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Multiple extinction routes in stochastic population models
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Isolated populations ultimately go extinct because of the intrinsic noise of elementary processes. In
multipopulation systems extinction of a population may occur via more than one route. We investigate this
generic situation in a simple predator-prey (or infected-susceptible) model. The predator and prey populations
may coexist for a long time, but ultimately both go extinct. In the first extinction route the predators go extinct first,
whereas the prey thrive for a long time and then also go extinct. In the second route the prey go extinct first, causing
a rapid extinction of the predators. Assuming large subpopulation sizes in the coexistence state, we compare
the probabilities of each of the two extinction routes and predict the most likely path of the subpopulations to
extinction. We also suggest an effective three-state master equation for the probabilities to observe the coexistence
state, the predator-free state, and the empty state.
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I. INTRODUCTION

Isolated populations ultimately go extinct with probability
one, even in the absence of adverse environmental variations,
because of the presence of an absorbing state at zero population
size and the intrinsic noise of elementary processes. Population
extinction risk is an important negative factor in viability of
small populations [1,2], whereas extinction of an endemic
disease from a community [1] is of course a good thing. For
decades, quantitative analysis of population extinction, caused
by intrinsic and extrinsic noises, has been in the focus of
attention from bio-mathematicians (see, e.g., Ref. [2] for a
review). More recently, it has also attracted much attention
from physicists [3–24] as a highly relevant example of a rare
large fluctuation far from thermal equilibrium.

In multipopulation systems extinction of a population may
occur via more than one route. In this paper we analyze
this generic situation in a simple predator-prey model where
the predators need the prey for survival. The same model
can describe spread of an infectious disease in an isolated
community. Although the predator and prey populations (or
infected and susceptible populations) may coexist for a long
time, they ultimately both undergo extinction and this happens
via one of two routes. In the first route, which can be
called sequential, the predators go extinct first, whereas the
prey thrive for a long time and then also go extinct. In the
second route, which can be called (almost) parallel, the prey
go extinct first, causing a rapid extinction of the predators.
Assuming large subpopulation sizes in the coexistence state,
we apply a Wentzel-Kramers-Brillouin (WKB) approximation
to the pertinent master equation. In this way we evaluate the
probabilities of each of the two extinction routes and predict the
most likely path of the subpopulations on the way to extinction.
We also suggest an effective three-state master equation for the
evolution of the probabilities to observe the coexistence state,
the predator-free state, and the empty state.

II. MODEL AND MEAN-FIELD DYNAMICS

We assume that predators (foxes F ) and prey (rabbits R)
are well mixed in space so that spatial degrees of freedom are

irrelevant. The rabbits reproduce naturally, whereas the foxes
reproduce only by predation. The foxes and rabbits die or leave
with constant per capita rates, which are, in general, different
for each population. We also account, in a model form, for the
competition of rabbits over resources by adding the elementary
process 2R → R, which becomes more effective at large
population sizes. By taking into account the competition, this
model generalizes the classical Lotka-Volterra model [25]. The
elementary processes and their rates are described in Table I.
We chose the units of time so that the per capita death rate of
the foxes is equal to 1. The large parameter N determines the
typical scaling of the subpopulation sizes (see below) and we
will assume a strong inequality N � 1 throughout the paper.

The mean-field equations for this model are

Ṙ = (a − b)R − 1

�N
RF − 1

2N
R2, Ḟ = 1

�N
RF − F.

(1)

The same model can be reinterpreted to describe the spread
of an infectious disease in an isolated community. Here we
reinterpret the rabbits as the susceptibles and the foxes as
the infected. As in the conventional susceptible-infected (SI)
model with population turnover [11,16,26–28], a susceptible
individual can become infected upon contact with another
infected, while infected individuals are removed (recover with
immunity, leave, or die) with a constant per capita rate.
In the conventional SI model the susceptibles arrive from
outside. In the modified SI model, presented here, there are
no arrivals from outside, but the susceptibles can reproduce by
giving birth. They are also removed (die or leave), as in the
conventional SI model. Finally, they compete for resources,
2S → S, so their population size remains bounded. See the
elementary processes and their rates in Table II, where we
measure time in the units of per capita removal rate of the
infected. The mean-field equations for the modified SI model
are

Ṡ = (a − b)S − 1

�N
SI − 1

2N
S2, İ = 1

�N
SI − I. (2)

These of course coincide with Eqs. (1) upon the change of S

to R and I to F .
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TABLE I. Predator-prey model.

Process Type of transition Rate

Reproduction of rabbits R → 2R a

Predation and reproduction of foxes F + R → 2F 1/(�N )
Death of rabbits R → 0 b

Death of foxes F → 0 1
Competition among rabbits 2R → R 1/N

For concreteness, we will use the predator-prey notation
in the following. Introducing the rescaled population sizes
x = R/N and y = F/N , we can rewrite the mean-field
equations (1) as

ẋ = (a − b)x − xy

�
− x2

2
, ẏ = xy

�
− y . (3)

The mean-field equations are fully characterized by two
parameters a − b and �. We will be interested only in the case
of a − b > 0 and � < �∗ = 2(a − b), when Eqs. (3) have
three fixed points corresponding to non-negative population
sizes. The fixed point M1 (x̄1 = 0, ȳ1 = 0) describes an empty
system. It is a saddle point: attracting in the y direction (when
there are no rabbits) and repelling in the x direction. The
fixed point M2 (x̄2 = �∗, ȳ2 = 0) describes an established
population of rabbits in the absence of foxes. It is also a
saddle point: attracting in the x direction (when there are
no foxes) and repelling in a direction corresponding to the
introduction of a small number of foxes into the system. The
third fixed point M3 [x̄3 = �, ȳ3 = �(�∗ − �)/2] is attracting
and describes the coexistence state. It is a stable node for
� > �0 = 4(

√
1 + a − b − 1) and a stable focus for � < �0.

Note that �0 < �∗ for any a > b. Note also that ȳ3 is a
nonmonotonic function of �. It vanishes at � = 0 and �∗
and reaches a maximum �2

∗/8 at � = �∗/2, corresponding
to the optimal predation rate. Figure 1 shows two examples
of mean-field trajectories: for �0 < � < �∗ [Fig. 1(a)] and
� < �0 [Fig. 1(b)]. The characteristic relaxation time scale tr
of the coexistence state is determined by the real part of the
eigenvalues of the linear stability matrix at M3.

Let us compare the mean-field dynamics of this model with
those of the classical Lotka-Volterra model [25] and of the SI
model with population turnover [11,16,26]. The competition
among the rabbits eliminates one undesirable feature of the
Lotka-Volterra model: the unlimited proliferation of rabbits in
the absence of foxes. Furthermore, there are no neutral cycles
in this model, in contrast to the Lotka-Volterra model. The
attracting fixed point M3, which describes a unique coexistence
state of the rabbits and foxes, appears instead, with either
oscillatory (underdamped) or nonoscillatory (overdamped)

TABLE II. Susceptible-infected model for an isolated community.

Process Type of transition Rate

Reproduction of susceptibles S → 2S a

Infection I + S → 2S 1/(�N )
Removal of susceptibles S → 0 b

Removal of infected I → 0 1
Competition among susceptibles 2S → S 1/N
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FIG. 1. (Color online) Mean-field phase trajectories of the system
for a = 2, b = 1, and two different values of �: (a) � = 1.8, where
M3 is a stable node, and (b) � = 0.4, where M3 is a stable focus.

character of phase trajectories approaching it. Taking into
account the discreteness of rabbits and foxes and of the
stochastic character of their interaction, this leads to an
exponentially long lifetime of the coexistence state, in contrast
to a much shorter, power-law lifetime, which is characteristic
of the classical Lotka-Volterra model [7,15].

On the other hand, the mean-field dynamics (2) is quite
similar to that of the conventional SI model with population
turnover [11,16,26], except that the fixed point M1(0,0), which
is absent in the conventional SI model, now appears. As this
fixed point is repelling in the x direction, its presence does
not make much difference in the mean-field description of the
coexistence (or, in the context of the SI model, of the endemic
state of the disease in the population).

III. STOCHASTIC ANALYSIS

A. Two extinction routes

The situation, however, changes considerably when one
accounts for the stochasticity. Here the empty system is an
absorbing state describing extinction of both subpopulations.
Having reached this state via a rare large fluctuation, the system
will stay there forever. It is this empty state that represents the
only true steady state of this system. (This is different from the
conventional SI model, where the true steady state describes
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FIG. 2. (Color online) Two different stochastic realizations of
the model for a = 2, b = 1, � = 0.4, and N = 120. Shown are the
population sizes of rabbits (solid lines) and foxes (dashed lines) versus
time (measured in Monte Carlo steps). (a) The foxes go extinct first,
whereas the rabbits get established around the fixed point M2 and,
after a very long time, also go extinct (not shown). (b) The rabbits go
extinct first, causing a rapid extinction of the foxes.

an established infection-free population.) Importantly, the
absorbing state at zero can typically be reached, at N � 1,
via one of two routes. The first route can be called sequential:
The foxes go extinct first, whereas the rabbits thrive for a long
time and then also go extinct. The presence of this route is
caused by the fact that all fox-free states represent absorbing
states for the foxes. The second route is (almost) parallel: The
rabbits go extinct first, causing a rapid (almost deterministic)
extinction of the foxes.

The two different routes to extinction are clearly seen in
Figs. 2(a) and 2(b), which show two different realizations of the
stochastic processes, listed in Table I, for the same set of rate
coefficients and for the same initial conditions. The parameters
are the same as in Fig. 1(b). In Fig. 2(a) the foxes go extinct
first, whereas the rabbit population gets established. Then the
rabbits will also go extinct after a very long time (not shown
in the figure). In Fig. 2(b) the rabbits go extinct first, causing a
rapid extinction of the foxes. Figures 3(a) and 3(b) shows the
same trajectories in the R-F plane. One can notice in Figs. 2(b)
and 3(b) that the population of rabbits is very small close to the
time when the foxes go extinct. This feature, reproducible in
many stochastic simulations, will obtain a natural explanation

FIG. 3. (Color online) Same as in Fig. 2, but on the R-F plane.

in the WKB theory (see Sec. III C 3). More generally, the WKB
theory will enable one to compare the probability of each of
the two extinction routes, to predict the most likely path of the
rabbits and foxes to extinction, and to evaluate the mean time
to extinction of each subpopulation.

B. Master equation and long-time dynamics

Let Pm,n(t) be the probability to observe, at time t , m rabbits
and n foxes, where m,n = 0,1,2, . . . . The evolution of Pm,n(t)
is described by the master equation

Ṗm,n = ĤPm,n = a[(m − 1)Pm−1,n − mPm,n]

+ (1/�N )[(m + 1)(n − 1)Pm+1,n−1 − mnPm,n]

+ b[(m + 1)Pm+1,n − mPm,n]

+ (n + 1)Pm,n+1 − nPm,n

+ (1/2N )[(m + 1)mPm+1,n − m(m − 1)Pm,n], (4)

where Pi,j = 0 when any of the indices is negative. There are
three quantities of interest here describing extinction of the
subpopulations involved. The probability of extinction, by time
t , of foxes at any number of rabbits is equal to

∑∞
m=0 Pm,0(t).

The evolution of this quantity in time is described by the
equation

d

dt

∞∑
m=0

Pm,0(t) =
∞∑

m=0

Pm,1(t), (5)

021140-3



OMER GOTTESMAN AND BARUCH MEERSON PHYSICAL REVIEW E 85, 021140 (2012)

directly following from Eq. (4). The right-hand side of Eq. (5)
is simply the probability of death of the last remaining fox at
any number of rabbits.

In its turn,
∑∞

n=0 P0,n(t) is the probability of extinction, by
time t , of rabbits at any number of foxes. This quantity evolves
in time according to

d

dt

∞∑
n=0

P0,n(t) = 1

�N

∞∑
n=1

nP1,n(t) + b

∞∑
n=0

P1,n(t). (6)

The first and second terms on the right-hand side are the
probabilities of predation and natural death of the last
remaining rabbit, respectively. Finally, the probability P0,0(t)
of extinction of both rabbits and foxes by time t is described
by the equation

dP0,0

dt
= bP1,0(t) + P0,1(t). (7)

At N � 1 and at times much longer than the relaxation
time tr of the mean-field theory, the quantities that appear in
Eqs. (5)–(7) become sharply peaked around the corresponding
fixed points of the mean-field theory. The structure of these
peaks is affected by the presence or absence of absorbing
states. At long times, the probability distribution Pm,0(t) with
m > 0 (which describes the dynamics of rabbits conditional on
prior extinction of the foxes) is a one-dimensional distribution
peaked at the fixed point M2 of the mean-field theory. The
probability distribution Pm,n(t) with m,n > 0 (which describes
the long-time dynamics of the coexisting rabbits and foxes) is
a two-dimensional distribution peaked at the fixed point M3

of the mean-field theory. Finally, the extinction probability
of both subpopulations P0,0(t) corresponds to a Kronecker-δ
probability density. Not only the structure, but the long-time
dynamics of these three distributions are different. To clearly
see this point, let us define the total probability contents of the
vicinities of each of the fixed points M1, M2, and M3:

P1(t) = P0,0(t), (8)

P2(t) =
∞∑

m=1

Pm,0(t), (9)

P3(t) =
∞∑

m=1

∞∑
n=1

Pm,n(t). (10)

At N � 1 and t � tr the sums in Eqs. (9) and (10) are mostly
contributed to by close vicinities of M2 and M3, respectively.
The long-time evolution of P1, P2, and P3 is described by an
effective three-state master equation

Ṗ1(t) = r21P2(t) + r31P3(t),

Ṗ2(t) = −r21P2(t) + r32P3(t), (11)

Ṗ3(t) = −(r31 + r32)P3(t),

where rij is the (yet unknown) transition rate from the vicinity
of the fixed point i to the vicinity of the fixed point j . Let the
initial condition correspond to the coexistence state around M3:

[P1(0),P2(0),P3(0)] = (0,0,1). (12)

Then the solution of Eqs. (11) is

P1(t) = 1 + r32e
−r21t + (r31 − r21)e−(r31+r32)t

r21 − r31 − r32
, (13)

P2(t) = r32[e−(r31+r32)t − e−r21t ]

r21 − r31 − r32
, (14)

P3(t) = e−(r31+r32)t . (15)

Once the transition rates r31, r32, and r21 are known,
Eqs. (13)–(15) provide a valuable coarse-grained description
of the stochastic system in terms of the long-time evolution
of the probabilities to observe the coexistence state around
M3, the fox-free state around M2, and the extinction state
at M1. The coexistence probability P3(t) goes down to zero
exponentially in time. The probability P1(t) of extinction
of both subpopulations increases monotonically with time,
exhibiting two different exponents, and ultimately reaches 1.
Finally, the probability of the fox-free stateP2(t) first increases
with time, reaches a maximum, and then goes down to zero.
At intermediate times tr � t � min [1/r21,1/(r31 + r32)],
Eqs. (13)–(15) read

P1(t) � r31t, P2(t) � r32t, P3(t) � 1 − (r31 + r32)t.

(16)

During this stage of the dynamics, P1(t) and P2(t) grow
linearly with time, whereas the transition 2 → 1 does not show
up. What happens at longer times? The transition rates are
usually widely different in magnitude. According to our WKB
calculations, presented below, r21 � r31 + r32. Then, at times
t � 1/(r31 + r32), Eqs. (13)–(15) become

P1(t) � 1 − r32e
−r21t

r31 + r32
, (17)

P2(t) � r32e
−r21t

r31 + r32
, (18)

P3(t) � 0. (19)

Now there is a probability current from state 2 to state 1,
describing extinction of rabbits in the absence of foxes, but the
transition rates r31 and r32 are still present in the equations.

It is common (see, e.g., Ref. [2]) to characterize the
extinction risk of a stochastic population in terms of its mean
time to extinction. From Eqs. (13)–(15), the mean time to
extinction of foxes is

τF =
∫ ∞

0
dt t[Ṗ1(t) + Ṗ2(t)] = −

∫ ∞

0
dt tṖ3(t)

= 1

r31 + r32
, (20)

whereas the mean time to extinction of both subpopulations is

τRF =
∫ ∞

0
dt tṖ1(t) = r21 + r32

r21(r31 + r32)
. (21)

This dynamics is encoded in the spectral properties of the
linear operator Ĥ [see Eq. (4)] as follows. Let λi be the
eigenvalues and π (i)

m,n the eigenstates of Ĥ . These are defined
by the relations

Ĥπ (i)
m,n = −λiπ

(i)
m,n, i = 1,2, . . . ,
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so that

Pm,n(t) =
∞∑
i=1

Ciπ
(i)
m,ne

−λi t ,

where the constants Ci are determined by the initial condition
Pm,n(0). Let us order the eigenvalues so that λ1 < λ2 <

λ3 < · · ·. The true (empty) steady state corresponds to
the only zero eigenvalue: λ1 = 0, whereas π (1)

m,n = δm0δn0.
Equations (13)–(15) and the inequality r21 < r31 + r32 imply
that, at N � 1, the next two eigenvalues are λ2 = r21 and
λ3 = r31 + r32. The quantity r21 was found in Refs. [14,18]
and it is exponentially small in N :

r21 �
√

bN

π

(a − b)2

a
exp

[
− 2N

(
a − b + b ln

b

a

)]
. (22)

The corresponding eigenvector πm,0δn0 is the quasistationary
distribution of the one-population model R → 2R, R → 0,
and 2R → R, where the predators are absent [18]. The
eigenvalue r31 + r32 is also exponentially small in N (see
below). It corresponds to the quasistationary distribution πm,n

at n > 0, sharply peaked at the fixed point M3. Our main
effort in the following will be to evaluate, with exponential
accuracy, the transition rates r31 and r32 that contribute to the
eigenvalue r31 + r32. As all the effective transition rates rij are
exponentially small in N � 1, we can drop the right-hand side
in the eigenvalue problem

Ĥπm,n = −(r31 + r32)πm,n, n > 0 (23)

and arrive at the quasistationary equation

Ĥπm,n � 0, m > 0, n > 0. (24)

C. WKB approximation

1. General

For N � 1, Eq. (24) can be approximately solved via the
WKB ansatz

πm,n = exp[−NS(x,y)], (25)

where S is assumed to be a smooth function of the continuous
variables x = m/N and y = n/N . The use of the WKB ap-
proximation for finding stationary or quasistationary solutions
of master equations with a discrete state space was suggested in
Refs. [29–32]. At present, this approximation, in the space of
population sizes or in the momentum space, has become a stan-
dard tool in the analysis of rare large fluctuations of stochastic
populations [2,4,8,10,11,13,14,16,17,20–24,33–37]. Plugging
Eq. (25) into Eq. (24) and Taylor expanding S to first order
around (x,y), we arrive at a zero-energy Hamilton-Jacobi
equation H (x,y,∂xS,∂yS) = 0, with the Hamiltonian

H (x,y,px,py)

= ax(epx − 1) + bx(e−px − 1) + xy

�
(epy−px − 1)

+ y(e−py − 1) + x2

2
(e−px − 1). (26)

The trajectories are given by the Hamiltonian equations for the
coordinates x and y and conjugate momenta px and py :

ẋ = axepx −
(

bx + x2

2

)
e−px − xy

�
epy−px ,

ẏ = xy

�
epy−px − ye−py ,

(27)
ṗx = (b + x)(1 − e−px ) + y

�
(1 − epy−px ) + a(1 − epx ),

ṗy = 1 − e−py + x

�
(1 − epy−px ),

where we are only interested in zero-energy trajectories. The
(zero-energy) invariant hyperplane px = py = 0 corresponds
to the mean-field dynamics (3). The invariant hyperplanes
x = 0 and y = 0 correspond to the rabbit-free and fox-
free dynamics, respectively. The Hamiltonian problem is
characterized by three independent parameters a, b, and �.

The Hamiltonian flow (27) has five zero-energy fixed
points:

M1 = (0,0,0,0), M2 = (�∗,0,0,0),

M3 = [�,�(�∗ − �)/2,0,0], F1 = [0,0,ln(b/a),0], (28)

F2 = [�∗,0,0,−ln(�∗/�)].

The zero-momentum fixed points M1, M2, and M3 correspond
to the three fixed points of the mean-field equations (3), so
we keep the same notation for them. The two other fixed
points F1 and F2 are fluctuational fixed points describing a
fox-free state at a nonzero number of rabbits F2 and an empty
system F1. Fluctuational fixed points have a nonzero px or py

component and appear in a broad class of stochastic population
models exhibiting extinction in the absence of an Allee effect
[2,10,11,14,17,18,20,22,24,27,38]. They play an important
role in the calculations of the quasistationary distributions and
the mean time to extinction. It is mostly their presence that
makes the WKB theory of population extinction distinct from
the WKB theory of noise-induced switches between different
states that are stable in the mean-field theory [39].

To determine S(x,y) in Eq. (25), one should calculate
the action accumulated along the (zero-energy) activation
trajectory in the phase space of the Hamiltonian equations (27)
that exits the fixed point M3 and ends at (x,y):

S(x,y) =
∫ (x,y)

M3

pxdx + pydy,

and then minimize the result with respect to px and py at
the end point (x,y). To evaluate the transition rates r31 and
r32, we need to evaluate πm,n at points (x = 0,y = 0) and
(x = �∗,y = 0), respectively. As in many other stochastic
population models, there are no phase trajectories that would
start at M3 and end at fixed points M1 or M2. There are,
however, instantonlike activation trajectories that start, at
t = −∞, at M3 and enter, at t = ∞, the fixed point F1 or
F2, respectively. The accumulated actions S31 and S32 along
these instantons,

S31 =
∫ F1

M3

pxdx + pydy, S32 =
∫ F2

M3

pxdx + pydy,
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yield, with exponential accuracy, the transitions rates r31

and r32:

r31 ∼ exp(−NS31), r32 ∼ exp(−NS32). (29)

The one-dimensional quasistationary distribution πm,0δn,0,
corresponding to the long-lived population of rabbits in
the absence of foxes, corresponds to another instantonlike
trajectory: the one connecting the fixed points M2 and F1

[14,18]. The accumulated action

S21 =
∫ F1

M2

pxdx = 2

(
a − b + b ln

b

a

)
(30)

yields the transition rate r21, which agrees, up to a pre-
exponential factor, with Eq. (22). (See Refs. [14,18] for
details.)

2. Analytic result for S32 near bifurcation � = �∗

Because of the lack of an independent integral of motion
in addition to the Hamiltonian, the canonical equations (27)
are nonintegrable analytically for a general set of parameters
a, b, and �. Close to the bifurcation � = �∗, however, the
fixed points M3 and F2 become very close to each other and
the action S32 can be calculated perturbatively by exploiting
the time separation property uncovered in Refs. [10,11]. Let us
define the bifurcation parameter δ = 1 − �/�∗. For δ � 1, the
fixed points M3 and F2 become M3 � [�∗(1 − δ),δ�2

∗/2,0,0]
and F2 � (�∗,0,0, − δ). Motivated by these expressions, we
assume the following scalings: x = �∗ + δ q1, y = δ�2

∗q2/2,
px = δ2p1, and py = δp2, where q1, q2, p1, and p2 are
(noncanonical) rescaled variables. The equations of motion
become, in the leading order in δ,

q̇1 = −�∗
2

(q1 + �∗q2), q̇2 = δq2

(
1 + 2p2 + q1

�∗

)
,

ṗ1 = �∗
2

(p1 − q2p2), ṗ2 = δ

(
p1 − q1p2

�∗
− p2 − p2

2

)
.

(31)

The dynamics of q1 and p1 is fast compared to that of q2

and p2. As a result, q1 and p1 adiabatically follow the slowly
varying q2 and p2: q1 = −�∗q2 and p1 = q2p2. Plugging these
expressions in the equations for q2 and p2, we obtain equations

q̇2 = δq2(1 + 2p2 − q2), ṗ2 = δp2(2q2 − 1 − p2), (32)

derivable from the reduced universal Hamiltonian
Hr (q2,p2) = δq2p2(p2−q2+1) [10,11,14,38]. This problem
is easily soluble and one obtains

S32 � δ2�2
∗

2

∫ 0

1
(q2 − 1)dq2 = (�∗ − �)2

4
. (33)

3. Numerical calculations of S31 and S32

For a general set of parameters a, b, and �, one can find the
instantons M3F1 and M3F2 numerically: either by shooting
[10,11] or by iterating the equations for ẋ and ẏ forward in
time and equations for ṗx and ṗy backward in time [4,24,40].
Here we employed the shooting method and explored different
parts of the parameter space a, b, and �. Figure 4 shows typical
examples of the numerically found instantons M3F1 and M3F2

in the case when M3 is a node. Figures 5 and 6 refer to the
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−
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FIG. 4. (Color online) Numerically found instantons M3F1 and
M3F2 for a = 2, b = 1, and � = 1.8, when the fixed point M3 is a
node. Shown are the (a) xy projections and (b) pxpy projections.

case when M3 is a focus. As one can see, the instanton M3F2

is qualitatively similar, in both regimes, to that found in the
conventional SI model [11]. The instanton M3F1 is different,
as it corresponds to extinction of both subpopulations, which
is absent in the conventional SI model.

Note that Fig. 6(a) resembles Fig. 3(a) and Fig. 5(a)
resembles Fig. 3(b). In particular, the instanton M3F2 passes
close to the point (0,0). This explains the feature observed, for
the same set of parameters a, b, and �, in stochastic simulations
[see Fig. 2(a)]. As in other stochastic systems exhibiting rare
large fluctuations, one should expect that by averaging over a
large number of stochastic trajectories, conditional on a given
extinction route, one will obtain the corresponding instanton
up to an error that vanishes as N → ∞.
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FIG. 5. (Color online) Numerically found instanton M3F1 for
a = 2, b = 1, and � = 0.4, when the fixed point M3 is a focus.
Shown are the (a) xy projection and (b) pxpy projection.
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FIG. 6. (Color online) Numerically found instanton M3F2 for
a = 2, b = 1, and � = 0.4, when the fixed point M3 is a focus.
Shown are the (a) xy projection and (b) pxpy projection.

Figure 7(a) shows the accumulated actions S31 and S32 for
fixed a = 2 and b = 1 and different values of � (parametrized
by δ = 1 − �/�∗). The first observation is that S31 > S32

for all δ, implying that the effective transition rate r32 is
exponentially greater than r31. As expected, S32 vanishes at
δ → 0 and 1 and has a maximum close to δ = 1/2, or � =
�∗/2. This behavior follows that of the mean-field population
size of foxes in the coexistence state. The accumulated action
S31 behaves differently: It has a maximum at δ → 0 (that is, at
� → �∗), decreases monotonically with an increase of δ, and
tends to zero as δ approaches 1 (that is, � approaches 0).
This behavior can be qualitatively understood from the �

dependence of the fixed points [see Eq. (28)]. There is,
however, one surprising feature here. As δ approaches zero, the
fixed point M3 becomes closer and closer to the fixed point M2.
One might expect, therefore, that the instanton M3F1 and the
accumulated action S31 would approach the instanton M2F1

and the action S21, respectively. This is not what happens.
Extrapolating the numerically calculated values of S31 toward
δ = 0, we obtain S31(δ = 0) � 0.48. This is considerably less
than S21(δ = 0) = 0.6137 . . ., which is obtained from Eq. (30)
[see Fig. 7(a)]. Furthermore, the numerically found instantons
M3F1 at small δ are markedly different from the instanton
M2F1 for which y ≡ py ≡ 0. Not only do the instantons M3F1

exhibit relatively large intermediate values of y and py , but the
maximum value of py along the instanton actually increases
as δ decreases. That is, as δ → 0, or � → �∗, the fluctuations
in the number of foxes play an important role in the joint
extinction of the rabbits and foxes.

We also observed these features for other values of param-
eters a, b, and � from the coexistence region 0 < � < �∗. For
example, Fig. 7(b) shows the δ dependence of the accumulated
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FIG. 7. (Color online) Accumulated actions S31 (solid line) and
S32 (dashed line) as functions of δ = 1 − �/�∗ for a fixed b = 1 and
two different values of a: (a) 2 and (b) 3. The dotted lines show the
analytical asymptote from Eq. (33). The diamonds denote the values
of S21 from Eq. (30).

actions S31 and S32 for a = 3 and b = 1. Here the two actions
are very close to each other in a broader region of δ, but the
double inequality S32 < S31 < S21 still holds. Furthermore, it
continues to hold when a is only slightly greater than b (not
shown here).

When amplified by the very large factor N � 1 in the
exponent [see Eq. (29)] the double inequality S32 < S31 < S21

leads to

r21 � r31 � r32, (34)

implying that the sequential extinction route (foxes first,
rabbits second) is much more likely than the (almost) parallel
extinction route. Using the inequality r32 � r31, we can further
simplify Eqs. (17)–(21). In particular, the mean time to
extinction of foxes becomes simply τF � 1/r32, whereas the
mean time to extinction of both subpopulations is τRF � 1/r21.
Here the quantities τF and τRF are determined by the kinetic
bottlenecks of the effective transitions, as expected. However,
for a sufficiently high predation rate and not too large N , the
transition rates r31 and r32 are comparable and Eqs. (17)–(21)
should be used in their complete form.

4. Proximity of instantons M3 F1 and M3 F2 at small �

As is evident from Fig. 7, the actions S31 and S32 approach
each other closely for sufficiently large δ, that is, for high pre-
dation rates. The reason for it becomes clear upon comparison
of the instantons M3F1 and M3F2 for sufficiently small � (see
Fig. 8). One can see that the instanton M3F2 almost coincides
with the instanton M3F1 until, close to the fixed point F1, it
abruptly changes its direction and goes toward the fixed point
F2. On the latter segment of the trajectory the values of y and
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FIG. 8. (Color online) Projections (a) xy and (b) pxpy of the
instantons M3F1 (solid lines) and M3F2 (dashed lines) for a = 3,
b = 1, and � = 1.5. For these parameters δ = 0.625 and the actions
S31 and S32 are very close [see Fig. 7(b)].

px stay close to zero, so the contribution of this segment to the
action S32 is negligible. In other words, the most likely route to
extinction of the foxes in this regime of parameters involves a
drastic decrease in the number of rabbits: almost all the way to
their extinction. Then, a few remaining rabbits start reproduc-
ing, at a very small number of foxes, and the rabbit population
gets reestablished. Note that, in the WKB formalism, the
reestablishment of the rabbits, accompanied by extinction of
the foxes, occurs via the fluctuational fixed point F2 rather
than via directly approaching the mean-field point M2.

5. Two modifications of the model

One central result of this work is the strong inequality
r31 � r32 observed in most of the parameter space that we
explored. That is, the sequential extinction route (first the
predators and then, after a long time, the prey) is usually
much more likely than the (almost) parallel route. In other
words, the predators are usually much more vulnerable in
terms of extinction than their prey. In retrospect, this feature
is hardly surprising: As the predators are dependent on their
prey for survival, they can be at best as resilient in terms of
extinction as the prey. (This also gives an intuitive explanation
to the proximity of the instantons M3F2 and M3F1 at high
predation rates, reported in Sec. III C 4.) To get insight into
whether this feature will hold for other predator-prey models,
we introduced two minor modifications of our model, each
of them endowing the predators with more resilience but
still keeping them dependent on the prey for survival. In one
modification we added a direct reproduction process F → 2F

with rate d < 1. This can model a large amount of additional
small prey for the foxes, say, mice. The direct reproduction
reduces the effective death rate of the foxes. Still, as long as
d < 1, the foxes go extinct deterministically in the absence
of rabbits. In another modification of the model we replaced
the predation process F + R → 2F by a more efficient one
F + R → 3F . Our numerics showed that for both of these
modified models, the inequality S3,1 > S3,2 continues to hold.
Furthermore, in both models we observed, for sufficiently high
predation rates, the convergence of the instantons M3F2 and
M3F1 to each other until a close vicinity of the fixed point F1

is reached. A difference between the original model and the
modified ones is that, as we improve the conditions for the
predators, this convergence occurs at lower predation rates.

IV. CONCLUSIONS

We considered a simple stochastic predator-prey model in
its coexistence region and observed that this model exhibits
two different routes of extinction of each of the populations:
the sequential and the (almost) parallel. This multiplicity of
the extinction routes can be conveniently accounted for by
an effective three-state master equation for the probabilities
to observe the coexistence state, the predator-free state, and
the empty state. The WKB approximation yields the effective
transition rates between these three states, as well as the
most likely paths of the subpopulations to extinction: the
instantons. We showed numerically that the parallel extinction
route is usually much less likely than the sequential one,
implying a great robustness of the prey against predation. For
a sufficiently high predation rate, however, the two routes may
have comparable probabilities.

With the rest of the parameters being fixed, our model
predicts an optimal predation rate so that the mean time to
extinction of the predators is maximum. Not surprisingly,
this optimal predation rate is close to that for which the
quasistationary population size of the predators is maximum.
A surprising result is that, for sufficiently high predation rates,
the optimal path to extinction of the predators almost coincides
with the optimal path to the joint extinction of the predators and
prey until a point (corresponding to an almost zero size of each
subpopulation) is reached where the two optimal paths depart
from each other: The predator population continues moving
toward extinction whereas the prey population reestablishes
itself. That is, for a high predation rate, the predators are more
likely to reach extinction by consuming nearly all the prey.
This phenomenon appears to be robust and independent of
details of the predator-prey model, as long as predators still
need prey for their survival. Finally, all our results can be
reformulated in terms of the SI epidemic model for an isolated
community (see Table II) where both the infected and the
susceptible populations are prone to extinction.
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