal stresses
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Py, and P, in the hydrodynamic regime and, thus, it predicts
a vanishing second viscometric function [cf. Eq. (3.19)].

Figure 10 strongly supports Eq. (1.19) in the USF, i.e., the
existence of well-defined hydrodynamic rheological functions
Pl’]‘ (a*) [or, equivalently, n*(a*) and W{,(a*)] acting as
“attractors” in the evolution of the pressure tensor P;;(¢] fo),
regardless of the initial preparation fj. The stronger statement
(1.17) (see Fig. 1) is also supported by the simulation
results [58].

B. ULF: Inhomogeneous problem

Now we turn to the ULF sketched by Fig. 3. By performing
the changes of variables (2.1), (2.4), and (2.5) (with £ = x),
we have numerically solved the Boltzmann equation (2.10)
by means of the DSMC method. Although Eq. (2.10) admits
homogeneous solutions in the fully developed ULF [see
Eq. (2.13)], itis worth checking that Eq. (2.10), complemented
by the periodic boundary conditions (2.14), indeed leads
an inhomogeneous initial state toward a (time-dependent)
homogeneous state. A similar test was carried out in the case
of the USF in Ref. [55].

As described in Sec. IV, we have considered the highly
inhomogeneous initial state given by Egs. (4.1)~(4.3) with
ap = —4/719 and L = 2.5A, and solved Eq. (2.10) for a coef-
ficient of restitution o = 0.5. The instantaneous density, flow
velocity, and temperature profiles are plotted in Fig. 11 at four
representative times. In order to decouple the relaxation to a

FIG. 11. (Color online) Profiles of (a) density, (b) flow velocity,
and (c) temperature in the ULF, starting from the initial condition
of Egs. (4.1)-(4.3). The curves correspond to (1) 7= 0.0467,
(= 0.03coll/part), (2) 7 = 0.1587, (& 0.29coll /part), (3) 7 = 0.3061,
( 0.72coll/part), and (4) 7 = 0.4007, (= 1.07coll/part). The dashed
lines represent the initial profiles.
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homogeneous state from the increase of the global temperature
(here viscous heating prevails over inelastic cooling), panel
(c) Fig. 11 displays the ratio T /{T), with (T) = (p)/(n),
where (1) and (p) are the density and hydrostatic pressure,
respectively, averaged across the system.

We observe that at 7 = 0.0467, the density, velocity, and
temperature profiles are still reminiscent of the initial fields,
except in the region —0.4 < X/L < —0.3, where the density
and the temperature present a maximum and the flow velocity
exhibits a local minimum. At7 = 0.1587, the inhomogeneities
are still quite strong, with a widely depopulated region 0.2 <
X /L < 0.5 of particles practically moving with the local mean
velocity (which implies an almost zero temperature). By 7 =
0.3067) the profiles have smoothed out significantly. Finally,
the system becomes practically homogeneous at 7 = 0.4007.
Thus, the relaxation to the homogeneous state lasts about 1
collision per particle only. The system keeps evolving to the
steady state, which requires about 20 collisions per particle.
In fact, (T') >~ 58Ty after 1 collision per particle, while (T') =~
211T, in the steady state. Recall that (X,7) = O translates into
u(x,t) = a(t)xe, [see Eq. (2.12)].

It is important to remark that the relaxation to the ULF
geometry observed in Fig. 11 does not discard the possibility
of spatial instabilities for sufficiently large values of the
system size L, analogously to what happens in the USF case
[27,29,31,37-39,81].

C. ULF: Homogeneous problem

Now we restrict to the homogeneous ULF problem. The
homogeneous Boltzmann equation (2.16) wit £ = x has been
solved via the DSMC method outlined in Sec. IV for @ = 0.5,
0.7, and 0.9, starting from the initial conditions (4.5) and (4.6)
with ag = —10/7y, —0.01/79, and 0.01/7y. Note that the Bl
initial state becomes B3, and vice versa, under the change
vy, — —v,, and so both are formally equivalent in the ULF
geometry. As said before, a steady state is only possible if ay <
0. Moreover, the choices ay = +0.01 /7, correspond to cooling
states, while the choice ap = —10/1y corresponds to heating
states. In the course of the simulations the reduced longitudinal
rate a*, Eq. (3.9), and the reduced nonlinear viscosity n*,
Eq. (2.29), are evaluated.

As in the USF case, let us adopt @ = 0.5 to illustrate the
behaviors observed. Figure 12 displays the time evolution
of |a*| and n* for the 15 simulated states (5 for each value
of ap). The states with negative ay become stationary after
about 20 collisions per particle, a value comparable to what
we observed in the USF case for @ = 0.5 (see Table III). As for
the states with @p = 0.01/79, a* monotonically increases and
n* monotonically decreases (except for a possible transient
stage) without bound. It is worth noticing that the first stage
of evolution (up to about 7 collisions per particle) of |a*| and
n* for the initial condition BO (B2) with ag = —0.01/7j is
very similar to those for the initial condition B2 (B0) with
ap = 0.01 / 70.

Eliminating time between a* and n* one obtains the
parametric plot shown in Fig. 13. In the cooling states
ap = £0.01/79 we observe that the hydrodynamic regime is
reached at approximately |a;| = 0.08. From Fig. 12 we see
that this corresponds to about seven to eight collisions per

021302-13



ANTONIO ASTILLERO AND ANDRES SANTOS

1000 F (a) o
100 ¢ E
777777 Bl
10 ¢ :
S e :

0.1%
. - / +
=

10}
o |

0.1 1 10

collisions per particle

FIG. 12. (Color online) (a) Absolute value of the reduced lon-
gitudinal rate |a*| and (b) reduced viscosity n* versus the number
of collisions per particle for the ULF with « = 0.5 in the cooling
states ag = —0.01/7, [blue (dark gray) lines] and ay = 0.01 /7, (black
lines) and in the heating states ap = —10/7tp [orange (light gray)
lines]. The legend refers to the five initial conditions considered. The
dotted horizontal lines in panel (a) denote the values a;; = £0.08 and
a; = —0.4 (see text).

particle. The heating states ap = —10/71( deserve some extra
comments. In those cases the time evolution is so rapid that,
strictly speaking, the collapse of the five curves takes place
only fora} > a* > a; = —0.4, which corresponds to an aging
period of about three to four collisions per particle (see Fig. 12).
On the other hand, it can be clearly seen from Fig. 13 that the
three curves corresponding to the initial states BO, B1, and B3
have collapsed much earlier and are not distinguishable on the
scale of the figure. It seems that the isotropic local equilibrium
initial state A and the highly artificial anisotropic initial state
B2 require a longer kinetic stage than in the cases of the initial

FIG. 13. (Color online) Reduced viscosity n* versus the absolute
value of the reduced longitudinal rate |a*| for the ULF with « = 0.5
in the cooling states ayp = —0.01/1, [blue (dark gray) lines] and ay =
0.01/7p (black lines) and in the heating states ap = —10/7, [orange
(dark gray) lines]. The legend refers to the five initial conditions
considered. The circle represents the steady-state point (|a;|,n}). The
dotted vertical lines denote the values a; = £0.08 and a; = —0.4
(see text).
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states BO, B1, and B3. While the relatively slower convergence
of the initial condition B2 can be expected because of its
associated “incorrect” negative viscosity, it seems paradoxical
that the local equilibrium initial condition A also relaxes more
slowly than the initial conditions B1 and B3, the three of
them having a zero initial viscosity. This might be due to
the isotropic character of the local equilibrium distribution,
in contrast to the high anisotropy of conditions B1 and B3.
In what follows we will discard the initial conditions A and
B2 for ap = —10/19 and assume that the states starting from
the initial conditions BO, B1, and B3 have already reached
the hydrodynamic stage for say a* > —2. A stricter limitation
to a* > —0.4 would miss the interesting maximum of n* at
a* < a} predicted by the BGK-like kinetic model (see Fig. 5).
In any case, as observed in Fig. 13, the behavior of the curves
with ag = —10/71y corresponding to the initial conditions B2
and, especially, A is very close to the one corresponding to the
initial conditions BO, B1, and B3.

The analysis for the cases @ = 0.7 and 0.9 is similar to the
one for @ = 0.5 and, thus, it is omitted here. As in the USF (see
Table III), the main effect of increasing « is to slow down the
dynamics: the steady state (if ay < 0) is reached after a larger
number of collisions and the hydrodynamic stage requires a
longer period.

The a* dependence of n* for the three values of « is shown in
Fig. 14, where we have focused on the intervals —2 < a* < a}
for ay = —10/ 71y (initial conditions B0, B1, and B3), —0.08 >
a* 2 a} for ag = —0.01/7 (initial conditions A and BO-B3),
and a* > 0.08 for ap = 0.01 /1 (initial conditions A and BO—
B3). Analogously to the case of Fig. 10, it can be seen that the
heating and cooling branches with negative ay smoothly match
at the steady state. Moreover, the cooling branch with positive
ap is a natural continuation of the cooling branch with negative
ap, even though the zero longitudinal rate a* = 0 represents
a repeller in the time evolution of both branches. Figure 14

FIG. 14. (Color online) Reduced viscosity n* versus the reduced
longitudinal rate a* for the ULF with, from top to bottom, « = 0.5,
o = 0.7, and o« = 0.9. The circles represent the steady-state points.
The thin dashed lines represent the predictions of our simplified
rheological model, Eq. (3.50).
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also includes the predictions of the rheological model (3.50).
The agreement with the simulation results is quite satisfactory,
although the model tends to underestimate the maxima. This
discrepancy is largely corrected by the true numerical solution
of Eq. (3.21) (see Fig. 5). However, as done in Fig. 10, we
prefer to keep the rheological model due to its explicit and
analytical character.

VI. CONCLUSIONS

In this paper we have investigated whether the scenario
of aging to hydrodynamics depicted in Fig. 1 for conventional
gases applies to granular gases as well, even at high dissipation.
Here the term hydrodynamics means that the velocity distribu-
tion function, and, hence, the irreversible fluxes, is a functional
of the hydrodynamic fields (density, flow velocity, and granular
temperature) and, thus, it is not limited to the NS regime. To
address the problem, we have restricted ourselves to unsteady
states in two classes of flows, the USF and the ULF (see Figs. 2
and 3). While the USF is an incompressible flow (V - u = 0)
and the ULF is a compressible one (V - u # 0), they share
some physical features (uniform density, temperature, and
rate of strain tensor) that allow for a unified theoretical
framework. Both flows admit heating states (where viscous
heating prevails over inelastic cooling) and cooling states
(where inelastic cooling overcomes viscous heating), until a
steady state is eventually reached. Moreover, in the ULF with
positive longitudinal rates only “supercooling” states (where
inelastic cooling adds to “viscous cooling”) are possible and,
thus, no steady state exists.

Two complementary routes have been adopted. First, the
BGK-like model kinetic equation (3.1) has been used in lieu
of the true inelastic Boltzmann equation, which allows one
to derive a closed set of nonlinear first-order differential
equations [cf. Eq. (3.8)] for the temporal evolution of the
elements of the pressure tensor. A numerical solution with
appropriate initial conditions and elimination of time between
the reduced pressure tensor P;; and the reduced rate of strain
a* provides the non-Newtonian functions P;; (a*), from which
one can construct the viscosity function n*(a*) [cf. Eq. (2.28)]
and (only in the USF case) the viscometric functions Wj(a*)
[cf. Eq. (2.32)] and W] (a*) [cf. Eq. (2.33)]. The numerical task
can be avoided at the cost of introducing approximations. The
one we have worked out consists of expanding the solution
in powers of a parameter ¢ measuring the hardness of the
interaction (¢ = 0 for inelastic Maxwell particles and g = %
for inelastic hard spheres), truncating the expansion to first
order, and then constructing Padé approximants. This yields
explicit expressions for the rate of strain dependence of the
rheological functions. In the USF case the viscosity and
the first viscometric functions are given by Egs. (3.51) and
(3.53), respectively, complemented by Eqgs. (3.35), (3.44),
and (3.45); the second viscometric function vanishes in the
BGK-like kinetic model (3.1). As for the ULF, only one
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rheological function (viscosity) exists and it is given by
Eq. (3.50), complemented by Eqs. (3.36) and (3.48). While one
could improve the approximation by including terms in the g
expansion beyond the first-order one [66], the approximation
considered in this paper represents a balanced compromise
between simplicity and accuracy (see Figs. 4 and 5). In fact, the
results predicted by the kinetic model (3.1) and the simplified
rheological model described by Egs. (3.50), (3.51), and (3.53)
share the non-Newtonian solution for ¢ = 0 as well as the
steady-state values and the values at a* = 0 for arbitrary q.
The second, and most important, route has been the
numerical solution of the true Boltzmann equation by the
stochastic DSMC method for three values of the coefficient
of restitution and a wide sample of initial conditions. The
most relevant results are summarized in Figs. 10 (USF) and 14
(ULF). Those figures show an excellent degree of overlapping
of the rheological functions obtained by starting from the
different initial conditions, although the USF viscometric
functions may exhibit large fluctuations. The overlapping
takes place after a kinetic stage lasting about 5 collisions per
particle for the heating states considered and between 5 and
50 collisions per particle for the cooling states considered (see
Table III). In the latter states the whole dynamics is slowed
down with respect to the heating states, so the increase of
the duration of the kinetic stage is correlated with a similar
increase of the duration of the subsequent hydrodynamic
stage. We have also observed that the characteristic time
periods increase as the inelasticity decreases. Figures 10 and
14 also show that the rheological model, despite its simplicity,
captures reasonably well, even at a quantitative level, the main
features of the DSMC results. An exception is the USF second
viscometric function which, although about 10 times smaller
than the first viscometric function, is unambiguously nonzero.
In summary, we believe that our results provide strong
extra support to the validity of a hydrodynamic description
of granular gases outside the quasielastic limit and the NS
regime. Of course, it is important to bear in mind that the
USF and ULF are special classes of flows where no density or
thermal gradients exist, except during the early kinetic stage
(see, for instance, Fig. 11). Thus, the results presented here do
not guarantee a priori the applicability of a non-Newtonian
hydrodynamic approach for a general situation in the presence
of density and thermal gradients. On the other hand, recent
investigations for Couette-Fourier flows [18-20,82,83] nicely
complement the study presented in this paper in favor of a
(non-Newtonian) hydrodynamic treatment of granular gases.

ACKNOWLEDGMENTS

The authors acknowledge support from the Ministerio de
Ciencia e Innovacién (Spain) through Grant No. FIS2010-
16587 and from the Junta de Extremadura (Spain) through
Grant No. GR10158, partially financed by FEDER (Fondo
Europeo de Desarrollo Regional) funds.

[1] C. S. Campbell, Annu. Rev. Fluid Mech. 22, 57 (1990).
[2] H. M. Jaeger, S. R. Nagel, and R. Behringer, Phys. Today 49, 32
(1996).

[3] H. M. Jaeger, S. R. Nagel, and R. Behringer, Rev. Mod. Phys.
68, 1259 (1996).
[4] L. P. Kadanoft, Rev. Mod. Phys. 71, 435 (1999).

021302-15


http://dx.doi.org/10.1146/annurev.fl.22.010190.000421
http://dx.doi.org/10.1063/1.881494
http://dx.doi.org/10.1063/1.881494
http://dx.doi.org/10.1103/RevModPhys.68.1259
http://dx.doi.org/10.1103/RevModPhys.68.1259
http://dx.doi.org/10.1103/RevModPhys.71.435

ANTONIO ASTILLERO AND ANDRES SANTOS

[5] J. M. Ottino and D. V. Khakhar, Annu. Rev. Fluid Mech. 32, 55
(2000).

[6] J. Karkheck, ed., Dynamics: Models and Kinetic Methods
for Non-equilibrium Many Body Systems (Kluwer, Dordrecht,
2000).

[7] J. W. Dufty, J. Phys. Condens. Matter 12, A47 (2000).

[8] T. Poschel and S. Luding, eds., Granular Gases, Lecture Notes
in Physics, Vol. 564 (Springer, Berlin, 2001).

[9] J. W. Dufty, Recent Res. Devel. Stat. Phys. 2, 21 (2002).

[10] T. Halsey and A. Mehta, eds., Challenges in Granular Physics
(World Scientific, Singapore, 2002).

[11] I. Goldhirsch, Annu. Rev. Fluid Mech. 35, 267 (2003).

[12] N. V. Brilliantov and T. Poschel, Kinetic Theory of Granular
Gases (Oxford University Press, Oxford, 2004).

[13] M. L. Tan and I. Goldhirsch, Phys. Rev. Lett. 81, 3022 (1998).

[14] C. Chapman and T. G. Cowling, The Mathematical Theory
of Non-Uniform Gases, 3rd ed (Cambridge University Press,
Cambridge, 1970).

[15] V. Garzé and A. Santos, Kinetic Theory of Gases in Shear Flows.
Nonlinear Transport (Kluwer Academic, Dordrecht, 2003).

[16] J. R. Dorfman and H. van Beijeren, in Statistical Mechanics,
Part B, edited by B. Berne (Plenum, New York, 1977),
pp. 65-179.

[17] J. J. Brey, M. J. Ruiz-Montero, and F. Moreno, Phys. Rev. E 55,
2846 (1997).

[18] M. Tij, E. E. Tahiri, J. M. Montanero, V. Garzd, A. Santos, and
J. W. Dufty, J. Stat. Phys. 103, 1035 (2001).

[19] F. Vega Reyes, A. Santos, and V. Garz6, Phys. Rev. Lett. 104,
028001 (2010).

[20] F. Vega Reyes, V. Garzd, and A. Santos, Phys. Rev. E 83, 021302
(2011).

[21] C. Truesdell and R. G. Muncaster, Fundamentals of Maxwell’s
Kinetic Theory of a Simple Monatomic Gas (Academic Press,
New York, 1980).

[22] C. K. K. Lun, S. B. Savage, D. J. Jeffrey, and N. Chepurniy, J.
Fluid Mech. 140, 223 (1984).

[23] C. S. Campbell and A. Gong, J. Fluid Mech. 164, 107 (1986).

[24] O. R. Walton and R. L. Braun, J. Rheol. 30, 949 (1986).

[25] J. T. Jenkins and M. W. Richman, J. Fluid Mech. 192, 313 (1988).

[26] C. S. Campbell, J. Fluid Mech. 203, 449 (1989).

[27] S. B. Savage, J. Fluid Mech. 241, 109 (1992).

[28] M. A. Hopkins and H. H. Shen, J. Fluid Mech. 244, 477 (1992).

[29] P.J. Schmid and H. K. Kytomaa, J. Fluid Mech. 264, 255 (1994).

[30] C. K. K. Lun and A. A. Bent, J. Fluid Mech. 258, 335 (1994).

[31] L. Goldhirsch and M. L. Tan, Phys. Fluids 8, 1752 (1996).

[32] N. Sela, I. Goldhirsch, and S. H. Noskowicz, Phys. Fluids 8,
2337 (1996).

[33] C. S. Campbell, J. Fluid Mech. 348, 85 (1997).

[34] C.-S. Chou and M. W. Richman, Physica A 259, 430 (1998).

[35] J. M. Montanero, V. Garzé, A. Santos, and J. J. Brey, J. Fluid
Mech. 389, 391 (1999).

[36] A. Frezzotti, Physica A 278, 161 (2000).

[37] V. Kumaran, Physica A 275, 483 (2000).

[38] V. Kumaran, Physica A 284, 246 (2000).

[39] V. Kumaran, Physica A 293, 385 (2001).

[40] C.-S. Chou, Physica A 287, 127 (2000).

[41] C.-S. Chou, Physica A 290, 341 (2001).

[42] C. Cercignani, J. Stat. Phys. 102, 1407 (2001).

[43] M. Alam and C. M. Hrenya, Phys. Rev. E 63, 061308 (2001).

[44] R. Clelland and C. M. Hrenya, Phys. Rev. E 65, 031301 (2002).

PHYSICAL REVIEW E 85, 021302 (2012)

[45] A. V. Bobylev, M. Groppi, and G. Spiga, Eur. J. Mech. B/Fluids
21, 91 (2002).

[46] V. Garzd, Phys. Rev. E 66, 021308 (2002).

[47] J. M. Montanero and V. Garzd, Physica A 310, 17 (2002).

[48] J. M. Montanero and V. Garzé, Mol. Simul. 29, 357 (2003).

[49] V. Garz6 and J. M. Montanero, Phys. Rev. E 68, 041302 (2003).

[50] V. Garzo, J. Stat. Phys. 112, 657 (2003).

[51] M. Alam and S. Luding, J. Fluid Mech. 476, 69 (2003).

[52] M. Alam and S. Luding, Phys. Fluids 15, 2298 (2003).

[53] A. Santos, V. Garzé, and J. W. Dufty, Phys. Rev. E 69, 061303
(2004).

[54] J. E. Lutsko, Phys. Rev. E 70, 061101 (2004).

[55] A. Astillero and A. Santos, Phys. Rev. E 72, 031309 (2005).

[56] J. M. Montanero, V. Garzé, M. Alam, and S. Luding, Granul.
Matter 8, 103 (2006).

[57] A. Santos and V. Garzo, J. Stat. Mech. (2007) P0O8021.

[58] A. Astillero and A. Santos, Europhys. Lett. 78, 1 (2007).

[59] A. Santos, Phys. Rev. Lett. 100, 078003 (2008).

[60] A. Santos, in The XVth International Congress on Rheology,
edited by A. Co, G. Leal, R. Colby, and A. J. Giacomin, Vol. 1027
(AIP, New York, 2008), pp. 914-916.

[61] A. N. Gorban and I. V. Karlin, Phys. Rev. Lett. 77, 282 (1996).

[62] L. V. Karlin, G. Dukek, and T. F. Nonnenmacher, Phys. Rev. E
55, 1573 (1997).

[63] F. J. Uribe and E. Piia, Phys. Rev. E 57, 3672 (1998).

[64] 1. V. Karlin, G. Dukek, and T. F. Nonnenmacher, Phys. Rev. E
57,3674 (1998).

[65] F.J. Uribe and L. S. Garcia-Colin, Phys. Rev. E 60, 4052 (1999).

[66] A. Santos, Phys. Rev. E 62, 6597 (2000).

[67] A. Santos, in Rarefied Gas Dynamics: Proceedings of the 26th
International Symposium on Rarefied Gas Dynamics, edited by
T. Abe, Vol. 1084 (AIP, New York, 2009), pp. 93-98.

[68] A. Goldshtein and M. Shapiro, J. Fluid Mech. 282, 75 (1995).

[69] J. W. Dufty, J.J. Brey, and A. Santos, Physica A 240,212 (1997).

[70] T. P. C. van Noije and M. H. Ernst, in Granular Gases, edited
by T. Poschel and S. Luding, Lecture Notes in Physics, Vol. 564
(Springer, Berlin, 2001), pp. 3-30.

[71] A. W. Lees and S. F. Edwards, J. Phys. C 5, 1921 (1972).

[72] J. W. Dufty, A. Santos, J. J. Brey, and R. F. Rodriguez, Phys.
Rev. A 33, 459 (1986).

[73] 1. 1. Brey, J. W. Dufty, C. S. Kim, and A. Santos, Phys. Rev. E
58, 4638 (1998).

[74] C. Cercignani, The Boltzmann Equation and Its Applications
(Springer-Verlag, New York, 1988).

[75]J. J. Brey, J. W. Dufty, and A. Santos, J. Stat. Phys. 97, 281
(1999).

[76] A. Santos and A. Astillero, Phys. Rev. E 72, 031308 (2005).

[77] M. H. Ernst, E. Trizac, and A. Barrat, Europhys. Lett. 76, 56
(2006).

[78] M. H. Ernst, E. Trizac, and A. Barrat, J. Stat. Phys. 124, 549
(20006).

[79] E. Trizac, A. Barrat, and M. H. Ernst, Phys. Rev. E 76, 031305
(2007).

[80] A. Santos, J. J. Brey, and J. W. Dufty, Phys. Rev. Lett. 56, 1571
(1986).

[81] V. Garzé, Phys. Rev. E 73, 021304 (2006).

[82] J. J. Brey, N. Khalil, and M. J. Ruiz-Montero, J. Stat. Mech.
(2009) P08019.

[83] F. Vega Reyes, V. Garzd, and A. Santos, J. Stat. Mech. (2011)
P07005.

021302-16


http://dx.doi.org/10.1146/annurev.fluid.32.1.55
http://dx.doi.org/10.1146/annurev.fluid.32.1.55
http://dx.doi.org/10.1088/0953-8984/12/8A/306
http://dx.doi.org/10.1146/annurev.fluid.35.101101.161114
http://dx.doi.org/10.1103/PhysRevLett.81.3022
http://dx.doi.org/10.1103/PhysRevE.55.2846
http://dx.doi.org/10.1103/PhysRevE.55.2846
http://dx.doi.org/10.1023/A:1010317207358
http://dx.doi.org/10.1103/PhysRevLett.104.028001
http://dx.doi.org/10.1103/PhysRevLett.104.028001
http://dx.doi.org/10.1103/PhysRevE.83.021302
http://dx.doi.org/10.1103/PhysRevE.83.021302
http://dx.doi.org/10.1017/S0022112084000586
http://dx.doi.org/10.1017/S0022112084000586
http://dx.doi.org/10.1017/S0022112086002495
http://dx.doi.org/10.1122/1.549893
http://dx.doi.org/10.1017/S0022112088001879
http://dx.doi.org/10.1017/S0022112089001540
http://dx.doi.org/10.1017/S0022112092001964
http://dx.doi.org/10.1017/S002211209200315X
http://dx.doi.org/10.1017/S0022112094000650
http://dx.doi.org/10.1017/S0022112094003356
http://dx.doi.org/10.1063/1.868951
http://dx.doi.org/10.1063/1.869012
http://dx.doi.org/10.1063/1.869012
http://dx.doi.org/10.1017/S0022112097006496
http://dx.doi.org/10.1016/S0378-4371(98)00265-9
http://dx.doi.org/10.1017/S0022112099005182
http://dx.doi.org/10.1017/S0022112099005182
http://dx.doi.org/10.1016/S0378-4371(99)00562-2
http://dx.doi.org/10.1016/S0378-4371(99)00263-0
http://dx.doi.org/10.1016/S0378-4371(00)00199-0
http://dx.doi.org/10.1016/S0378-4371(00)00589-6
http://dx.doi.org/10.1016/S0378-4371(00)00258-2
http://dx.doi.org/10.1016/S0378-4371(00)00351-4
http://dx.doi.org/10.1023/A:1004804815471
http://dx.doi.org/10.1103/PhysRevE.63.061308
http://dx.doi.org/10.1103/PhysRevE.65.031301
http://dx.doi.org/10.1016/S0997-7546(01)01162-1
http://dx.doi.org/10.1016/S0997-7546(01)01162-1
http://dx.doi.org/10.1103/PhysRevE.66.021308
http://dx.doi.org/10.1016/S0378-4371(02)00786-0
http://dx.doi.org/10.1080/0892702031000117207
http://dx.doi.org/10.1103/PhysRevE.68.041302
http://dx.doi.org/10.1023/A:1023828109434
http://dx.doi.org/10.1017/S002211200200263X
http://dx.doi.org/10.1063/1.1587723
http://dx.doi.org/10.1103/PhysRevE.69.061303
http://dx.doi.org/10.1103/PhysRevE.69.061303
http://dx.doi.org/10.1103/PhysRevE.70.061101
http://dx.doi.org/10.1103/PhysRevE.72.031309
http://dx.doi.org/10.1007/s10035-006-0001-7
http://dx.doi.org/10.1007/s10035-006-0001-7
http://dx.doi.org/10.1088/1742-5468/2007/08/P08021
http://dx.doi.org/10.1209/0295-5075/78/24002
http://dx.doi.org/10.1103/PhysRevLett.100.078003
http://dx.doi.org/10.1103/PhysRevLett.77.282
http://dx.doi.org/10.1103/PhysRevE.55.1573
http://dx.doi.org/10.1103/PhysRevE.55.1573
http://dx.doi.org/10.1103/PhysRevE.57.3672
http://dx.doi.org/10.1103/PhysRevE.57.3674
http://dx.doi.org/10.1103/PhysRevE.57.3674
http://dx.doi.org/10.1103/PhysRevE.60.4052
http://dx.doi.org/10.1103/PhysRevE.62.6597
http://dx.doi.org/10.1017/S0022112095000048
http://dx.doi.org/10.1016/S0378-4371(97)00144-1
http://dx.doi.org/10.1088/0022-3719/5/15/006
http://dx.doi.org/10.1103/PhysRevA.33.459
http://dx.doi.org/10.1103/PhysRevA.33.459
http://dx.doi.org/10.1103/PhysRevE.58.4638
http://dx.doi.org/10.1103/PhysRevE.58.4638
http://dx.doi.org/10.1023/A:1004675320309
http://dx.doi.org/10.1023/A:1004675320309
http://dx.doi.org/10.1103/PhysRevE.72.031308
http://dx.doi.org/10.1209/epl/i2006-10225-3
http://dx.doi.org/10.1209/epl/i2006-10225-3
http://dx.doi.org/10.1007/s10955-006-9062-6
http://dx.doi.org/10.1007/s10955-006-9062-6
http://dx.doi.org/10.1103/PhysRevE.76.031305
http://dx.doi.org/10.1103/PhysRevE.76.031305
http://dx.doi.org/10.1103/PhysRevLett.56.1571
http://dx.doi.org/10.1103/PhysRevLett.56.1571
http://dx.doi.org/10.1103/PhysRevE.73.021304
http://dx.doi.org/10.1088/1742-5468/2009/08/P08019
http://dx.doi.org/10.1088/1742-5468/2009/08/P08019
http://dx.doi.org/10.1088/1742-5468/2011/07/P07005
http://dx.doi.org/10.1088/1742-5468/2011/07/P07005

