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Percolation in a kinetic opinion exchange model
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We study the percolation transition of the geometrical clusters in the square-lattice LCCC model [a kinetic
opinion exchange model introduced by Lallouache, Chakrabarti, Chakraborti, and Chakrabarti, Phys. Rev. E 82,
056112 (2010)] with the change in conviction and influencing parameter. The cluster is comprised of the adjacent
sites having an opinion value greater than or equal to a prefixed threshold value of opinion (�). The transition
point is different from that obtained for the transition of the order parameter (average opinion value) found by
Lallouache et al. Although the transition point varies with the change in the threshold value of the opinion, the
critical exponents for the percolation transition obtained from the data collapses of the maximum cluster size,
the cluster size distribution, and the Binder cumulant remain the same. The exponents are also independent of the
values of conviction and influencing parameters, indicating the robustness of this transition. The exponents do
not match any other known percolation exponents (e.g., the static Ising, dynamic Ising, and standard percolation).
This means that the LCCC model belongs to a separate universality class.
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I. INTRODUCTION

The geometrical percolation transition has been a long-
studied subject [1,2]. It is characterized by a set of universal
critical exponents, which describe the fractal properties of
the percolating medium at large scales and sufficiently close
to the transition. The exponents only depend on the type
of percolation model and on the spatial dimension. The
occupancy of the sites or bonds of a percolating system is
controlled by a parameter, and at a critical value of that
parameter the cluster sizes (defined by the number of adjacent
sites possessing a predefined common feature) go to infinity,
which we call the percolation transition. This phenomenon
has been studied extensively for the thermal excitation of
the two-dimensional (2D) Ising model, and in this case the
system undergoes a percolation transition [3–6] at the same
critical temperature as the magnetization [7,8]. In the case
of the Ising model, the geometrical cluster is defined by the
adjacent sites consisting of parallel spins. The transition point
differs in the case of higher dimensions [3,9]. The percolation
exponents of the geometrical clusters are identical for the
models belonging to the same universality class [Ising and
Z(3) symmetric models [10,11]]. Recently, the dynamical
percolation transition was studied for the 2D Ising model by
applying a pulsed magnetic field [12]. The critical exponents
were different from that of the static percolation transition
associated with the thermal transition of the Ising model,
indicating a different universality class. The distinct crossing
point of the Binder cumulant of the order parameter for
different system sizes at the transition point also characterizes
the dynamical percolation transition as being in a different
universality class.

The study of social dynamics has been very popular
recently. To capture the basic idea of consensus formation,
the concepts of statistical physics have been largely applied
[13,14]. A large number of models have been studied (e.g.,
the voter model [15,16], the Sznajd model [17], etc.) so far. In
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some models, opinions have been considered as a continuous
variable [18–23]. The spreading of an opinion through society
may be compared with the percolation problem in physics. This
was studied for a nonconsensus opinion model earlier [24],
and it was found to belong to the same universality class
as invasion percolation. In this paper, we have studied the
percolation transition of geometrical clusters in a recently
proposed opinion model called the Lallouache-Chakrabarti-
Chakraborti-Chakrabarti (LCCC) model [22,25], in which
individuals exchange opinions controlled by an influencing
parameter and a conviction parameter, the values of which are
equal. The opinion of an individual is taken uniformly between
−1 and +1, which changes by binary interactions, where an
individual stays with his own opinion up to a certain fraction λ

and takes a random fraction of a part of another agent’s opinion
determined by the same parameter (a detailed discussion is
given in the next section). By Monte Carlo simulation, it was
found that below a critical value (λc ≈ 2/3) of the conviction
parameter, the average opinion value remains zero, whereas
above the critical value the average opinion value becomes
nonzero. Some critical exponents characterizing the transition
in the LCCC model and some variants of the LCCC model were
studied numerically [26]. A generalized version of this model
was introduced by Sen [27], in which the influencing parameter
and the conviction parameter were different. A discrete version
of the LCCC model has also been studied [28].

In this paper, we have investigated the percolation transition
of the geometrical clusters of the LCCC model assuming
individuals are located on the sites of a square lattice. We have
defined clusters as a group of adjacent sites with an opinion
value equal to or above a preassigned threshold value (�).
The cluster sizes are controlled by the influencing parameter
λ, and for a fixed �, at a critical value of the influencing
parameter λ

p
c , the percolation transition occurs. We determine

the critical exponents by finite-size scaling analysis of the
maximum cluster size. The value of the critical point decreases
with a decrease of � and coincides with that for the transition
point of λc = 2/3 (at which the average opinion diverges) as
� → 0.0. But the critical exponents remain unaltered with a
change in � and also differ with the exponents known for the
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previously known models, indicating that the square-lattice
LCCC belongs to a separate university class. We have also
investigated this percolation transition in the case of the
generalized LCCC model [27], where the conviction parameter
(λ) is different from the influencing parameter (μ), and once
again we found that although the critical point shifts depending
on the values of �, λ, and μ, the critical exponents remain the
same.

The paper has been organized in the following manner: In
Sec. II, we give a brief description of both the LCCC model
and the generalized LCCC model. In Sec. III, we present
the description of clusters and measure the critical exponents
for the square-lattice LCCC model. In Sec. IV, we measure
the exponents for the generalized LCCC model, and finally
in Sec. V we discuss this transition and we present some
conclusions.

II. A BRIEF DESCRIPTION OF THE LCCC
AND GENERALIZED LCCC MODEL

The origin of this model is a multiagent statistical model
of closed economy [29] in which N agents exchange a
fixed wealth through pairwise interaction controlled by a
“saving” parameter. Lallouache et al. [22,25] proposed a
similar multiagent model to describe the dynamics of opinion
formation. The basic difference in this model is that there is
no constraint regarding the conservation of opinion. There are
N agents and each agent i begins with an individual opinion
oi ∈ [−1,+1]. They exchange opinions between each other by
binary interactions as follows:

oi(t + 1) = λ[oi(t) + εoj (t)],

oj (t + 1) = λ[oj (t) + ε′oi(t)], (1)

where ε, ε′ are drawn randomly from uniform distributions in
[0,1]. In this model, the opinions are bounded, i.e., −1 �
oi � +1 for all i. Here the parameter λ is interpreted as
“conviction,” i.e., the power to retain one’s own opinion.
The second term signifies the extent to which somebody gets
influenced by another. Here both the conviction parameter and
the influencing parameters are the same, and moreover they
are identical for every individual. The opinion exchange for
the generalized LCCC model was as follows [27]:

oi(t + 1) = λoi(t) + εμoj (t),

oj (t + 1) = λoj (t) + ε′μoi(t), (2)

where λ is the conviction parameter and μ is the influencing
parameter with oi ∈ [−1,+1]. The special case of λ = μ is
the LCCC model. The order parameter is the average opinion
O = |∑i oi |/N . Numerical simulations show that the system
stabilizes into two possible phases: for any λ � λc, oi = 0
∀i, while for λ > λc, O > 0 and O → 1 as λ → 1. In the
LCCC model, λc ≈ 2/3 is the critical point. In the case of
the generalized model, λc depends on the value of μ and the
mean-field phase boundary is given by λ = 1 − μ/2. If we
study these models on a square lattice, then also the critical
points do not change. Some critical exponents characterizing
the transition in the LCCC model and some variants of the
LCCC model were also studied numerically [26].

III. PERCOLATION ON A SQUARE-LATTICE
LCCC MODEL

In this section, we will discuss the percolation behavior
of the geometrical clusters formed on a square-lattice LCCC
model. Here we assume that the agents are placed on the sites
of a square lattice and follow the LCCC dynamics. We define
a geometrical cluster as consisting of the adjacent sites having
an opinion value greater than or equal to a prefixed threshold
opinion value (�). In our numerical simulation, we have used
the random sequential updating rule. For each value of λ and
�, when the system reaches a steady state, we measure the
percolation order parameter Pmax = SL/L2 (where SL is the
size of the largest cluster and L is the linear size of the system).
The value of Pmax increases with λ, and at some λ

p
c the system

undergoes a percolation transition (Fig. 1). The value of λ
p
c

decreases with a decrease in �, approaching the value λc as
� → 0.0 (Figs. 2 and 3). Moreover, it is also evident from
Fig. 2 that the finite-size effect diminishes with a decrease
in �.

The percolation transition is characterized by power-law
variation of different quantities. The order parameter, i.e., the
relative size (Pmax) of the largest cluster, varies as

Pmax ∼ (
λp

c − λ
)β

(3)

and the correlation length diverges near the percolation
transition point as

ξ ∼ (
λp

c − λ
)−ν

, (4)

where λ
p
c is the critical conviction parameter. The values of

the critical exponents β and ν specify the universality class of
the transition.

However, the exponents are not determined from these
definitions due to finite-size effects. The critical exponents
are determined from the finite-size scaling relations [12,30].
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FIG. 1. (Color online) Maximum cluster size as a function of the
conviction parameter for four different system sizes (L = 60, 80, 100,
and 200) for the LCCC model, i.e., μ = λ and the threshold opinion
value � = 1.0.
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FIG. 2. (Color online) Comparative plots for the largest cluster
size with conviction parameter for three different system sizes and
at three various values of the opinion threshold (� = 1.0, 0.80, and
0.60).

For example, the order parameter is expected to follow the
scaling form

Pmax = L−β/νF
[
L1/ν

(
λp

c − λ
)]

, (5)

where F is a suitable scaling function. If we plot PmaxL
β/ν

against λ for different system sizes but fixed �, then by tuning
β/ν, all the curves can be made to cross at a single point. The
value of λ for which this happens is the critical conviction
parameter (λp

c ). To estimate ν, PmaxL
β/ν should be plotted

against (λp
c − λ)L1/ν , and by tuning 1/ν, the curves are made

to collapse, giving an accurate estimate of the exponent ν. The
other exponents can be obtained from scaling relations [1].

For � = 1.0, we plot PmaxL
β/ν against λ (Fig. 4). The

curves for different system sizes (L = 60, 100, 200, 400,
500, and 700) cross at a point when β/ν = 0.130 ± 0.005,
and the crossing point (λp

c = 0.760 ± 0.001) gives the critical
conviction parameter. Now to determine ν, we plot PmaxL

β/ν
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FIG. 3. (Color online) Plot of the critical conviction parameter
(λp

c ) with the threshold opinion value (�).
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FIG. 4. (Color online) PmaxL
β/ν plotted against the conviction

parameter λ for � = 1.0 and μ = λ. The curves for different system
sizes (L = 60, 100, 200, 400, 500, and 700) cross at λp

c = 0.760 ±
0.001 for β/ν = 0.130 ± 0.005. In the inset, the data collapse for Pmax

with (λp
c − λ) has been shown for � = 1.0 giving 1/ν = 0.80 ± 0.01

and β/ν = 0.130 ± 0.005.

against (λp
c − λ)L1/ν , and by tuning the value of 1/ν all three

plots are made to collapse on a single curve (inset of Fig. 4),
yielding an estimate of 1/ν = 0.80 ± 0.01. Although with a
decrease of � the critical point for percolation approaches λc,
the exponents remain the same. We have shown the same plots
for � = 0.80 in Fig. 5. The corresponding critical point is
λ

p
c = 0.6955 ± 0.0005, but β/ν = 0.130 ± 0.005 and 1/ν =

0.80 ± 0.01. The values of β/ν and 1/ν are different from that
obtained for the percolation transition in the case of static
Ising (βs/νs = 0.052 ± 0.002, 1/νs = 0.996 ± 0.009) [10],
dynamic Ising (βd/νd = 0.20 ± 0.05, 1/νd = 0.85 ± 0.05)
[12], and standard percolation (β/ν = 5/48,1/ν = 3/4) [1]
for the two-dimensional system.
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FIG. 5. (Color online) PmaxL
β/ν plotted against the conviction

parameter λ, where � = 0.80 and μ = λ. The curves for different
system sizes (L = 60, 100, 200, 400, 500, and 700) cross at
λp

c = 0.6955 ± 0.0005 for β/ν = 0.130 ± 0.005. In the inset, the
data collapse for Pmax with λp

c − λ has been shown for � = 0.80
giving 1/ν = 0.80 ± 0.01 and β/ν = 0.130 ± 0.005.
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FIG. 6. (Color online) The cluster size distribution for the LCCC
model for three different system sizes at � = 1.0 and corresponding
critical conviction parameter λp

c = 0.760. All the curves decay
algebraically with an exponent 1.82 ± 0.01.

We have also studied the cluster size distribution for a fixed
value of � and for three different system sizes (L = 200, 400,
and 500). For � = 1.0, at the critical point (i.e., λ = 0.760),
all the curves decay algebraically as P (S) ∼ S−τ (where S

denotes the sizes of the cluster) with τ = 1.82 ± 0.01 (Fig. 6).
The value of τ remains the same for other values of � (at
corresponding critical values of λ).

For further verification of the critical point and the univer-
sality class, we have studied the reduced fourth-order Binder
cumulant of the order parameter, defined as [31]

U = 1 −
〈
P 4

max

〉

3
〈
P 2

max

〉2 , (6)
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FIG. 7. (Color online) Fourth-order reduced Binder cumulant of
percolation order parameter (Pmax) for six different system sizes (L =
60, 100, 200, 400, 500, and 700) at � = 1.0 and μ = λ; the crossing
point determines the critical point (λp

c = 0.760 ± 0.001). The critical
Binder cumulant value is U	 = 0.62 ± 0.01. Inset shows the data
collapse for the same value of 1/ν as obtained for the data collapse
of Pmax.
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FIG. 8. (Color online) Fourth-order reduced Binder cumulant
of percolation order parameter (Pmax) for different system sizes
(L = 60, 100, 200, 400, 500, and 700) at � = 0.80 and μ = λ; the
crossing point determines the critical point (λp

c = 0.6955 ± 0.0005).
The critical Binder cumulant value is U	 = 0.62 ± 0.01. Inset shows
the data collapse for the same value of 1/ν as obtained for the data
collapse of Pmax.

where Pmax is the percolation order parameter (as defined
before) and the angular brackets denote ensemble average.
U → 2

3 deep inside the ordered phase and U → 0 in the
disordered phase when the fluctuation is Gaussian. The
crossing point of the different curves (U − λ) for different
system sizes gives the critical point (λp

c = 0.760 ± 0.001)
for � = 1.0, which is in good agreement with the previous
estimation from finite-size scaling of the corresponding �

(Fig. 7). The value of U at the critical point for any value of �

is U	 = 0.624 ± 0.002 (see Fig. 7). The Binder cumulant also
follows the scaling form

U = U
[(

λp
c − λ

)
L1/ν

]
, (7)

where U is a suitable scaling function. The data collapse for
� = 1.0 has been shown in the inset of Fig. 7, and the value of
1/ν is 0.80 ± 0.01, which is in good agreement with the value
of 1/ν obtained from the finite-size scaling of the largest cluster
size. The same plot has been shown in Fig. 8 for � = 0.80,
which also gives the same value of 1/ν, which indicates that
the critical exponents are independent of �.

IV. PERCOLATION IN THE GENERALIZED
LCCC MODEL

We have also investigated the percolation transition in the
case of the generalized LCCC model in which the conviction
parameter (λ) and the influencing parameter (μ) are different.
We have studied the percolation transition for two sets of
parameters: � = 1.0,μ = 0.50 and � = 1.0,μ = 1.0. In both
cases, the plots of PmaxL

β/ν with λ for different system sizes
(L = 60, 100, 200, 400, 500, and 700) cross at a single point
for β/ν = 0.130 ± 0.005 (Figs. 9 and 10), which is the same
as that obtained for the LCCC model. The critical points
are different (λp

c = 0.842 ± 0.001 for μ = 0.50 and λ
p
c =

0.687 ± 0.001 for μ = 1.0). The value of 1/ν is obtained from
the finite-size scaling of the largest cluster size (inset of Figs. 9
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FIG. 9. (Color online) PmaxL
β/ν plotted against the conviction

parameter λ, where � = 1.0 and μ = 0.50. The curves for different
system sizes (L = 60, 100, 200, 400, 500, and 700) cross at λp

c =
0.842 ± 0.001 for β/ν = 0.130 ± 0.005. In the inset, we have shown
the data collapse for Pmax with λp

c − λ for � = 1.0 and μ = 0.50
giving 1/ν = 0.80 ± 0.01 and β/ν = 0.130 ± 0.005.

and 10), and the estimated values of β/ν = 0.130 ± 0.005
and 1/ν = 0.80 ± 0.01 are the same as that obtained for the
LCCC model and are independent of the value of μ, which is
in contrast with the results obtained for the transition of the
average opinion value, where the critical exponents change
with μ. This implies that the percolation transition is much
more robust than the average opinion transition. The plots for
the Binder cumulant also satisfy the crossing point and the
critical exponents as obtained previously (Figs. 11 and 12).
The cluster size distribution also decays algebraically with an
exponent 1.82 ± 0.01 for μ = 0.50, which is the same as that
obtained for the LCCC model.
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FIG. 10. (Color online) PmaxL
β/ν plotted against the conviction

parameter λ, where � = 1.0 and μ = 1.0. The curves for different
system sizes (L = 60, 100, 200, 400, 500, and 700) cross at λp

c =
0.687 ± 0.001 for β/ν = 0.130 ± 0.005. In the inset, we have shown
the data collapse for Pmax with λp

c − λ for � = 1.0 and μ = 1.0
giving 1/ν = 0.80 ± 0.01 and β/ν = 0.130 ± 0.005.
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FIG. 11. (Color online) Fourth-order reduced Binder cumulant of
percolation order parameter (Pmax) for different system sizes (L = 60,
100, 200, 400, 500, and 700) at � = 1.0 and μ = 0.50; the crossing
point determines the critical point (λp

c = 0.842 ± 0.001). The critical
Binder cumulant value is U	 = 0.624 ± 0.002. Inset shows the data
collapse for the same value of 1/ν as obtained for the data collapse
of Pmax.

V. DISCUSSION

We have investigated the geometrical percolation tran-
sition of the square-lattice LCCC model and have found
the critical points and the critical exponents (β/ν =
0.130 ± 0.005,1/ν = 0.80 ± 0.01,τ = 1.82 ± 0.01) charac-
terizing the transition. Although the system does not show
any finite-size effect in the case of the transition of the
average opinion, the percolation transition shows a prominent
finite-size effect for a given threshold opinion value (�). The
finite-size effect diminishes gradually as we decrease the value
of �. The transition point also decreases with �, but the change
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FIG. 12. (Color online) Fourth-order reduced Binder cumulant of
percolation order parameter (Pmax) for different system sizes (L = 60,
100, 200, 400, 500, and 700) at � = 1.0 and μ = 1.0; the crossing
point determines the critical point (λp

c = 0.687 ± 0.001). The critical
Binder cumulant value is U	 = 0.624 ± 0.002. Inset shows the data
collapse for the same value of 1/ν as obtained for the data collapse
of Pmax.
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is continuous. The critical exponents are independent of the
value of the threshold opinion value as well as the value
of the conviction and influencing parameter, which shows
the robustness of this percolation transition in this system.
The critical exponents are significantly different from those
obtained in the case of the static and dynamic Ising system
and standard percolation. These exponents suggest that this
LCCC model belongs to a separate universality class from the
viewpoint of percolation transition.
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