
PHYSICAL REVIEW E 85, 021142 (2012)

Magnetic properties and critical behavior of disordered Fe1−xRux alloys: A Monte Carlo approach
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We study the critical behavior of a quenched random-exchange Ising model with competing interactions on a
bcc lattice. This model was introduced in the study of the magnetic behavior of Fe1−xRux alloys for ruthenium
concentrations x = 0%, x = 4%, x = 6%, and x = 8%. Our study is carried out within a Monte Carlo approach,
with the aid of a re-weighting multiple histogram technique. By means of a finite-size scaling analysis of several
thermodynamic quantities, taking into account up to the leading irrelevant scaling field term, we find estimates
of the critical exponents α, β, γ , and ν, and of the critical temperatures of the model. Our results for x = 0% are
in excellent agreement with those for the three-dimensional pure Ising model in the literature. We also show that
our critical exponent estimates for the disordered cases are consistent with those reported for the transition line
between paramagnetic and ferromagnetic phases of both randomly dilute and ±J Ising models. We compare the
behavior of the magnetization as a function of temperature with that obtained by Paduani and Branco (2008),
qualitatively confirming the mean-field result. However, the comparison of the critical temperatures obtained in
this work with experimental measurements suggest that the model (initially obtained in a mean-field approach)
needs to be modified.
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I. INTRODUCTION

We study the magnetic properties and critical behavior of
a quenched random-exchange Ising model through extensive
Monte Carlo simulations. Our starting point was the model
proposed in Ref. [1], consisting of iron and ruthenium
atoms randomly distributed in a body-centered-cubic (bcc)
lattice, with probabilities 1 − x and x, respectively. In this
model, atoms are treated as Ising spins, Fe-Fe bonds are
ferromagnetic (FM) with exchange integral J , while Fe-Ru and
Ru-Ru interactions are antiferromagnetic (AF) with exchange
integrals −λJ and −ξJ , respectively, where λ and ξ depend on
the ruthenium concentration x as follows: λ ≡ ξ = ξ0 − ξ1x.
The parameters ξ0 and ξ1 were determined from the
experimental values for the critical temperatures of the system
for some concentrations of ruthenium, reported in Ref. [2],
by fitting these data to the mean-field solution of the model.

The main goal of this work is to establish the universality
class of the spin model introduced in Ref. [1] through extensive
numerical calculations of some of its thermodynamic quanti-
ties. We used the Metropolis algorithm to generate the data
and employed re-weighting techniques and finite-size scaling
(FSS) analysis. We also compare the behavior of thermody-
namic quantities obtained by Monte Carlo simulations with
experimental and mean-field results. We compare the values of
Tc(x) with the experimental measurements [2] and theoretical
estimates [1] to determine if the model for the Fe1−xRux

alloys remains adequate in a non-mean-field approach. In this
later work, the parameters of the proposed Hamiltonian were
obtained through a fit of the critical temperatures, obtained
in a mean-field-like approximation, with the measured values
reported in Ref. [2]. The mean-field result is obtained using
the Bogoliubov inequality, in a similar fashion as the one
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employed in the study of order-disorder transitions through
a cluster variational method [3].

An important aspect of this work is the FSS analysis to
determine the critical exponents. The study of this model is
mainly an investigation of the effects of quenched disorder
on the critical behavior of a system of Ising spins, like
so many theoretical and experimental examples presented
throughout the last three decades or more. An interesting
fact of these disordered systems is the theoretical prediction
that the introduction of disorder must change the universality
class of the system if α > 0, where α is the specific heat
critical exponent for the pure system. This result is known
as the Harris criterion [4]. The α > 0 condition is satisfied
for the case of the pure Ising model in three dimensions,
so we can expect three-dimensional disordered Ising models
to belong to another universality class, when compared to
their uniform counterparts. However, the Harris criterion says
nothing about the new universality class. Renormalization-
group arguments infer that the universality class of the
disordered three-dimensional Ising model does not depend on
the concentration x. Moreover, experimental results show that,
for small concentrations x of AF impurities (as in Fe1−xMnx ,
Fe1−xZnxF2, and Fe1−xRux alloys) or nonmagnetic impurities
(as in Fe1−xAlx alloys), these systems have a continuous
transition between a ferromagnetic and a paramagnetic phase
at a temperature Tc(x) < Tc(x = 0%), with a critical behavior
clearly different from the case without disorder (x = 0%), but
that seems to be independent of the concentration x, within the
experimental precision [5]. By small concentrations we mean
x < xc for nonmagnetic impurities, where xc is the critical
concentration above which there is only a single paramagnetic
phase [6]. In the case of AF impurities, we mean x < xg ,
where xg is the concentration for which the transition line
between paramagnetic and ferromagnetic phases meets the
transition line between paramagnetic and spin-glass phases,
where frustration is relevant [7].
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It is curious that, contrary to experimental results, Monte
Carlo simulations presented a wide range of different values for
the critical exponents of these disordered systems, all seeming
to indicate some sort of dependence between universality
class and impurity concentration. Only recently (late 1990s
onward), with the growth of processor capacity and available
resources for simulations, is theoretical research heading
toward a solution to this apparent inconsistency, and studies
have shown that critical exponents are independent of impurity
concentration along the transition line between paramagnetic
and ferromagnetic phases in disordered Ising models [6,8–10].
These works have shown the importance of a careful analysis of
the scaling behavior of thermodynamic functions, taking into
account finite-size correction terms due to irrelevant fields
in the Hamiltonian, for a correct assessment of the critical
exponents of these systems.

At first glance, one could suspect that our model does
not belong to any of the previously discussed universality
classes. However, we could think of it as a member of a more
general family of models with bonds +J and −rJ randomly
distributed with probabilities 1 − p and p, respectively. We
obtain the Ising model with randomly diluted bonds (RBIM)
as r = 0, the Ising model with ±J random bonds for r = 1,
and our model for some combinations of r and p. Note
also that the Fe1−xRux system we study in this work has
a crossover to the Ising Model with randomly diluted sites
(RSIM) when x = 10%. Therefore, we make the hypothesis
that our model belongs to the RSIM-RBIM universality
class, as is the case also for the paramagnetic-ferromagnetic
transition line of the ±J Ising model [6,10]. In this sense,
our Fe1−xRux system would be somewhere in between the
r = 0 and r = 1 limits. To assess this possibility, we have
performed extensive Monte Carlo simulations, with the im-
portant inclusion of correction-to-scaling terms, as discussed
in the previous paragraph, in order to estimate the critical
exponents and critical temperatures of the model introduced
in Ref. [1]. This model is explained in Sec. II, the simulation
and data analysis methods are discussed in Secs. III and IV,
respectively, and our results are presented and discussed in
Sec. V.

II. MODEL

Reference [2] shows that Fe1−xRux alloys are found in
the bcc structure for x < 30% whereas, for x ≈ 30%, the
system undergoes a crystallographic transition to an hcp
structure. While in the bcc structure, the lattice parameter
increases steadily with the Ruthenium concentration x and
the system has a ferromagnetic-paramagnetic phase transition
at Tc(x), as seen in Table I. In Ref. [1], the authors present a
detailed discussion of experimental results and first-principle
electronic-structure calculations that provide evidence that
ferromagnetic Fe-Fe bonds and antiferromagnetic Fe-Ru
and Ru-Ru bonds should effectively model the Fe1−xRux

system.
The model proposed by Paduani and Branco (2008) consists

of Fe and Ru atoms randomly distributed on a bcc lattice
with probabilities 1 − x and x, respectively. Each atom has a
magnetic degree of freedom that is assumed to behave as an
Ising-like spin, so the system is described by a spin-1/2 Ising

TABLE I. Experimental values of critical temperatures for
Fe1−xRux alloys, taken from Ref. [2].

x Tc (K)

0% 1043
2% 968 (2)
4% 928 (2)
6% 908 (2)
10% 838 (2)

Hamiltonian:

H = −
∑
〈i,j〉

Jijσiσj , (1)

where the sum goes over all nearest-neighbor pairs, σi = ±1
for all sites i, and the exchange integral Jij takes the values J

for Fe-Fe bonds, −λJ for Fe-Ru bonds, and −ξJ for Ru-Ru
bonds.

A mean-field solution [1] of Hamiltonian (1), using the
Bogoliubov inequality [11,12], yields{

(1 − x)2

1 + exp[−2J/(kBTc)]
+ 2x(1 − x)

1 + exp[2λJ/(kBTc)]

+ x2

1 + exp[2ξJ/(kBTc)]

}
= 4

7
. (2)

In Ref. [1], the authors assume that λ = ξ ≡ ξ0 − ξ1x and
present a least-square fit of Eq. (2) to the experimental values
of Tc in Table I. The values reported for the parameters are
ξ0 = 0.54(2) and ξ1 = 5.4(4), so that the final form of the
Hamiltonian reads:

H = −J
∑
〈i,j〉

ζijσiσj , (3)

where

ζij =

⎧⎪⎨
⎪⎩

ζFeFe = 1

ζFeRu = −(0.54 − 5.4x)

ζRuRu = −(0.54 − 5.4x),

(4)

and the spin variables σi take the values ±1 and the sum goes
over all nearest-neighbor pairs.

III. MONTE CARLO SIMULATIONS

We studied the three-dimensional Ising system described
by the Hamiltonian (3) within a Monte Carlo (MC) approach.
We have employed the Metropolis algorithm [7,13] to simulate
bcc lattices with 2L3 sites, periodic boundary conditions, and
several system sizes L ranging from 5 to 50. Each site on
the lattice is randomly chosen to be an Fe or Ru atom with
probabilities 1 − x and x, respectively. All random numbers
were generated using a Tausworthe (shift-register) generator
[14] with “magic numbers” p = 1279 and q = 1063 [15,16].

A Monte Carlo step per spin (MCS) corresponds to N =
2L3 attempts to flip a single spin, chosen at random, or a full
sweep on the lattice, when we perform sequential updates.
As the sequential algorithm proved to be far more efficient
in generating independent states than the more traditional
random choice, it was the one used for most of our simulations.
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The comparison between these two procedures is presented in
Sec. V B.

Our largest simulations ran up to 4.5 × 107 MCSs and we
made sure to generate at least n = 8000 uncorrelated states,
with n given by

n = nMCS − teq

2τ
, (5)

where nMCS is the number of MCSs, teq is the equilibration time
and τ is the largest correlation time estimated by the integral
method [7]. As it is the case for the Metropolis dynamics,
the largest correlation time is, in general, obtained from the
magnetization autocorrelation function. Therefore, in our case,
τ refers to the magnetization correlation time.

For practical reasons concerning data storage, we have
only saved simulation data every 10 MCS. However, we have
rescaled our dynamic calculations and present all correlation
times in units of one MCS. This rescaling introduces a
systematic error on the integral correlation time when typical
values of τ are close to 10 MCS or smaller, as shown in
Sec. V B. This error is due to the numerical integration using
the trapezoid rule, as the integral of an exponential decay
approaches the exact value from above with numerical error
of the order ∼O(n−3) [17], where n is the number of bins.
We checked for systematic deviation by comparing pairs of
τ estimates obtained from the same simulation considering a
time unit of 1 MCS and 10 MCS. We found no systematic error
for L � 15 and, since τ is overestimated, it does not affect the
precision of our equilibrium analysis.

When performing Monte Carlo simulations it is customary
to work with the dimensionless coupling constant K =
J/(kBT ) and dimensionless temperature T̄ = 1/K . We also
define other dimensionless thermodynamic quantities such as
the extensive energy

E = −
∑
〈i,j〉

ζijσiσj , (6)

magnetization per spin

m = 1

N

N∑
i=1

σi, (7)

specific heat

c = K2

N
[〈E2〉 − 〈E〉2], (8)

magnetic susceptibility per spin

χ = N

K
[〈m2〉 − 〈|m|〉2], (9)

the quadratic cumulants

U22 = [〈m2〉2] − [〈m2〉]2

[〈m2〉]2
(10)

and

U4 = [〈m4〉]
[〈m2〉]2

, (11)

and the more traditional Binder’s cumulant

U ≡ 1 − 1
3U4. (12)

On all equations above, 〈· · ·〉 denotes thermal averages
whereas [· · ·] denotes averages over disorder configurations.

For each pair of x and L values, we ran simulations
at different temperatures near the critical point (up to 20
temperatures for smaller lattices and 5 for L > 30) and used the
multiple-histogram method [7,18,19] to compute quantities of
interest over an almost continuous range of temperatures. The
thermal error associated with those quantities is estimated by
dividing the data from each simulation in blocks and repeating
the multiple-histogram process for each block. The errors
are the standard deviation of the values obtained for a given
quantity on the different blocks. For each set of parameters
(L, x, T ) we average over NS samples of atomic disorder. We
chose 10 � NS � 20, such that the error due to disorder was of
the same magnitude or smaller than the thermal error obtained
for each disorder configuration. Finally, we sum both thermal
and disorder errors for an estimate of the total error.

IV. DATA ANALYSIS

In MC simulations we necessarily deal with finite systems.
However, our interest lies in critical phenomena, which happen
in the thermodynamic limit. The critical behavior of such
systems may be extracted from finite systems by examining
the size dependence of the singular part of the free energy
density [12]. In this finite-size scaling approach we write the
free energy density for a system of linear size L near the critical
point as

f̄sing(t,h,L) ∼ L−df 0(tLyt ,hLyh,{ūiL
−ωi }), (13)

where t is the reduced temperature and is given by (T −
Tc)/Tc, H is the external magnetic field, and h = H/(kBT ).
We assume that t and h are the only relevant fields while ūi are
irrelevant perturbations, such that ωi > 0, which ensures that
in the thermodynamic limit, as ūiL

−ωi → 0, our free energy
is a function only of relevant fields.

Taking appropriate derivatives of the free energy, it is
possible to show that some thermodynamic quantities Q (such
as magnetization, specific heat, and magnetic susceptibility)
may be written in the following scaling form:

Q = Q0L
θ

{
1 +

∑
i

QiL
−ωi + · · ·

}
, (14)

where θ is related to the traditional exponents. As (14) will
be used to fit numerical data to estimate critical exponents,
we have to truncate the sum at some point. As each additional
exponent ωi taken into account will add two free parameters
to an eventual fit and that reduces drastically the number of
degrees of freedom, we considered only the first exponent
ω1 ≡ ω. We then have

m = m0L
−β/ν{1 + m1L

−ω}, (15)

χ = χ0L
γ/ν{1 + χ1L

−ω}, (16)

c = c0L
α/ν{1 + c1L

−ω}. (17)

A similar scaling behavior near the critical point holds for
the derivatives

dG

dK
= G0L

1/ν{1 + G1L
−ω}, (18)
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where G stands for the Binder’s cumulant U or quantities
linked to the magnetization, such as ln 〈|m|〉, ln 〈m2〉, and
ln 〈|m|n〉 [15]. Equation (18) is particularly useful to determine
the exponent ν. Finally, for the critical temperature we have

Tc(L) = Tc + A0L
−1/ν{1 + A1L

−ω}, (19)

where Tc(L) is the pseudocritical temperature for a given
system size L, and Tc is the true critical temperature.

We perform least square fits using expressions (15)–(19)
with all quantities computed at several temperatures close
to Tc. These estimates of Tc(L) are obtained locating the
temperatures Tm where we find the maxima of several
quantities which diverge as L → ∞ (c, χ , d〈m〉

dK
, dU

dK
) as

well as the temperatures Tf at which the cumulants U4,
U22, and Ud ≡ U4 − U22 assume particular fixed values. The
fixed values used were MC estimates of the universal values
these cumulants assume at the critical point on randomly
site-diluted (RSIM) and bond-diluted (RBIM) Ising models:
U4 = 1.648 (3), U22 = 0.148 (1), and Ud = 1.500 (1) [6]. The
calculation of the relevant quantities for different temperatures
is done using the multiple-histogram method. Examples of this
procedure are shown in Fig. 1 for the specific heat and for the
derivative of the Binder cumulant, both used to locate different
estimates of Tm. The comparison between the results from both
Tm and Tf FSS methods provides an additional way to check
if our model belongs to the RSIM-RBIM universality class.

Equations (15)–(19) all have four free parameters to be
adjusted in the fitting process and no stable fits were possible
for our data, meaning our statistics should be increased if we
desire to obtain the exponents α, β, γ , ν, and ω independently.
Since we are more interested in obtaining α, β, γ , and ν than in
finding precise correction-to-scaling exponents ω, we employ
a procedure similar to the one presented in Ref. [15], in which
we set a fixed value for exponent ω and perform a fit with three
free parameters instead of four. Then we change the fixed value
of ω and keep performing fits to obtain the values of the other
exponents. Once several fits are made, we locate the interval of
values of ω such that we minimize the values of the variance
of residuals, χ2/DOF, where DOF is the number of degrees
of freedom of the fit. We repeat this procedure using system
sizes Lmin � L � 50, with Lmin = 5, 10, 12, 15, 18, 20, and
25 to obtain the Lmin that globally minimizes χ2/DOF. Once
the best Lmin and the corresponding series of values for ω

are located, we average the values obtained for the exponents,
making sure to include only fits with χ2/DOF < 1.0 in this
statistical analysis.

V. RESULTS AND DISCUSSION

A. Simulation strategy and preliminary results

For the pure case (x = 0%), we ran simulations at T̄ =
T̄ HTS

c = 6.354 35, which corresponds to the high-temperature
series estimate KHTS

c = 0.157 372 5 (6) of the critical coupling
for the pure Ising model on a bcc lattice [20]. We used the
single-histogram method [7,18] to locate the temperatures
where the peaks of the thermodynamic quantities of interest
occurred. From the peak locations we chose temperatures to
perform new simulations. Finally, we employ the multiple-
histogram re-weighting using the data from at least five
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FIG. 1. Thermodynamic quantities versus dimensionless temper-
ature T̄ for x = 0% and lattice sizes ranging from 20 to 50. In (a) we
plot the specific heat and in (b) the slope dU/dK of the Binder’s
cumulant. The lines were obtained with the multiple histogram
method, the symbols represent the location of the peaks for each
lattice size, and the dashed line connecting the peaks is a guide to
the eye. The tick in T̄ = 6.3544 corresponds to our estimate of the
critical temperature. The data in this figure and in all other figures
in this work were plotted with their respective error bars; however,
some error bars are smaller then the symbols.

simulations at different temperatures such that all peaks were
found within the interval between the minimum and maximum
of those temperatures.

A similar procedure was employed for the disordered case
(x = 4%, 6%, and 8%). However, since no previous estimates
for Tc were available, we performed test simulations over
a wide range of temperatures, in order to make a rough
estimate of the location of the critical region. Figures 2 and 3
exemplify this initial attempt to determine Tc(L) for x = 6%
and L = 30. Once a suitable temperature interval for each
concentration x and size L was determined, we divided it in five
(L > 30) to eleven (smaller lattices) temperatures, to simulate
and employ the multiple-histogram method as discussed
above.

One interesting aspect of Fig. 3, besides the additional
Tc estimate it provides, is the behavior of the magnetization
as a function of temperature. We observe a slight decrease
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FIG. 2. (Color online) Specific heat versus T̄ for x = 6% and
L = 30. The points represent the simulation data and the dashed line
is a guide to the eye.

in the total magnetization at low temperatures, when we
approach T = 0. This decrease is also present in the mean-field
approximation to this model (see Fig. 2 in Ref. [1]). Although
not as pronounced as the effect presented in Ref. [1], it
also occurs in our Monte Carlo approach; thus, it is not a
mean-field-only effect. For comparison between Fig. 3 and
Fig. 2 in Ref. [1], it is important to stress that the lowest
temperature we simulated is T̄ = 0.5, which corresponds to
T ≈ 80K (this value is obtained using J = 14.16 meV, as
discussed in Sec. V D).

It is possible to present a qualitative description of this
effect. The probability that a Ru atom is completely surrounded
by Fe atoms as nearest-neighbors is (1 − x)8, which is quite
high for low Ru concentrations (≈51% for x = 8%, ≈61% for
x = 6%, ≈72% for x = 4%, ≈85% for x = 2%, etc.). Next, let
us consider a scenario in which the great majority of Ru atoms
have no Ru first neighbors. In a situation like this, there is close
to no frustration and for T = 0 we expect almost all Fe spins to
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FIG. 3. (Color online) Total magnetization per spin and individual
contributions of Fe and Ru atoms for the magnetization versus T̄ ,
obtained for x = 6% and L = 30. The points represent the simulation
data and the lines are only a guide to the eye.

point in one direction while almost all Ru spins point the other
way. This results in a total magnetization per spin smaller than
1 at T = 0. In fact, if we could guarantee that no Ru atom
has a Ru neighbor, we would have 〈|m|〉 = 1 − 2x. As the
temperature rises, thermal fluctuations cause spins to reverse.
Now let us compare two situations: an Fe atom surrounded
by Fe atoms, such that all spins are aligned, and a Ru atom
surrounded by Fe atoms, such that the Ru spin is in the opposite
direction to the Fe spins. The probability to reverse the Fe spin
is proportional to exp [−8J/(kBT )] while the probability to
reverse the Ru spin is proportional to exp [−8λJ/(kBT )]. As
our typical values of λ are between 0.0 and 0.54, we expect
the Ru spins to start reversing more easily than the Fe spins;
thus, the value of 〈|m|〉 grows with increasing temperature.
However, at higher temperatures the magnetization should
decrease, since thermal fluctuations are then strong enough
to flip Fe spins surrounded by Fe atoms.

(a)

(b)

,
,

FIG. 4. (Color online) Log-log plots of the magnetization correla-
tion times versus L for (a) x = 0% and (b) x = 6%. The dashed lines
are fits using Eq. (20). Each inset is a plot of the ratio between random
and sequential correlation times versus L for the respective ruthenium
concentration where the solid line is a fit using Rτ = A + BL. All
fits were done for L � 15 to avoid the systematic error introduced by
numerical integration, present for correlation times smaller than or
equal to 10 MCS, as discussed in Sec. III.
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B. Metropolis dynamics: choosing spins
randomly or sequentially

In the Metropolis algorithm, as originally proposed [13],
the choice of the atom to be tested for a possible change is
usually random. There are, however, other ways to generate
the Markov chain. It can be done sequentially or, as for the
multispin coding version [21], many spins in a sublattice are
tested simultaneously. The above methods are all ergodic and
satisfy detailed balance [7] so we ought to choose the most
efficient one.

Multispin coding leads to a drastic reduction in compu-
tational time for Ising systems [21] but it is only applicable
when it is possible to express the energy difference between
any two given states as an integer, which is impracticable for
our model, since our exchange integrals assume noninteger
values. We propose an alternative to this method which consists
of dividing the lattice in two sublattices, the same way as
multispin coding; however, instead of testing all spins at once

(a)

(b)

FIG. 5. (Color online) Log-log plot of the derivative dG/dK

versus L for x = 4%; for (a) G = ln 〈|m|〉 and (b) G = ln 〈m2〉
[see Eq. (18) and remarks after it]. The data were computed at
slightly different critical point estimates, given by the temperatures
Tm (maximum of dG/dK) and Tf , in order to compare the estimates.
The solid lines are fits to dG/dK = a0L

1/ν . The inset corresponds to
the same graph made with both data and lines slightly shifted along
the L axis to make them visible.

we run over the first sublattice testing all possible spin flips
sequentially and then go to the second sublattice and repeat the
procedure. From now on we will refer to this update scheme
as sequential update Metropolis, as opposed to the traditional
random update Metropolis.

To verify if this sequential method is efficient compared
to the standard random-update Metropolis, we obtain a rough
estimate of the dynamical exponent z for both methods. This
is done by fitting our data at the critical temperature to the
expression

τ = ALz, (20)

where A is a constant. This is how the correlation time τ

is expected to behave at Tc, for sufficiently large system
sizes L.

In Fig. 4, we present fits for the correlation times. We note
that the curves for both random and sequential correlation
times have almost the same slope, which indicates that
random and sequential algorithms have approximately the
same dynamic exponent z, as expected. However, random
correlation times are always larger than sequential ones for

(a)

(b)

FIG. 6. (Color online) Log-log plots of the maxima of some
thermodynamic quantities G as functions of L that were used to
determine ν for (a) x = 0% and (b) x = 6%. The full lines are fits
performed with Eq. (18) for Lmin < L < 50. The dotted lines are
extrapolations of the fits for L < Lmin.
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TABLE II. Estimates of 1/ν using Eq. (18) for some quantities G,
with Lmin = 15. The region 0.30 � ω � 0.36 minimized the values of
χ 2/DOF. In this interval we found no difference between χ2/DOF up
to the second decimal figure for each quantity considered. The values
obtained were χ 2/DOF = 0.22, 0.23, and 0.081 for G = ln 〈|m|〉,
G = ln 〈m2〉, and G = U , respectively.

1/ν

ω G = ln 〈|m|〉 G = ln 〈m2〉 G = U

0.300 1.465 (31) 1.463 (29) 1.444 (47)
0.305 1.466 (31) 1.464 (29) 1.445 (46)
0.310 1.467 (31) 1.465 (29) 1.446 (46)
0.315 1.468 (31) 1.466 (29) 1.448 (46)
0.320 1.469 (31) 1.467 (28) 1.448 (46)
0.325 1.470 (30) 1.468 (28) 1.449 (45)
0.330 1.471 (30) 1.469 (28) 1.450 (45)
0.335 1.472 (30) 1.470 (28) 1.451 (45)
0.340 1.473 (30) 1.471 (28) 1.452 (45)
0.345 1.474 (30) 1.472 (28) 1.453 (44)
0.350 1.474 (30) 1.473 (27) 1.454 (44)
0.355 1.475 (29) 1.474 (27) 1.455 (44)
0.360 1.476 (29) 1.474 (27) 1.456 (44)

a fixed system size. In fact we also plot the ratio

Rτ = τran

τseq
(21)

as a function of L and find an almost-constant Rτ ≈ 4, as
shown in the insets of Figs. 4(a) and 4(b). For L � 15, we have
fit the data to Rτ = A + BL and obtained A = 4.11 (8), B =
0.000 (3) for the pure case and A = 3.8 (2), B = 0.003 (6) for
the disordered case.

The estimates we get for the dynamical exponent for the
pure case are z = 2.02 (1) for random updates and z = 2.01 (1)
for sequential updates. For the disordered case we have
only estimated z for x = 6%, which gave us the figures
z = 2.06 (3) and z = 2.02 (2) for the random and sequential
update dynamics, respectively. All values are in agreement
with the MC result, z = 2.04 (3), for the three-dimensional
(3D) pure Ising model, presented in Ref. [22]. So, within
error bars, both pure and disordered systems have the same
dynamic exponent for random or sequential updates. However,
we find that the correlation times for a given system size L

are always greater for the random update scheme. Therefore,
the sequential update version is more efficient than the random
update one.

C. Critical exponents

Figure 5 shows the comparison between the behavior of
some quantities dG/dK at different estimates of the critical
point, obtained by the methods described in Sec. IV. Note how
the quantities assume almost the same value for the same size
at the four different Tc estimates. Therefore, the four different
fits for each quantity are almost indistinguishable. As a result,
the numerical values we obtain for each critical exponent by
independent methods are the same, within error bars. Thus,
we combine both Tm and Tf FSS methods to obtain our final
estimates of α, γ , β, and ν for the disordered systems.

To estimate ν we fit the data to Eq. (18), where we
used G = U , G = ln 〈|m|〉, and G = ln 〈m2〉. For x = 0%
we computed the derivatives at the temperature Tm where we
found the maximum of each quantity. Following the procedure
described in Sec. IV, we found good fits with Lmin = 12
for the logarithmic derivatives and Lmin = 5 for the Binder’s

TABLE III. Our estimates of the exponents α, β, γ , and ν compared to other works in the literature. The lines with the labels x = 0%, 4%,
6%, and 8% correspond to our final estimates. The table also contains other Monte Carlo [15,23], high-temperature series expansion [20], and
quantum field theory [24,25] results for the pure 3D Ising universality class, as well as Monte Carlo results for the RSIM [8], RBIM [6,9], and
±J Ising Model [10]. Reference [5] reports experimental results for both pure and disordered (with low disorder) 3D Ising universality classes.

Pure
α β γ ν α + 2β + γ 2 − α − 3ν

x = 0% 0.1093 (47) 0.3316 (86) 1.2448 (70) 0.6269 (20) 2.017 (29) 0.010 (11)
[15] 0.1190 (60) 0.3258 (44) 1.2390 (71) 0.627 (2) 2.020 (21) ≡ 0a

[23] 0.1099 (7) 0.32648 (18) 1.2371 (4) 0.63002 (23) ≡ 2b ≡ 0
[20] 0.1094 (45) 0.3266 (10) 1.2375 (6) 0.6302 (4) ≡ 2 ≡ 0
[24,25] 0.1100 (45) 0.3270 (15) 1.2390 (25) 0.6300 (15) 2.003 (10) ≡ 0
[5] 0.110 (5) 0.325 (5) 1.25 (2) 0.64 (1) 2.01 (4) −0.03 (4)

Disordered
α β γ ν α + 2β + γ 2 − α − 3ν

x = 4% −0.062(25) 0.3584 (96) 1.334 (20) 0.6873 (84) 1.989 (64) ≡ 0
x = 6% −0.049(15) 0.359 (16) 1.330 (18) 0.6826 (46) 1.999 (65) ≡ 0
x = 8% −0.057(20) 0.3588 (81) 1.337 (21) 0.6856 (66) 2.003 (46) ≡ 0
[8] −0.051(16) 0.3546 (28) 1.342 (10) 0.6837 (53) 1.994 (32) 0.006 (32)
[9] −0.049(9) 0.3535 (17) 1.342 (6) 0.683 (3) ≡ 2 ≡ 0
[6] −0.049(6) 0.354 (1) 1.341 (4) 0.683 (2) ≡ 2 ≡ 0
[10] −0.046(6) 0.329 (2) 1.339 (7) 0.682 (2) 1.951 (17) ≡ 0
[5] −0.10(2) 0.350 (9) 1.31 (3) 0.69 (1) 1.91 (7) 0.03 (5)

aThe label ≡ 0 corresponds to cases where α was calculated using the Josephson equality.
bThe label ≡ 2 corresponds to cases where either β or γ was calculated using the Rushbrooke equality.
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(a)

(b)

FIG. 7. (Color online) Maxima of the specific heat versus L. For
x = 0% (a), the plot is in log-log scale and the dashed line is a fit of
the data using Eq. (17), with ω = 1.0. For x = 6% (b), the plot is on
a linear scale and the inset corresponds to the same data on a log-log
scale. The dashed line in (b) is only a guide to the eye.

cumulant. The fits in Fig. 6(a) were done with ω ≈ 1.0,
consistent with the result reported in Ref. [15]. The value we
obtain in this work, ν = 0.6269 (20), is in excellent agreement
with others in the literature for the three-dimensional Ising
model [5,15,20,23–25].

For the disordered cases, fits using Eq. (18) were done with
the same quantities G = U , G = ln 〈|m|〉, and G = ln 〈m2〉.
Table II shows our results for 1/ν for x = 6%, obtained
from data at temperatures Tm. One of these fits is shown in
Fig. 6(b). Combining the various estimates in Table II, we
find 1/ν = 1.4632 (90) or ν = 0.6834 (42). Using both Tm and
Tf methods, we arrive at our final estimate, ν = 0.6826 (46),
presented in Table III along with our final estimates of ν for
the other Ru concentrations.

Following the same procedures, we used Eq. (17) to
find α. For x = 0%, the results are presented in Table III
and compared to other results in the literature. Figure 7(a)
shows one of the fits for the specific heat of the pure
system: we obtain the estimate α/ν = 0.1743 (70). For the
disordered systems, however, no stable fits were possible
with only one correction-to-scaling exponent and we lack

FIG. 8. Effective critical temperatures Tc(L) versus L−1/ν esti-
mated for several quantities. The dotted and dashed lines are fits
performed with Eq. (19) and using our estimate ν = 0.6269.

statistical resolution to perform fits with higher-order
correction-to-scaling terms. Figure 7(b) shows one of the
plots for the specific heat of the disordered system (x = 6%).

The estimates for α for the disordered case, presented
in Table III, were not determined independently, but were
obtained using the Josephson equality α = 2 − νd, where d

is the dimension (d = 3 in our case). The β and γ values
were all obtained independently by using Eqs. (15) and (16),
respectively, and our final estimates are presented in Table III.
We see that, within error bars, critical exponents do not depend
on the concentration x, as expected. Note that the usual scaling
relations for the exponents are satisfied, for both pure and
disordered cases. This result is an independent check of our
calculation. Also, our results for the critical exponents agree,
within error bars, with values reported previously elsewhere,
obtained both from theoretical methods or from experimental
studies. This gives support to our hypothesis concerning the
universality class of the model treated in this work.

D. Critical temperatures

For x = 0%, we fit Eq. (19) for the temperatures where we
located peaks of several thermodynamic quantities. Figure 8
shows the values of Tm used in our FSS analysis. Our best fits
were obtained with Lmin = 25 for the magnetic susceptibility

TABLE IV. Estimates of Tc(x = 0%) obtained from an FSS
analysis of Tc(L) for some thermodynamic quantities.

Quantity Lmin T̄c

c 20 6.35514 (34)
χ 25 6.35467 (11)
dU

dK
25 6.35447 (37)

d〈|m|〉
dK

25 6.35465 (34)
d

dK
ln 〈|m|〉 20 6.35360 (57)

d〈m2〉
dK

20 6.35437 (26)
d

dK
ln 〈m2〉 20 6.35359 (58)
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TABLE V. Our Monte Carlo estimates of critical temperatures
compared to experimental and mean-field results.

This work Experimental [2] Mean-field [1]

x T̄c Tc (K) Tc (K) Tc (K)

0% 6.3544 (6) 1043 1043
2% 968 (2) 983
4% 6.1089 (23) 1002.7 (4) 928 (2) 933
6% 5.9615 (17) 978.5 (3) 908 (2) 893
8% 5.8064 (22) 953.0 (4) 863
10% 838 (2) 842

and the derivatives of 〈|m|〉 and U and Lmin = 20 for the
remaining quantities. Combining the estimates obtained in
those fits, presented in Table IV, we obtain: T̄c = 6.3544 (6),
or Kc = 0.157 37 (1), which is in excellent agreement with
KHTS

c = 0.157 372 5 (6) [20] and with another Monte Carlo
evaluation [26], Kc = 0.157 371 (1). We can use our T̄c to
estimate the exchange integral of the Fe-Fe bond, JFeFe ≡ J ,
just by combining the experimental Tc in Table I with the
definition T̄ = kBT /J . We obtain J = 14.16 meV, which is
close to 12.9 meV, reported in Ref. [1] and in the interval 10
to 50 meV, as expected for Fe, Co, and Ni [27].

Following the same procedure for the disordered systems
and also including the temperatures Tf (fixed values of the
cumulants) in the analysis, we find the critical temperatures
for x = 4%, 6%, and 8%. The value J = 14.16 meV is used
to calculate all critical temperatures in Kelvin, in order to
compare with experimental results, as presented in Table V.
The mean-field critical temperatures are easily computed
with Eq. (2), which is taken from Ref. [1] [see Eq. (14) in
Ref. [1].

Our Monte Carlo estimates of Tc for the disordered cases do
not agree with the mean-field prediction; neither do they agree
with the experimental values. We ascribe this discrepancy
to the method by which the parameters of the model were
obtained. Although those parameters fit the experimental data
well in the mean-field approach, the model is not suitable
for these Fe1−xRux alloys in the context of Monte Carlo
simulations.

VI. CONCLUSION

In this study we used Monte Carlo simulations to in-
vestigate the magnetic properties and critical behavior of a
model proposed by Paduani and Branco (2008) for Fe1−xRux

alloys through a mean-field approach. Our simulations were
restricted to ruthenium concentrations x = 0%, 4%, 6%, and
8%. We employed re-weighting single and multiple histogram
methods and finite-size scaling analysis, considering up to the
first-order correction-to-scaling exponent in order to obtain the
critical temperature and critical exponents of the model.

In the pure case, x = 0%, the values obtained for the
critical exponents are in excellent agreement with the ones
in the literature. The critical temperature we found for the
pure system also agrees very well with the high-temperature
series expansion estimate by Butera and Comi (2000) and
with another Monte Carlo result [26]. In the disordered cases,
we show that the critical exponents are consistent with the
universality class of the transition line between paramagnetic
and ferromagnetic phases of three-dimensional Ising models
with random site or random bond dilution, as well as with the
three-dimensional Ising model with randomly distributed +J

and −J exchange integrals.
For x = 4%, 6%, and 8%, our estimates of Tc do not agree

with the mean-field prediction nor with experimental results.
This is expected, since the model parameters were determined
through a fitting procedure of experimental data in a mean-field
approach [1]. However, the model proposed in Ref. [1] is in
the universality class of three-dimensional disordered Ising
models. Furthermore, our values for the critical exponents do
not depend on x, as expected. This result is obtained only
if we take into account a correction-to-scaling term in the
finite-size-scaling analysis.

To propose a model that brings simulations and exper-
imental results closer together, we must seek other ways
to determine the dependence of the exchange integrals of
Fe-Ru and Ru-Ru bonds with the ruthenium concentration.
One possibility would be a mean-field renormalization group
approach, which is presently being carried out.

Note added in proof. Our attention was called to Ref. [28],
where longer series (compared to the ones in Ref. [20]) were
calculated, for some thermodynamic functions. Our results for
γ and ν agree with the values quoted in Ref. [28]. The values
for Tc in Refs. [20] and [28] are the same; only the error bar
of the latter is slightly greater than for the former.
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