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Crossover in growth law and violation of superuniversality in the random-field Ising model
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We study the nonconserved phase-ordering dynamics of the d = 2,3 random-field Ising model, quenched to
below the critical temperature. Motivated by the puzzling results of previous work in two and three dimensions,
reporting a crossover from power-law to logarithmic growth, together with superuniversal behavior of the
correlation function, we have undertaken a careful investigation of both the domain growth law and the
autocorrelation function. Our main results are as follows: We confirm the crossover to asymptotic logarithmic
behavior in the growth law, but, at variance with previous findings, we find the exponent in the preasymptotic
power law to be disorder dependent, rather than being that of the pure system. Furthermore, we find that the
autocorrelation function does not display superuniversal behavior. This restores consistency with previous results
for the d = 1 system, and fits nicely into the unifying scaling scheme we have recently proposed in the study of
the random-bond Ising model.
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I. INTRODUCTION

Much recent interest in statistical physics has focused on un-
derstanding out-of-equilibrium phenomena. In this context, of
paramount importance are slow relaxation phenomena, which
primarily occur in glassy systems. An important hallmark
of slow relaxation is the lack of time-translation invariance,
manifested through aging behavior. A similar phenomenology
is also observed in systems without disorder, e.g., ferromagnets
quenched below the critical point. The behavior of these
systems is well understood in terms of the domain growth
mechanism of slow relaxation [1,2].

The key feature of domain growth, or coarsening, is the
unbounded growth of the domain size, which entails scaling
due to the existence of a dominant length scale, and aging as
a manifestation of scaling in multiple-time observables. The
simplicity of this structure is very attractive and is expected
to be valid beyond the realm of disorder-free phase-separating
systems, establishing domain growth as a paradigm of slow
relaxation. However, as is well known, the applicability of
domain growth concepts to hard problems (such as spin
glasses or structural glasses) still remains a debated issue [3].
Therefore, it is of considerable interest to study the role of
disorder in systems where its presence does not compete with
phase ordering [4].

A class of systems of this type is the disordered ferro-
magnets, where disorder coexists with the low-temperature
ferromagnetic order. There are different ways to introduce dis-
order in a ferromagnet without inducing frustration. This can
be achieved through bond or site dilution, by randomizing the
exchange interaction strength while keeping it ferromagnetic,
or by introducing a random external field. These disordered
systems have been an active area of research for quite some
time now. The unifying theme of investigation has been
disorder-induced changes in the properties of the underlying
pure systems, with primary interest in the growth law, in
the equal-time correlation function and, more recently, in the
two-time autocorrelation function and the related response
function [5–9]. However, despite the many experimental and

theoretical studies [4], a number of issues are still open.
Among these, of primary importance are (i) the nature of
the asymptotic growth law (power law vs logarithmic) and
(ii) the existence of superuniversal behavior of the correlation
and response functions. This is the idea that scaling functions
are robust with respect to disorder, which is expected not
to change the low-temperature properties of the system [10].
The lack of a general framework to understand this complex
phenomenology has proven a major obstacle to development.
Recently, in the context of the random-bond Ising model
(RBIM) [9], we have shown that the renormalization group
(RG) picture of crossover phenomena may well serve the
purpose.

In this paper, we extend the RG conceptual framework
to the ordering dynamics of the random-field Ising model
(RFIM) [11]. In this system, the deep asymptotic regime turns
out to be numerically accessible, allowing us to make precise
statements regarding the growth law and the superuniversality
(SU) issue (see Sec. II A). Our principal findings are (a) the
existence of a crossover from power-law domain growth (with
a disorder-dependent exponent) to logarithmic growth, and
(b) the absence of SU. Both results fit nicely into an RG picture
where disorder acts as a relevant perturbation with respect to
the pure fixed point. This confirms the robustness and the
general applicability of the approach proposed in Ref. [9].

This paper is organized as follows. In Sec. II, we provide an
overview of domain growth laws and of our scaling framework
for phase-ordering dynamics in disordered systems. In Sec. III,
we present detailed numerical results for ordering in the
d = 2 RFIM.1 These results are interpreted using the scaling
framework of Sec. II. Sec. IV is devoted to the presentation
of numerical results in the d = 3 case. Finally, in Sec. V, we
conclude this paper with a summary and discussion.

1As it is explained in Sec. III A, the spin updating rule we use is
equivalent to a quench to T = 0. Hence, the d = 2 RFIM phase orders
even if d = 2 is the lower critical dimensionality.
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II. DOMAIN GROWTH LAWS IN DISORDERED SYSTEMS

Dynamical scaling is the most important characteristic of
phase-ordering systems [1,2]. Let us summarize the concept in
the simplest case of pure systems. As time increases, the typical
domain size L(t) grows and becomes the dominant length
in the problem. Then, all other lengths can be rescaled with
respect to L(t). For instance, the two-time order-parameter
correlation function C(r,t,tw), with tw � t , scales as [12,13]

C(r,t,tw) = G(r/L,L/Lw), (1)

where L and Lw stand for L(t) and L(tw), respectively. This
contains, as a special case, the usual scaling of the equal-time
(t = tw) correlation function C(r,t) = G1(r/L). Further, for
r = 0, we have the aging form of the autocorrelation function
C(t,tw) = G2(L/Lw). The validity of scaling is, by now,
a well-established fact. A complete picture of an ordering
problem requires the understanding of the growth law [i.e.,
how L(t) depends on t] and of the scaling function G(x,y).

A systematic study of the growth law has been undertaken
by Lai, Mazenko, and Valls (LMV) [14,15], who identified
four different universality classes of growth kinetics. LMV
considered the role of several factors in the ordering dy-
namics, e.g., temperature, conservation laws, dimensionality,
order-parameter symmetry, lattice structure, and disorder.
An important distinction is made between systems that do
not freeze (i.e., without free-energy barriers) and those that
do freeze (i.e., with barriers) when the quench is made
to T = 0. To the first category belong pure systems with
nonconserved dynamics, whose growth follows the power law
L(t) = Dt1/z, where z = 2. LMV designate these as Class
1 systems. To the second category belong systems whose
growth requires thermal activation. This includes pure systems
with conserved order parameter and systems (both conserved
and nonconserved) with quenched disorder. This category is
further subdivided into three classes. In Class 2 systems the
freezing involves only local defects, with activation energy
EB independent of the domain size. In this case, growth
is still power law: L(t) = Dt1/z with z = 2 and 3 for the
nonconserved and conserved cases, respectively. Furthermore,
the prefactor D has a strong temperature dependence, D ∼
e−EB/(zT ). Finally, in Class 3 and Class 4 systems, the freezing
involves a collective behavior which depends on the domain
size L. If the corresponding activation energy scales with L

as EB(L) ∼ εLϕ , where ε measures the disorder strength, the
asymptotic growth law is logarithmic,

L(t) ∼ (T/ε)1/ϕ [ln(t/τ )]1/ϕ (2)

with τ ∼ T/(ϕε). For Class 3 systems, we have ϕ = 1, and
for Class 4 systems, we have ϕ �= 1.

Ferromagnets (with or without disorder) offer examples of
the classes listed above. For simplicity, let us consider systems
with nonconserved order parameter. The pure ferromagnetic
Ising model with Glauber kinetics is a well-known Class 1
system [1]. The d = 1 ferromagnetic RBIM [7] is an example
of a Class 2 system. The d = 1 RFIM [16] belongs to Class 4,
with ϕ = 1/2. The RFIM in higher dimensions, d = 2 [17,18]
and d = 3 [19,20], shows logarithmic growth, although it is
not easy to unambiguously establish the value of ϕ. Recently,
we have presented evidence [9] for logarithmic growth in the

d = 2 RBIM, but have not established whether it is a Class
3 or Class 4 system. This is a particularly interesting system,
because its growth law was previously [21] believed to be
power law with a disorder-dependent exponent. If so, this
would have shown the existence of a new universality class,
say Class 5, in addition to the four listed by LMV. We should
stress that a huge numerical effort is involved in accessing
the logarithmic growth regime of the d = 2 RBIM, and our
understanding of this system remains incomplete.

In Ref. [9], we proposed to unify this wide variety
of behaviors for disordered domain growth into a scaling
framework for the growth law itself. In all the cases we consider
in this paper, disorder (h0) and temperature (T ) enter through
their ratio h0/T (see Sec. III A below). This will be denoted
by ε and, for short, will be termed disorder. Let us begin with
the straightforward crossover setup, where the growth law is
assumed to scale as

L(t,ε) = t1/zF (ε/tφ), (3)

z = 2 is the growth exponent for nonconserved dynamics in a
pure ferromagnet, and φ is the crossover exponent. With the
additional assumption that the scaling function behaves as

F (x) ∼
{

const for x → 0,

x1/(φz)�(x−1/φ) for x → ∞,
(4)

where x = ε/tφ , Eq. (3) describes the crossover from
the power law L(t) ∼ t1/z to the asymptotic form L(t) ∼
�(t/ε1/φ), if φ < 0, and vice versa if φ > 0. Alternatively,
disorder is asymptotically relevant when φ < 0, and irrelevant
when φ > 0. The key quantity in the analysis of crossover is
the effective growth exponent

1

zeff(t,ε)
= ∂ ln L(t,ε)

∂ ln t
= 1

z
− φ

∂ ln F (x)

∂ ln x
, (5)

which depends on t and ε through x.
In the following discussion, it will be useful to use the above

relations in the inverted form:

t = Lzg(L/λ), (6)

where

λ = ε1/(φz) (7)

is a length scale associated with disorder. The scaling functions
appearing in Eqs. (3) and (6) are related by

g(y) = F−z(x) (8)

and y = L/λ is related to x by

y = x−1/(φz)F (x). (9)

Then, from Eq. (4) and φ < 0, it follows that

g(y) ∼
{

const for y � 1,

y−z�−1(y) for y � 1,
(10)

where �−1 stands for the inverse function of �. The opposite
behavior holds for φ > 0:

g(y) ∼
{

y−z�−1(y) for y � 1,

const for y � 1.
(11)
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Finally, the effective exponent as a function of y is obtained
from Eq. (6):

zeff(y) = z + ∂ ln g(y)

∂ ln y
. (12)

Therefore, for φ < 0 (disorder relevant), Eq. (10) yields

zeff(y) =
{

z for y � 1,

∂ ln �−1(y)/∂ ln y for y � 1,
(13)

and for φ > 0 (disorder irrelevant), we obtain from Eq. (11)

zeff(y) =
{

∂ ln �−1(y)/∂ ln y for y � 1,

z for y � 1.
(14)

A. Superuniversality

One would expect that the above crossover scenario, which
is well established for the growth law, would extend also
to the other observables. However, this expectation is in
conflict with the SU statement that all disorder dependence
in observables other than the growth law can be eliminated by
reparametrization of time through L(t,ε) [10]. Thus, according
to SU, for the autocorrelation function one should have

C(t,tw,ε) = G2(L(tw,ε)/L(tw,ε)), (15)

where G2 is the scaling function of the pure case. The validity
of SU is controversial, since the d = 1 results [7,16] clearly
demonstrate the absence of SU, while from the study of the
correlation function for d � 2, there is evidence both in favor
of [19–22] and against [9] SU validity. Recently, the validity of
SU has been extended to the geometrical properties of domain
structures [23].

In the next sections we present comprehensive numerical
results from large-scale simulations of ordering dynamics in
the RFIM in d = 2,3. We will analyze numerical results within
the above scaling framework, producing evidence against SU
validity.

III. NUMERICAL RESULTS FOR d = 2

A. Simulation details

We consider an RFIM on a two-dimensional square lattice,
with the Hamiltonian

H = −J
∑
〈ij〉

σiσj −
N∑

i=1

hiσi, σ = ±1, (16)

where 〈ij 〉 denotes a nearest-neighbor pair, and J > 0 is the
ferromagnetic exchange coupling. The random field hi = ±h0

is an uncorrelated quenched variable with a bimodal distribu-
tion

P (hi) = 1
2 [δ(hi − h0) + δ(hi + h0)] . (17)

The system evolves according to the Glauber kinetics, which
models nonconserved dynamics [2], with spin-flip transition
rates given by

w(σi → −σi) = 1
2

{
1 − σi tanh

[(
HW

i + hi

)
/T

]}
, (18)

where HW
i is the local Weiss field. All results in this paper

correspond to the limit T → 0 (J/T → ∞), while keeping
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FIG. 1. (Color online) Growth law in d = 2. The dashed line is
the t1/2 growth law.

the ratio ε = h0/T finite. In this limit the system undergoes
phase ordering in any dimension, down to d = 1 [16]. The
transition rates take the forms

w(σi → −σi) =
⎧⎨
⎩

1 for HW
i σi < 0,

0 for HW
i σi > 0,

1
2 [1−sgn(σihi) tanh(ε)]) for HW

i = 0,

(19)
showing that disorder affects the evolution through the ratio
ε = h0/T , as anticipated in Sec. II. Moreover, Eq. (19) allows
for an accelerated updating rule, with a considerable increase
in the speed of computation [24], by restricting updates to
the sites with HW

i σi � 0, whose number decreases in time as
1/L(t). The gain in the speed of computation becomes more
important the longer the simulation.

All statistical quantities presented here have been obtained
as an average over Nrun = 10 independent runs. For each
run, the system has different initial conditions and random
field configuration. We have considered the values of disorder
amplitude ε = 0,0.25,0.5,1,1.5,2,2.5 and we have carefully
checked that no finite size effects are present up to the final
simulation time when N = 80002 spins. In the pure case, since
coarsening is more rapid, we have taken N = 12 0002.

Numerical results for the growth law and the autocorrelation
function are presented in the following sections.

B. Growth law

We have obtained the characteristic L(t) from the inverse
density of defects. This is measured by dividing the number
of sites with at least one oppositely aligned neighbor by the
total number of sites.2 The plot of L(t,ε) vs t , in Fig. 1 shows
the existence of at least two time regimes, separated by a
microscopic time t0 of order 1. In the early-time regime (for
t < t0), there is no dependence on disorder and growth is fast.
This is the regime where the defects seeded by the random
initial condition execute rapid motion toward the nearby local

2We have checked that the same results are obtained by measuring
L(t) from the equal-time corrlation function.
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FIG. 2. (Color online) Effective exponent zeff vs t in d = 2. The
horizontal dashed lines indicate z, the plateau values of zeff .

minima. For ε > 0 and t > t0, there is a strong dependence
on disorder, producing slower growth and deviation from the
power-law behavior of the pure case (top line with circles in
Fig. 1).

In Fig. 2, we show the time dependence of the effective
exponent zeff(t,ε), defined by Eq. (5). For t > t0, this plot
shows the existence of an intermediate power-law regime,
characterized by a plateau where zeff is approximately con-
stant. This is followed by the late regime where zeff is clearly
time dependent. The disorder-dependent values of zeff on the
plateaus, denoted by z, are listed in Table I and plotted in
Fig. 3. We encountered a similar crossover in our study of the
d = 2 RBIM [9], i.e., a preasymptotic power-law regime with
a disorder-dependent exponent, followed by an asymptotic
regime where the growth law deviates from a power law.

The appearance of a disorder-dependent exponent z in the
intermediate regime suggests an upgrading of the crossover
picture, presented in Sec. II, by replacing the pure growth
exponent z by z in all the scaling formulas. Then, from Eq. (12)
it follows that zeff − z ought to depend only on y = L/λ.
Indeed, as Fig. 4 shows, it is possible to determine numerically
the quantity λ such that the plots of (zeff − z) vs L/λ, for
different disorder values, collapse on a single master curve.
The ε dependence of λ is displayed in Fig. 5 and is well
fitted by

λ ∼ ε−2. (20)

Comparing this with Eq. (7), the negative exponent implies
φ < 0 and, therefore, that disorder acts like a relevant scaling

TABLE I. Plateau exponent z for various disorder
strengths.

ε z

0 2
0.2 2.20
0.35 2.31
0.5 2.52
0.65 2.77
0.8 3.05

0 0.2 0.4 0.6 0.8
ε

2

2.5

3

z

FIG. 3. (Color online) z (taken from Fig. 2) vs ε. The red (gray)
line is the best fit z = 2.0 + 1.4ε1.35.

field. This is also confirmed by the behavior of zeff(y) in Fig. 4,
which is consistent with Eq. (13) but not with Eq. (14).

Fitting the data of Fig. 4 to the power law zeff − z = byϕ ,
we find b 
 0.0055 and ϕ 
 1.5. Hence, from the definition
of zeff in Eq. (5) it follows that

∂ ln t

∂L
= z + byϕ, (21)

which, after integrating with respect to L, yields

t = K(ε)Lzg(L/λ), (22)

where K(ε) is an ε-dependent prefactor. Indeed, when the data
of Fig. 1 are replotted in Fig. 6, as tL−z/K(ε) vs y, an excellent
data collapse on the master curve

g(y) ∼ exp

(
b

ϕ
yϕ

)
(23)

is obtained, with the values of K(ε) listed in Table II.
The plot of the scaling function g(y) illustrates quite

effectively (i) the existence of the crossover, and (ii) that our
numerical data reach deep into the asymptotic regime. The flat
part of the curve, where g(y) lies on the horizontal dashed
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FIG. 4. (Color online) Subtracted effective exponent (zeff − z) vs
L/λ. The dashed line is the best fit zeff − z = 0.0055(L/λ)1.5.
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FIG. 5. (Color online) Plot of λ vs ε.

line at g(y) = 1, corresponds to the preasymptotic power-law
regime [cf. Eq. (10)]. The sharp and fast increase of g(y), for
large y, corresponds to the crossover to the asymptotic growth
law

L

λ



[
ϕ

b
ln(t/λz)

]1/ϕ

, (24)

which corresponds to the Class 4 form of Eq. (2).
Summarizing, our main findings for the growth law in the

d = 2 case are as follows:
(1) Disorder is a relevant perturbation with respect to

purelike behavior.
(2) The corresponding growth law shows a clear crossover

from power-law to logarithmic behavior:

L(t,ε) ∼
{

t1/z if L � Lcr,

(ln t)1/ϕ if L � Lcr.
(25)

This differs from previously found results, since the preasymp-
totic power law is not purelike, due to the ε dependence
of the exponent z. This feature, also observed in the
d = 2 RBIM [9], means that disorder although globally
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FIG. 6. (Color online) Plot of tL−z/K(ε) vs L/λ with various
disorder values. The master curve obeys the exponential form of
Eq. (23).

TABLE II. Prefactor K(ε) for various disorder
strengths.

ε K

0.5 0.39
1.0 0.13
1.5 0.039
2.0 0.015

relevant, acts like a marginal operator in the neighborhood
of the pure fixed point [25].

Finally, we remark on the considerable numerical ad-
vanyage in using the effective exponent as a probe for the
crossover. In fact, while the switch from preasymptotic to
asymptotic behaviors in zeff takes place at about Lcr 
 λ, from
Eqs. (22) and (23), it follows that the condition byϕ/ϕ = 1
puts the crossover, when looking at the domain size, at the
much greater value Lcr 
 50λ, as is evident from Fig. 6.

C. Autocorrelation function and SU violation

The results presented above show that disorder affects the
growth law as an asymptotically relevant parameter. Therefore,
one would expect this to apply also to other observables.
However, as explained in Sec. II A, such an expectation would
be in conflict with claims of SU validity.

In this section, we study the autocorrelation function,
defined by

C(t,tw,ε) = 〈σi(t)σi(tw)〉, (26)

which is independent of i, due to space-translation invariance.
In Fig. 7 C(t,tw,ε) has been plotted against L/Lw, for ε =
0,0.5,0.65 and with different values of tw, chosen in such a
way that the ratio v = Lw/λ takes the three different values
v = 0,0.25,0.85. If SU were valid all the curves, irrespective
of the value of ε, should collapse on the ε = 0, or v = 0,
master curve. Instead, there is an evident ε dependence which
excludes SU validity. In addition, curves with the same value

1                                                                                                            10
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w
)
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1

C
(t

,t w
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ε=0.65 t
w

=18
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=43
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=10000

ε=0 t
w

=20000

FIG. 7. (Color online) Autocorrelation function in d = 2, for
disorder values and waiting times tw chosen so that v = Lw/λ takes
the three values v = 0,0.25,0.85 corresponding, from bottom to top,
to the three different master curves.
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FIG. 8. (Color online) Analogous to Fig. 7, with v = 0 (lower
master curve) and v = 0.25 (upper master curve).

of v do collapse, showing that the autocorrelation function
obeys the extended aging form

C(t,tw,ε) = h

(
L

Lw

,
λ

Lw

)
. (27)

The pure master curve, with v = 0, lies below the two
corresponding to v = 0.25 and v = 0.85. Figure 8 displays
a similar plot, with v = 0 and v = 0.25. The latter value is
obtained by combining the four different values of disorder
ε = 0.2,0.35,0.5,0.65 with appropriately chosen tw values.
Again, there are two distinct master curves for different v

values. The reported SU violation is in agreement with the
behavior of the autocorrelation function in the d = 1 RFIM
[16].

IV. NUMERICAL RESULTS FOR D = 3

As mentioned above, in previous studies of the d = 3 RFIM
[19,20] SU has been found to hold. Here, instead, we present
results for this system that produce evidence for the same
pattern of SU violation observed in the d = 2 case.
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FIG. 9. (Color online) Growth law in d = 3 for different disorder
values.
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FIG. 10. (Color online) Effective exponent zeff (t,ε) in d = 3.

Simulations were made on a system with N = 3003 spins
on a cubic lattice, evolving with the transition rates (19) and
averaging over Nrun = 20 runs, each with different initial
conditions and random field configuration. We have considered
the three disorder values ε = 0.5,1,2. Although the quality of
the data does not allow for an analysis of high precision as in
the d = 2 case discussed above, nonetheless the main features,
including the lack of SU validity, do emerge quite clearly.

Let us begin with the growth law. The L(t) data have
been plotted in Fig. 9. The qualitative behavior is the same
as in Fig. 1, namely, as disorder increases, growth slows
down. The corresponding effective exponent zeff is displayed in
Fig. 10. For the smaller values, ε = 0.5 and ε = 1, the overall
behavior is qualitatively similar to that of Fig. 2, showing a
crossover from power-law (with disorder-dependent exponent)
to logarithmic behavior, as in Eq. (25). The data for the highest
disorder value ε = 2, instead, display a different behavior. The
preasymptotic power-law regime disappears and is replaced
by a pronounced peak in the effective exponent, which reveals
strong pinning of the interfaces. Therefore, the nature of the
crossover is qualitatively different for weak and for strong
disorder. The detailed investigation of this feature is delayed
to future work.
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FIG. 11. (Color online) Autocorrelation function in d = 3 for
different ε and tw values.
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The data for the autocorrelation function are displayed
in Fig. 11. As stated above, the quality of the data is not
sufficient to carry out a precise scaling analysis as in Sec. III.
In particular, it is not possible to extract the characteristic
length λ reliably and to organize the plot with a choice of tw
values aimed to keep constant the ratio Lw/λ. However, the
evident ε dependence in Fig. 11 is quite sufficient to exclude
SU validity.

As a final remark, it should be noted that with the algorithm
illustrated in Sec. III A we consider a quench to T = 0, while in
Refs. [19,20] quenches to T > 0 were considered. Therefore,
it remains an open question, to be investigated, whether the
discrepancy between ours and previous results may be related
to the role of the final temperature.

V. SUMMARY AND DISCUSSION

Let us conclude this paper with a summary and discussion of
our results. We have recently initiated a large-scale simulation
study of nonconserved domain growth in disordered systems.
Our study was motivated by some ambiguities existing in the
available literature:

(a) The precise nature of the asymptotic growth law in the
standard models (RBIM, RFIM, etc.) was unclear.

(b) Quantities like the equal-time correlation function (or
its Fourier transform, the structure factor) showed SU, i.e.,
the scaling functions were independent of disorder. It was not
clear to us why the crossover in the domain growth law was not
accompanied by a corresponding crossover in the correlation
function.

(c) There were very few studies of two-time quantities like
the autocorrelation function and the response function.

With this background, we investigated two-time quantities
in the d = 1,2 RBIM [7,9] and, with the present paper, we have
extended the investigation to the d = 2,3 RFIM with Glauber
spin-flip kinetics. Our results can be summarized as follows:

(i) First, we have formulated a general scaling framework
for the study of disordered domain growth. The framework is
based on the RG concept of asymptotically relevant parameter,
and proved very convenient for interpreting our earlier RBIM
results [9]. In this paper, we have used this framework to
successfully understand crossovers in the RFIM.

(ii) Second, we find that there is a crossover in the domain
growth law from a preasymptotic regime showing power-law
growth with a disorder-dependent exponent [L(t) ∼ t1/z(ε)]
to an asymptotic regime with logarithmic growth [L(t) ∼
(ln t)1/ϕ with ϕ 
 1.5]. Following the analysis of Ref. [21],
this can be related to an underlying crossover from logarithmic
dependence of the free-energy barriers on the domain size
to power-law dependence. The mechanism producing the
power-law dependence is particularly clear in d = 1, where
the interface motion can be mapped into the random walk in a
random potential of the Sinai type [16,27].

(iii) Third, and perhaps most important, we find that
the autocorrelation function does not obey SU. The scaling
function shows a crossover corresponding to the crossover in
the growth law.

In the light of the above results, what is the path ahead?
We are currently investigating other disordered systems to
confirm whether the domain growth scenario is consistent
with the scaling picture developed here. It is also relevant
to reexamine earlier results demonstrating SU for the equal-
time correlation function. It is possible that the equal-time
correlation function has a delayed crossover and may violate
SU in larger and longer simulations. Alternatively, it could
be that the equal-time correlation function is a relatively crude
and featureless characteristic of the morphology. It may be
worthwhile to study more sophisticated measures of the mor-
phology [26], which could show differences between pure and
disordered phase-ordering systems. Our studies demonstrate
that there remain many unanswered questions in this area.
We hope that our work will motivate fresh interest in these
problems.
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