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Transmission probability through a Lévy glass and comparison with a Lévy walk
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Recent experiments on the propagation of light over a distance L through a random packing of spheres with a
power-law distribution of radii (a so-called Lévy glass) have found that the transmission probability T ∝ 1/Lγ

scales superdiffusively (γ < 1). The data has been interpreted in terms of a Lévy walk. We present computer
simulations to demonstrate that diffusive scaling (γ ≈ 1) can coexist with a divergent second moment of the step
size distribution [p(s) ∝ 1/s1+α with α < 2]. This finding is in accord with analytical predictions for the effect
of step size correlations, but deviates from what one would expect for a Lévy walk of independent steps.
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I. INTRODUCTION

A random walk with a step size distribution that has a
divergent second moment is called a Lévy walk [1–3]. A Lévy
glass is a random medium where the separation between two
scattering events has a divergent second moment. The term
was coined by Barthelemy, Bertolotti, and Wiersma [4], for a
random packing of polydisperse glass spheres. They measured
the fraction T of the light intensity transmitted through such
a random medium in a slab of thickness L, and found a
power-law scaling T ∝ 1/Lγ with a superdiffusive exponent
γ ≈ 0.5—intermediate between the values for ballistic motion
(γ = 0) and regular diffusion (γ = 1).

The simplest theoretical description of propagation through
a Lévy glass neglects correlations between subsequent scatter-
ing events. The ray optics of the problem is then described
by a Lévy walk, with a power-law step size distribution
p(s) ∝ 1/s1+α , 0 < α < 2. The experiment [4] was inter-
preted in these terms, with α = 1 and γ = α/2 the expected
transmission exponent.

Correlations between scattering events in a Lévy glass
dominate the dynamics in one dimension [5,6]. Although
correlations were expected to become less significant with
increasing dimensionality [7,8], Buonsante, Burioni, and
Vezzani [9] have calculated that the transmission exponent
γ should remain much larger than would follow from a Lévy
walk with uncorrelated steps. In particular, a saturation at the
diffusive value γ = 1 for α > 1 is predicted—even though the
second moment of the step size distribution becomes finite
only for α > 2.

To test these analytical predictions for the effect of
correlations, we have simulated the transmission of classical
particles through a Lévy glass, confined to a slab of thickness
L. Both a two-dimensional (2D) system of disks is considered
and a three-dimensional (3D) system of spheres. We find a
power-law scaling T (L) ∝ 1/Lγ with an exponent γ that lies
well above the γ = α/2 line expected for a Lévy walk. In
particular, we obtain a saturation of γ at the diffusive value of
unity well before the α = 2 threshold is reached of a divergent
second moment.

The outline of the paper is as follows. Since our aim is to
compare the Lévy glass simulations with the predictions for
a Lévy walk, we need analytical results for uncorrelated step
sizes. These are summarized in the Appendix and referred to

in the main text. We start off in Sec. II with a description of
the way in which we construct and simulate a Lévy glass on
a computer. The results presented in that section are for 2D,
where the largest systems can be studied. We turn to the 3D
case in Sec. III and compare with the experiments [4]. We
conclude in Sec. IV.

II. LÉVY GLASS VERSUS LÉVY WALK

A. Construction

A Lévy glass [4,10] is a random packing of transparent
spheres with a power-law distribution of radii,

n(r) ∝ 1/r1+β. (2.1)

Light propagates without scattering (ballistically) through the
spheres and diffusively (mean free path lmfp) in the region
between the spheres. The probability to enter a d-dimensional
sphere of radius between r and r + dr is proportional to the
fraction n(r)dr of spheres in that size range, multiplied by
the area ∝rd−1. The ballistic segments (steps) of a ray inside
a sphere of radius r have length s of order r . The sphere
radius distribution (2.1) therefore corresponds to the step size
distribution [11]

p(s) ∝ 1/s1+α, with β = α + d − 1. (2.2)

Particles propagating through a Lévy glass therefore have
the same distribution of single step sizes as in a Lévy walk,
but the joint distribution of multiple step sizes is different:
while in a Lévy walk the steps are all uncorrelated (annealed
disorder), in the Lévy glass the configuration of spheres is
fixed so subsequent steps are correlated (quenched disorder).

We discuss in some details the construction of the 2D Lévy
glass; see Fig. 1—the 3D version is entirely analogous. We
start by generating disks of (dimensionless) radius

rk = rmax

[
1 + k

kmax

(
rβ

max − 1
)]−1/β

,

(2.3)
k = 0,1,2, . . . ,kmax.
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FIG. 1. (Color online) Two-dimensional Lévy glass, consisting
of a random packing of disks with a power-law distribution of radii
(α = 0.7, f = 0.86, and rmax/rmin = 100). The blue shaded region
defines a slab of thickness L. This is the unconstrained geometry,
because the maximum disk size can be larger than L.

The kmax + 1 disks have radii ranging from rmin ≡ 1 to rmax �
1, and in this size range their distribution follows the power
law (2.1). The average area of a disk is

〈A〉 = πβ

|2 − β| max
(
1,r2−β

max

)
. (2.4)

The entire Lévy glass occupies an area of dimension W × W

in the x-y plane, with periodic boundary conditions and W

about 10–100 times larger than rmax. For a random packing,
we place the disks at randomly chosen positions in the order
k = 0,1,2, . . . (so starting from the largest disk). If disk
number k overlaps with any of the disks already in place,
another random position is attempted. For each disk, some 104

attempted placements are made. If they are all unsuccessful,
the entire construction is started over with a smaller value of
kmax.

The density of the packing is quantified by the filling
fraction

f = kmax〈A〉/W 2. (2.5)

For each simulation, we strove for maximal f by maximizing
kmax. The maximal filling fraction increases with increasing
ratio rmax/rmin, as illustrated in Fig. 2. For the smallest α, below
about 0.4, we could not reach as dense a packing as for larger
α, basically because there are too few small disks. Somewhat
larger filling fractions would be reachable by moving the disks
after placement, but we did not attempt that.

B. Dynamics

The ballistic dynamics inside the spheres consists of
chords of varying length s traversed in a time s/v. The
diffusive dynamics in between the spheres is modeled by
a Poisson process: isotropic scattering in a time interval dt

with probability v dt/ lmfp. The mean free path lmfp = rmin/2
is chosen such that there is, on average, one scattering event
between leaving and entering a sphere. We take the same
refractive index (and velocity v) inside and outside the spheres,
so the ray is not refracted at the interface.

FIG. 2. (Color online) Filling fraction of the 2D Lévy glass as a
function of the ratio rmax/rmin of largest and smallest disk size, for
several values of the parameter α.

In Fig. 3, we show the step size distribution p(s) for a 2D
Lévy glass with disk radius distribution (2.1), for β = 2.2. It
follows closely the Lévy distribution (2.2), with the expected
parameter value α = β − 1 = 1.2 (solid line).

We do not find the pronounced oscillations in p(s), which
in Ref. [10] complicated the determination of α. These
oscillations appear due to coarse graining of the disk size
distribution n(r) and vanish if a finer distribution of disk sizes
is used.

The time dependence of the mean-squared displacement
〈�r(t)2〉 is shown in Fig. 4, for the same α = 1.2. A particle
was started at a random position r(0) in the interdisk region,
and then its position r(t) at time t (either inside or outside
a disk) gives the displacement �r(t) = |r(t) − r(0)|. The
average 〈· · ·〉 is over some 104 initial positions. In accord
with previous simulations [4,10], regular (Brownian) diffusion
with 〈�r(t)2〉 ∝ t is reached for times t � rmax/v ≡ tD, set
by the time needed to traverse the largest disk. For t < tD,

FIG. 3. (Color online) Step size distribution for a random packing
of disks with radius distribution (2.1) (for β = 2.2, so α = 1.2).
The numerical results are shown for two values of the maximum
disk radius (rmax/rmin = 104 and 103, with f = 0.83 and 0.80,
respectively). The black solid line is the expected distribution (2.1).
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FIG. 4. (Color online) Time dependence of the mean-square
displacement (divided by t so that saturation indicates diffusive
scaling). The curves are the results of a numerical simulation in a
2D Lévy glass with different values of rmax/rmin, at fixed α = 1.2.
The ratio rmax/rmin decreases from top to bottom.

the mean-squared displacement increases more rapidly than
linearly (superdiffusion).

The limiting slope of the mean-square displacement for
t � tD gives the diffusion constant in the Brownian regime,

D = lim
t→∞

1

2 dt
〈�r(t)2〉. (2.6)

As shown in Fig. 5, this diffusion constant has a power-law
dependence on rmax,

D(rmax) ∝ r1−γD

max , (2.7)

with 0 < γD < 1. (For the smallest α = 0.2, no clear power-
law scaling was observed.)

FIG. 5. (Color online) Diffusion coefficient (2.6) in the Brownian
regime, estimated from the large-t slope of the mean-square displace-
ment (corresponding to the large-t saturation value in Fig. 4). Each
set of colored data points represents one value of α, with different
values of rmax/rmin. The power-law scaling (2.7) (red dotted lines)
determines the scaling exponent γD .

C. Transmission probability

For the transmission problem, we need a slab of variable
thickness L. We distinguish two ways of constructing this
geometry. One way is to obtain the slab from the entire
Lévy glass by cutting out the region 0 < x < L (blue strip
in Fig. 1). We call this an unconstrained geometry, because
rmax is not constrained to be smaller than L. The alternative
constrained geometry (used in the experiments [4]) requires
that the spheres all lie fully inside the slab, thereby restricting
rmax < L/2. We consider the transmission probabilities in
the unconstrained and constrained geometries in separate
subsections, both for 2D. (Results for 3D are presented in
the next section.)

D. Unconstrained geometry

A lower limit Tball to the transmission probability Tuncon in
the unconstrained geometry follows by considering only bal-
listic rays, which pass through the region 0 < x < L without
a single scattering event. As explained in the Appendix, see
Eq. (A7), this probability is directly related to the step size
distribution,

Tball = 1

〈s〉
∫ ∞

L

dx

∫ ∞

x

ds p(s). (2.8)

We take the step size distribution (2.2) with an upper cutoff at
smax 
 rmax � L and a lower cutoff at smin 
 1. Then Eq. (2.8)
evaluates to

Tball 
 rmax − α−1L1−αrα
max

rmax − rα
max

→ rmax � L

{
1 for 0 < α < 1,

L1−α for 1 < α < 2.
(2.9)

Since Tball � Tuncon � 1, we can immediately conclude
that Tuncon = 1 for 0 < α < 1. For 1 < α < 2, the power-law
scaling Tuncon ∝ 1/Lγ must satisfy γ � α − 1. This holds
irrespective of correlations between multiple steps, since these
cannot affect Tball. If we neglect these correlations, we may
equate Tuncon to the transmission probability Teq of a Lévy
walk with equilibrium initial conditions (see Appendix A3).
In view of Eq. (A9), this leads to γ = α − 1. We believe this
result to be quite robust, since even if correlations do play a
role, it is likely that they slow down the superdiffusion [7,8],
so they would not lead to a smaller γ .

In Fig. 6, we show the L dependence of Tuncon for two values
of α, resulting from a numerical simulation of an unconstrained
2D Lévy glass. This is data up to rmax = 104 for α = 1.1
and up to rmax = 103 for α = 1.5, which is at the upper limit
of our computational resources. As expected from the Lévy
walk (Fig. 13), the convergence to the rmax → ∞ limit is very
slow, and we are not able to conclusively test the predicted
asymptote.

E. Constrained geometry

For the construction of a constrained Lévy glass, we limited
the maximum disk radius to rmax = L/4 and ensured that all
disks fit inside the slab of thickness L. The corresponding
random walk would be a truncated Lévy walk with maximum
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FIG. 6. (Color online) Transmission probability Tuncon through a
2D unconstrained Lévy glass, for different values of the maximum
disk radius rmax. The dotted line is the predicted scaling Tuncon ∝ L1−α

in the rmax → ∞ limit.

step size smax 
 L/2. From the analysis in Appendix 4b
we would therefore expect a T ∝ 1/Lα/2 scaling of the
transmission probability—if correlations between step sizes
would not matter.

In Fig. 7, we show the scaling of the transmission
probability,

T ∝ 1/Lγ , (2.10)

as it follows from the simulation. The power-law scaling
applies to somewhat less than two decades in L for α � 0.5
(lower panel), and to one decade for smaller α (upper panel).
In Fig. 8, we give the resulting exponent γ as a function
of α.

In the same figure, we show the scaling of the diffusion
exponent γD , from Eq. (2.7). (There we could only obtain
a power-law scaling for α � 0.4.) As expected from the
identification of T 
 D(L)/L ∝ 1/LγD , one has in good
approximation

γ = γD. (2.11)

III. COMPARISON WITH EXPERIMENTS

The numerical data shown so far was for a 2D Lévy glass of
disks. We have also performed simulations for a 3D Lévy glass
of spheres, in the constrained geometry with rmax = L/4. We
went up to L/rmin = 1132 for α � 0.8 and up to L/rmin = 800
for α = 1 and 1.2. (Larger values of α could not be simulated
reliably.) Although the systems are smaller in 3D than in 2D,
the results are quite similar; see the comparison in Fig. 9 of
the α dependence of the transmission exponent γ for a 2D and
a 3D Lévy glass. In particular, for both 2D and 3D, the results
for γ lie well above the γ = α/2 line.

FIG. 7. (Color online) Transmission probability through a 2D
constrained Lévy glass as a function of the thickness of the slab,
for different values of the step size exponent α. The dotted lines are
a linear fit to the data points, determining the transmission scaling
exponent γ . (The data is split over two panels, to avoid overlap.)

We can now compare directly with the 3D experiments
[4], which obtained γ = 0.5 within experimental accuracy for
α = 1. Our simulation, in contrast, gives for α = 1 a value for
γ that is about 50% higher. We cannot attribute the difference
to finite-size effects, since the 3D simulation reaches the same
range of system sizes as the experiment. There are aspects of
the experiment that are not present in the simulation (notably
absorption), but we believe that the difference is mainly due
to an irregularity in the experimental sphere size distribution.

FIG. 8. (Color online) Exponents γ and γD , governing the scaling
of the transmission probability (2.10) (crosses) and diffusion constant
(2.7) (circles). These are the results of a simulation of a 2D constrained
Lévy glass (see Figs. 5 and 7). The red dashed line is the prediction
(A20) for a Lévy walk with nonequilibrium initial conditions.
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FIG. 9. (Color online) Comparison of the α dependence of the
transmission exponent γ for a 2D and 3D Lévy glass. Both data sets
lie well above the γ = α/2 line of a Lévy walk.

To visualize the irregularity, we plot in Fig. 10 the quantity

V (r) = 4

3
π

∫ ∞

r

r ′3n(r ′)dr ′, (3.1)

which is the cumulative volume enclosed by spheres with
radii greater than r . This is a decreasing function of r , from
V (rmin) = V0 (the total sphere volume) down to V (rmax) = 0.
For the Lévy distribution with α = 1 in 3D we have n(r) ∝
r−4, cf. Eqs. (2.1) and (2.2); hence V (r) should decrease
linearly as a function of log r ,

V (r) = − V0

log(rmax/rmin)
log(r/rmax). (3.2)

As shown in Fig. 10, the experimental sphere size distri-
bution differs markedly from the expected Lévy form (3.2).
Rather than a single linear dependence of V (r) on log r , there
are two piecewise linear dependencies with a different slope,
joined with a kink at r ≈ 50 μm. This irregularity has the
effect of reducing the transmission exponent γ , essentially by
mimicking a system with a smaller value of α.

To demonstrate the effect of the kink on the transmission
exponent, we have simulated the experiment by constructing

( )

FIG. 10. (Color online) Sphere volume distribution used in
the experiment [4] (red solid histogram) and for an α = 1 Lévy
distribution (green dashed histogram).

a random packing of spheres with the experimental size
distribution (red solid histogram in Fig. 10). All spheres
were constrained to fit inside a slab of thickness L. (We
took rmax = L/2.1 for this simulation.) We found γ = 0.57.
If, instead, we used the proper Lévy size distribution (green
dashed histogram), keeping all other parameters the same, we
found γ = 0.72. We believe this resolves the issue.

IV. CONCLUSION

In conclusion, we have found that the superdiffusive
scaling T ∝ 1/Lγ of the transmission probability through a
Lévy glass, constrained to a slab of thickness L, deviates
substantially from what one would expect for a Lévy walk.
Most significantly, the diffusive scaling (γ ≈ 1) can coexist
with a divergent second moment of the step size distribution
(α < 2).

As a consistency check on our simulations, we have also
calculated the diffusion constant D from the long-time limit
of the mean square displacement in an unbounded Lévy
glass, as a function of the maximum disk size rmax. We find
D(rmax) ∝ r

1−γD
max , with γD ≈ γ , as expected for a diffusive

transmission probability T 
 D(L)/L with a scale-dependent
diffusion constant.

Qualitatively, our finding that diffusive scaling of T can
coexist with a divergent second moment of p(s) is consistent
with analytical calculations for d = 1 [5] and d = 2,3 [9].
Quantitatively, we are not in agreement: Ref. [9] finds that
γ increases monotonically for d = 2 from γ = 0 at α = 0 to
γ = 1 for α � 1, while our simulation gives a nonmonotonic
α dependence of γ , with a saturation for α � 1.5 (see Fig. 8).
The system considered in Ref. [9] is quasiperiodic (a Lévy
quasicrystal), rather than the random Lévy glass studied here.
Further study is needed to see whether this difference is at
the origin of the different transmission scaling, or whether the
difference is due to a very slow convergence to the infinite
system-size limit (which we consider more likely).

ACKNOWLEDGMENTS

This research was supported by the Dutch Science Founda-
tion NWO/FOM.

APPENDIX: TRANSMISSION PROBABILITY OF A
LÉVY WALK

1. Formulation of the problem

We consider a random walk along the x axis with the power-
law step size distribution

p(s) = α

s0

(
s0

s

)1+α

θ (s − s0). (A1)

[The function θ (s − s0) equals 1 if s > s0 and 0 if s < s0.]
Subsequent steps are +s or −s with equal probability and
independently distributed. The probability density p(s) decays
as 1/s1+α with α > 0, starting from a minimal step size s0 > 0.
In between two scattering events the walker has a constant
velocity of magnitude v. This random walk is called Brownian
or diffusive for α > 2, Lévy [3] or superdiffusive for 1 < α <

2, and quasiballistic for 0 < α < 1.
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FIG. 11. (Color online) Trajectories x(t) of a random walk, with
scattering events indicated by red dots. All trajectories enter the
segment 0 < x < L (between dotted lines) at x = 0. Trajectories
a,b,a′,b′ are transmitted through x = L, while trajectories c,c′ are
reflected through x = 0. The transmission probability Teq averages
over all trajectories (equilibrium initial conditions), while Tnoneq

averages only over trajectories such as a′,b′,c′ that have a scattering
event upon entering the segment at x = 0 (nonequilibrium initial
conditions).

The walker enters the segment 0 < x < L by passing
through x = 0 at time ti and then stays in that segment until
time tf . If at tf it exits through x = L, we say the walker has
been transmitted through the segment. We seek the dependence
of the transmission probability T on the length L of the
segment, for L � l0. For a Brownian walk, the scaling is
inverse linear: T ∝ 1/L if α > 2. For a Lévy walk, we expect a
slower power-law decay, T ∝ 1/Lγ with γ < 1. The question
is how γ varies with α < 2.

The answer depends on how the walker is started off
initially. Following Barkai, Fleurov, and Klafter [12], we
distinguish equilibrium from nonequilibrium initial condi-
tions. (See Fig. 11.) For equilibrium initial conditions, the
walker starts off from x = −∞, so that it crosses x = 0
at some random time between two scattering events. For
nonequilibrium initial conditions, the walker starts off from
x = 0 with a scattering event. We denote the transmission
probabilities in these two cases by Teq and Tnoneq, respectively,
and consider the two cases in separate subsections.

2. Nonequilibrium initial conditions

The transmission probability Tnoneq from x = 0 to x = L

for a Lévy walk that starts off with a scattering event at x = 0
has been calculated by several authors [13–15]. We give the
most general solution of Buldyrev et al. [15].

They assume that the walker starts with a scattering event
at an arbitrary point xi in the segment (0,L) and calculate the
probability P (xi) that the walker exits the segment through
x = L. For L � s0 and xi � s0, their solution [15] can be
written in the compact form

P (xi) = B(xi/L,α/2,α/2)

B(1,α/2,α/2)
, (A2)

in terms of the incomplete beta function

B(x,a,b) =
∫ x

0
ya−1(1 − y)b−1dy. (A3)

Since B(x,a,b) → xa/a for x → 0, one arrives at the scaling
Tnoneq ∝ L−α/2, first obtained by Davis and Marshak from
basic considerations [13].

The prefactor of the power-law scaling cannot be obtained
directly from the solution (A2), because of the limitation that
xi � s0. For 0 < α < 1, we can work around this limitation
by considering the first step separately. The walker starts off
at x = 0 with a step to x1 > 0, chosen randomly from the
distribution (A1) of a Lévy walk. If x1 > L, the walker is
transmitted with unit probability. Otherwise, it is transmitted
with probability P (x1).

We thus can calculate Tnoneq from

Tnoneq =
∫ ∞

L

dx1p(x1) +
∫ L

0
dx1p(x1)P (x1). (A4)

For α < 1, the mean step size diverges, so the region x1 � s0

is insignificant and we can use Eq. (A2) for P (x1). The result
is

Tnoneq = B(s0/L,α/2,1 + α/2)

B(1,α/2,1 + α/2)

L�s0→
(

s0

L

)α/2 4�(α)

α�2(α/2)
. (A5)

While the exponent α/2 holds for any 0 < α < 2, the prefactor
is accurate only for 0 < α < 1. [For α > 1, we would need to
know P (x1) within the region x1 � s0 in order to calculate the
prefactor.]

3. Equilibrium initial conditions

For equilibrium initial conditions, the walker crosses x = 0
at a random time between scattering events. The first subse-
quent scattering event is at a point x1 > 0, with probability
density q(x1). If x1 > L, the walker is transmitted with unit
probability; if 0 < x1 < L, the transmission probability is
P (x1). Hence

Teq =
∫ ∞

L

dx1q(x1) +
∫ L

0
dx1q(x1)P (x1). (A6)

The probability density q(x) is determined from the step size
distribution,

q(x) = 1

〈s〉
∫ ∞

x

p(s)ds. (A7)

This relation between the distribution p(s) of the distance s

between subsequent scattering events and the distribution q(x)
of the distance x from an arbitrary point to the next scattering
event holds for any random walk with a finite average step size
〈s〉 = ∫ ∞

0 sp(s)ds. For the step size distribution (A1), one has

q(x) = α − 1

αs0

(
s0

max(x,s0)

)α

, for α > 1. (A8)

As emphasized in Ref. [12], the distribution q(x) ∝ 1/xα

decays more slowly than the distribution p(s) ∝ 1/s1+α

because the walker is more likely to cross x = 0 during a
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long step than during a short step, so long steps carry more
weight in q(x) than they do in p(s). Indeed, for 1 < α < 2,
the first moment of q(x) is infinite, while the first moment of
p(s) is finite.

Substitution of Eqs. (A2) and (A8) into Eq. (A6) gives, for
L � s0,

Teq =
(

s0

L

)α−1
π�(α)

α sin(απ/2)�2(α/2)
, for 1 < α < 2.

(A9)

This scaling Teq ∝ 1/Lα−1 holds in the superdiffusive regime
1 < α < 2. In the quasiballistic regime, the first scattering
event is at x1 > L with unit probability,

Teq = 1, for 0 < α � 1. (A10)

The value α = 2 at the border between a Brownian walk
and a Lévy walk requires separate consideration. While
Tnoneq ∝ 1/L for α = 2, the transmission probability (A6) has
a logarithmic enhancement,

Teq = s0

L

(
1 + 1

2
ln

L

s0

)
, for α = 2. (A11)

A similar but different scaling ∝L−1
√

ln L has been associated
with the α = 2 Lévy walk in Ref. [14].

4. Truncated Lévy walk

A truncated Lévy walk has step size distribution

ptrunc(s) = α

s0

(
s0

s

)1+α

θ (s − s0)θ (smax − s), (A12)

with a maximum step size smax � s0. The root-mean-squared
displacement σ after a single step then has a finite value,

σ =
√

α

2 − α
s1−α/2

max s
α/2
0 , (A13)

much smaller than smax for α < 2.
The transition from a truncated Lévy walk to a Brownian

walk requires nsteps � 1 of steps, given by Refs. [16,17]

nsteps 
 (2 − α)3

α
(smax/s0)α. (A14)

The corresponding root-mean-squared displacement
σ
√

nsteps 
 (2 − α)smax is of order smax for all α < 2.
We conclude that we have regular (Brownian) diffusion over
a distance L if smax � L.

The transmission probability P (x) for a walker starting
with a scattering event at a point x inside a slab of thickness L

(further than smax from the boundaries) thus follows the usual
diffusive scaling,

P (x) = x/L, if x,L − x � smax. (A15)

a. Equilibrium initial conditions

For equilibrium initial conditions, the distribution q(x)
of the first scattering event follows from Eq. (A7), with p

FIG. 12. Transmission probability Tnoneq of a Lévy walk through
a slab of thickness L, for nonequilibrium initial conditions. The data
points are the results of a numerical simulation, for different values
of the step size exponent α (and fixed smax � L). The lines indicate
the expected L−α/2 scaling. For α < 1, we also have an analytical
prediction (A5) for the prefactor (solid lines), while for α > 1 only
the exponent is known analytically so the prefactor has been fitted to
the data (dotted lines).

replaced by ptrunc. Substitution into Eq. (A6) then determines
the transmission probability (for L > smax),

Teq =
∫ smax

0
dx q(x)P (x). (A16)

Equation (A15) gives P (x) only for x � smax. We will use this
expression also for x < smax, and then test the approximation
by comparing with numerical simulations in Sec. V.

If we substitute P (x) = x/L, we find

Teq = 1

2L

1 − α

2 − α

s2
max − sα

maxs
2−α
0

smax − sα
maxs

1−α
0

, (A17)

for 0 < α < 1 or 1 < α < 2. For α = 1 or α = 2, there are
logarithmic factors,

Teq = smax − s0

2L ln(smax/s0)
, for α = 1, (A18a)

Teq = s0

2L

smax ln(smax/s0)

smax − s0
, for α = 2. (A18b)

For fixed smax, the diffusive 1/L scaling holds. An anomalous
scaling appears if the maximum step size smax = cL is a fixed
fraction c < 1 of the slab thickness. Then the transmission
probability through the slab depends on L � s0 as

Teq = 1

2
c2−α

(
s0

L

)α−1
α − 1

2 − α
, for 1 < α < 2, (A19a)

Teq = 1

2
c

1 − α

2 − α
, for α < 1, (A19b)

Teq = c

2 ln(cL/s0)
, for α = 1, (A19c)

Teq = s0 ln(cL/s0)

2L
, for α = 2. (A19d)
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FIG. 13. (Color online) Transmission probability Teq of a Lévy
walk through a slab of thickness L, for equilibrium initial conditions.
The two panels are for different values of α. The data points
result from a numerical simulation, with different values smax of
the maximum step size. The solid line is the asymptote (A9) for
smax → ∞.

Hence Teq ∝ 1/Lmax(0,α−1) (with logarithmic corrections for
α = 1 and α = 2). This is the same scaling as for the Lévy
walk without truncation (see Sec. III).

b. Nonequilibrium initial conditions

For nonequilibrium initial conditions, the transition to the
regular diffusive regime happens while the walker is inside the
slab. We may therefore assume that the usual diffusive scaling
Tnoneq 
 σ/L applies (with σ playing the role of the mean free
path). In view of Eq. (A13), an anomalous scaling appears if
smax = cL scales proportionally to L,

Tnoneq 
 (cL)1−α/2s
α/2
0 L−1 ∝ L−α/2. (A20)

The anomalous L−α/2 scaling of Appendix A2 now appears
as a consequence of regular diffusion with a scale-dependent
mean free path.

5. Numerical test

We have tested the analytical expressions (A5) and (A9) by
numerical simulation. Results for Tnoneq are shown in Fig. 12.
This is the nonequilibrium initial condition, where the walker
starts off at x = 0 with a step to positive x. The L−α/2 scaling
is reproduced for all 0 < α < 2, and the prefactor (A5) agrees
well with the simulations for 0 < α � 1.

For the equilibrium initial condition, the walker starts off at
a large distance from x = 0, crossing the boundary at a random

FIG. 14. Transmission probability for a Lévy walk with maxi-
mum step size smax that increases proportionally to L. The two panels
(both for smax = L/10) correspond to equilibrium and nonequilibrium
initial conditions. The dotted lines show the expected scaling (A19)
and (A20), up to a prefactor that has been fitted to the data. [For Teq

the difference with Eq. (A19) is a factor of 2, independent of α.]

point between two scattering events. Results of numerical
simulations are shown in Fig. 13. Unlike in the nonequilibrium
case, the convergence to the asymptotic scaling with increasing
smax is very slow, in particular for small α.

We have also tested the scaling (A19) and (A20) for a
truncated Lévy walk with a maximum step size smax that
is a fixed fraction of L. Results are shown in Fig. 14 for
both equilibrium and nonequilibrium initial conditions. The
anomalous scaling now appears, even though the diffusion is
regular on the scale of L, because of the scale dependence
of the mean free path. For both types of initial conditions
the numerics follows closely the analytically predicted power
laws, including the logarithmic factors for α = 1,2 in the
equilibrium case. (The constant prefactors are not given
reliably by the analytics.)
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