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Geometrical properties of the Potts model during the coarsening regime
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We study the dynamic evolution of geometric structures in a polydegenerate system represented by a g-state
Potts model with nonconserved order parameter that is quenched from its disordered into its ordered phase. The
numerical results obtained with Monte Carlo simulations show a strong relation between the statistical properties
of hull perimeters in the initial state and during coarsening: The statistics and morphology of the structures that
are larger than the averaged ones are those of the initial state, while the ones of small structures are determined
by the curvature-driven dynamic process. We link the hull properties to the ones of the areas they enclose. We
analyze the linear von Neumann-Mullins law, both for individual domains and on the average, concluding that
its validity, for the later case, is limited to domains with number of sides around 6, while presenting stronger

violations in the former case.
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I. INTRODUCTION

After a rapid quench across a phase transition, two or
more equilibrium states may compete for the growth of local
order; this reflects in the out of equilibrium evolution observed
in many different macroscopic systems once they reach the
dynamic scaling regime [1-4]. In these systems, the properties
of macroscopic observables, such as correlation functions
and linear responses, can still be described in relatively
simple terms by resorting to the dynamic scaling hypothesis.
This hypothesis states that averaged macroscopic observables
depend upon time only through a monotonically growing,
time-dependent characteristic length, R(¢). This length, whose
growth law depends on the case under consideration, charac-
terizes the average linear size of equilibrated patches at each
instant ¢. For example, after being cooled below their critical
temperature magnetic systems form domains in which spins
are strongly correlated and the magnetization is uniform. More
precisely, on a lattice, a (geometric) domain is defined as the
ensemble of nearest neighbor sites whose spins are aligned.
Each of these domains has a hull or external border, whose
length is the number of external sites that are first neighbors
of the chosen domain [5] and that, in the continuum limit,
is referred as the perimeter. Figure 1 shows a sketch that
illustrates, on a square lattice, this and other related definitions.

Systems as diverse as soap froths [6—8], cellular tissues and
other natural tilings [9,10], magnetic grains or polycrystalline
structures [11-15], type I superconductors [16], etc., are,
in a statistical sense, geometrically similar. Their overall
morphology and growth properties are well described by
simple spin models with multiple ground states. An example
is the ferromagnetic Potts model [17] whose variables are
spins that take g possible values and interact with their
nearest neighbors. The coupling exchanges are taken to be
isotropic and homogeneous, that is, independent of the spin
variables and lattice orientation, favoring spin alignment at
low enough temperature and, therefore, the existence of g
degenerate equilibrium states below the phase transition. The
critical temperature of the bidimensional model on the square
lattice is known for all values of g, kT, = 2J/In(1 + ,/q),
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but the nature of the transition depends on ¢, being continuous
and second order for ¢ < 4 while discontinuous for g > 4.
When submitted to a sudden quench from the high to the low
temperature phase, and allowed subsequently to evolve with
stochastic nonconserved order parameter (the magnetization)
dynamics, the system tends to organize in progressively larger
ordered structures of each equilibrium state [18-22]. One of
the most common applications of this model is to crystal grain
growth, where each spin configuration represents a different
grain orientation and for ¢ — oo the continuum limit is
realized [23,24].

The simple presence of domains implies the existence of
topological defects, in this case, the interfaces. When the
final quench temperature is not too close to zero (to avoid
pinning effects when ¢ > 2) and much lower than the critical
temperature (so that the starting ordering process does not
occur by nucleation when the transition is of first order)
[25,26], at sufficiently long times the walls around large
domains tend to be flat and the evolution (with nonconserved
order parameter) is driven by their curvature. Indeed, the
surface tension implies a force per unit area that is proportional
to the local mean curvature, k, acting on each point on the wall.
This force is responsible for the motion of the interfaces. The
field theoretical description (a la time-dependent Ginzburg-
Landau equation) in the continuum leads to the Allen-Cahn
equation for the local velocity, v = —(Aq /27 )k 1is, where A is
a temperature- and g-dependent dimensional constant related
to the surface tension and mobility of a domain wall and 7 is
a unit vector normal to the surface [27]. The sign indicates that
the velocity points in the direction that tends to reduce the local
curvature. Thermal effects play a minor role, affecting only
the constant A,. The time dependence of the area contained
within any finite interface can be deduced by integrating the
velocity around the hull, that is, the external interface. This
calculation is specially simple in d = 2 since one can use the
Gauss-Bonnet theorem:

dA - 1
E:vadl:—M(l—ElZa,»), (1)
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FIG. 1. (Color online) Illustration of various interfacial length
definitions on the square lattice. The colored sites are all occupied
by the same spin species, while spins on white squares are in a
different state. The hull length (solid circles) is the external border
of the domain. The hull perimeter (open circles) contains only the
external nearest neighbors of the domain (not the internal ones). The
domain perimeter (crosses) is the ensemble of nearest neighbors of
the domain and includes the internal ones as well. The measurements
presented here are for the hull perimeter only.

where «; are the turning angles of the tangent vector to the
surface at the vertices or triple junctions. When there are no
such vertices, and domains are one-sided, as in the Ising model
(g =2), > ; a; = 0 and we obtain dA/dt = —A, for all hull-
enclosed areas, irrespective of their size [28,29]. For systems
like soap froths, the angles between adjacent sides are all equal
to2m /3, thatis, o; = /3,V i. The above expression yields the
von Neumann-Mullins law for the enclosed area A of a hull
with n, vertices [30,31]:

dA X,

7% (ny —6). 2)
While for g = 2 all domains have one side and thus no vertices
(n, =0), for g > 2 there is a one-to-one correspondence
between vertices and sides, n, = n. As aresult of this equation,
this area can grow, shrink, or remain constant depending upon
the number of sides being larger than, smaller than, or equal
to 6, respectively. Moreover, in the course of the evolution,
the number of sides that a given external interface has can
change, so that the equation ruling the area evolution changes
through the time dependence in n, a function that one cannot
characterize in full detail. It is also clear that for ¢ > 2 areas do
not evolve independently of each other, as occurs for g = 2, as
n is a quantity that also affects the behavior of the neighboring
areas.

For g = 2, that is, the bidimensional Ising model, the
time-dependence of a given hull-enclosed area can be easily
determined from the integration of Eq. (2) since n(t) = 1 for
all areas and these evolve independently. The number of hulls
with enclosed area A per unit system area (A > Aj, where
Ag is a small area cutoff) in the interval (A,A + dA) at time
t is related to the distribution at the initial time #y through,
ny(A,t) =n, [A + L, (t — ty),t0]. The two natural choices for
the initial states are equilibrium at 7y =7, or Ty — 00
(all high temperature initial conditions become equivalent to
the latter). In the former case the distribution n;, is known
analytically and in the latter it is very close to the one of
critical percolation that is also known exactly [32]. Therefore,
the dynamic distributions are known as well [28,29]. More
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precisely, the equilibrium critical Ising hull-enclosed area
distribution is n,(A,0) = ¢, /A? with ¢, = 1/(87“/5) and one
finds

Ch

A = P

3)
for t > ty. Note that this expression exhibits the scaling form,
np(A,t) =72 f(A/t) since the characteristic length scales as
t'/2. For a quench from infinite temperature one observes that
the distribution takes the critical form of random percolation
in a few time steps [28,29], even though the initial fraction
of 41 (or, equivalently, —1) spins, 50%, is smaller than the
critical density of random percolation on a square lattice, p, ~
0.59. This feature was also exploited in Ref. [33] to explain
the existence of percolating blocked asymptotic states in the
zero-temperature dynamics of this model.

Unlike in the g = 2 case, n,(A,t) is not analytically known
for g > 2. To start with, there is no simple relation between
the area distribution at time ¢ and the one at the initial time
tp and, moreover, we expect the distribution to get scrambled
in a nontrivial way during the coarsening process. Thus, in a
previous work [22] we studied this problem with Monte Carlo
simulations. First, we confirmed that the coarsening process
is characterized by a growing length that depends on time
as [18,19]

R¥(t) >~ A4t 4)

by studying different correlation functions and their scaling
properties. Second, we investigated the hull-enclosed area
distribution. We found that in the cases in which the transition
is second order (2 < g < 4) and the initial configuration is
critical, Ty = T,, the dynamic distribution has a power-law
tail for sufficiently large areas. Quantitatively, we found that
the exponent is 2 independently of g (within our numerical
accuracy) while the prefactor depends on ¢. Interestingly
enough, even though the individual area rate of change depends
on the number of sides, the long-range correlations present
in the initial state are preserved and the system keeps the
distribution shape during evolution. Assuming that the number
of sides in the von Neumann-Mullins equation (2) can be
replaced with a constant mean, n(¢) — (n), and using Eq. (3)
att = t9 we proposed

(q — Dl

A S A ROP

)

with czq) g-dependent constants. Within our numerical ac-
curacy, this form describes well the hull-enclosed area
distribution. The results are very different in the case of
infinite temperature initial conditions. An uncorrelated spin
configuration representative of equilibrium at 7y — oo can be
mapped onto one of the random percolation model. On the
square lattice the species density, p = 1/¢, is much smaller
than the critical random percolation limit and the distribution
does not become critical nor acquire a power-law decay at any
time. Instead, it has an exponential tail. A similar behavior is
observed for ¢ > 4 even when the initial state is taken from
equilibrium at ;.. The short-range correlations initially present
become irrelevant after a finite time and the system loses
memory of the initial state. See also the results in Ref. [34].
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In the nearest-neighbor Potts model considered here,
diversely from the so called cellular Potts model in which
several layers of interacting neighbors are considered, the
lattice anisotropy is an important ingredient. This fact, together
with the small number of colors (thus coalescence may be
important), deviate the model considered here from the ideal
grain growth situation. Under these conditions, it is interesting
to see whether the areas and perimeter distributions have
any resemblance to those obtained with different methods
or experimentally. Moreover, the von Neumann-Mullins law,
when applied to individual grains, also depends on the ideal
grain growth hypothesis. Thus, in this paper we investigate
additional geometric properties of the nonconserved order
parameter dynamics of the ferromagnetic Potts model through
Monte Carlo simulations on a square lattice with linear size
L = 1000. The statistical analysis was performed using over
1000 samples, enough to reduce the error bars to values that are
smaller than the data points. Each case was studied by consid-
ering an initial equilibrium state at 7y = 7, or an uncorrelated
one (Tp — 00). The critical state (Tp = T, and 2 < g < 4) was
obtained by running 500 to 4000 Swendsen-Wang algorithm
steps, while the uncorrelated one was created by randomly
choosing the state of each of the N = L? spins on the lattice.
After reaching equilibrium, the system was suddenly quenched
to Ty = T,/2, where we expect pinning and nucleation effects
not to be present [25,26] and the subsequent evolution to be
a curvature-driven process. Time is measured in Monte Carlo
units (MCs), that is, L> single spin flips such that, statistically,
each spin is updated once in every step.

The paper is structured as follows. In Sec. II we present a
qualitative discussion of the problem with emphasis upon the
role played by the initial conditions. In Sec. III we discuss the
relation between hull-enclosed areas and perimeters and their
rates of changes. We underline the relation between the domain
morphology and the characteristic length R(¢) according to
the temperature of the initial state. In Sec. IV we put the von
Neumann-Mullins equation to the test. In Sec. V we show our
numerical results for the time evolution of the hull perimeter
distributions. Finally in Sec. VI we summarize the results and
we conclude.

II. INITIAL CONDITIONS

The initial conditions, either at critical (2 < ¢ < 4) or
infinite temperature (V ¢), have very different characteristics
and thus play an important role in the system’s evolution after
the temperature quench, leading to very different dynamic
structures. When a 2 < g < 4 model is in equilibrium at T,
its configuration has long-range correlations. In d = 2 the
thermodynamic transition also corresponds to a percolation
transition and one spanning cluster is already present in such
initial conditions [35-38]. Naturally, such spanning clusters
are not counted in our analysis since their perimeters would
be severely underestimated due to the finite system size.
On the other hand, when the system presents a first order
phase transition (g > 4), the correlations are short-ranged at
Ty = T, and the spanning cluster is not present initially nor at
any time within the time span (and system size) considered
in our study. When the initial state is one of equilibrium
at infinite temperature, T — 00, the correlations are absent
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FIG. 2. (Color online) Snapshots of the g = 3 ferromagnetic Potts
model on a square lattice with linear size L = 1000 after a quench,
from initial states prepared at 7y — oo (left column) and Ty = T,
(right column), to the final temperature T7; = T./2. Times shown
are, from top to bottom, ¢ =0, 2°, and 2!° MCs, respectively. In
panels (g) and (h) the interfaces in the configurations at the latest
time ¢ = 2'° MCs [(e) and (f)] are shown, along with some small
thermal fluctuations.

and the model can be mapped onto random percolation. No
spanning cluster is present initially for ¢ > 2 and none is
generated during evolution (the case ¢ = 2 is subtly different;
see [28,29,33]). These distinctive features are made evident
in the snapshots shown in Figs. 2 (¢ = 3) and 3 (¢ = 8), for
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FIG. 3. (Color online) Sequence of snapshots for the ¢ =8
Potts model. The left column displays results obtained by using an
equilibrium initial configuration at 75 — oo (a) and its time evolved
after the quench [(c) and (e)]. The right column shows configurations
found by using an equilibrium initial state at 7y = 7, (b) and after
the quench [(d) and (f)]. From top to bottom the measuring times
are t = 0, 27, and 2'° MCs, respectively, and Ty = T,/2. In panels
(g) and (h) we show the domains with areas A < R? (green, or light
gray), R%(t) < A < 10R?(t) (white), and A > 10 R?(¢) (red, or dark
gray) for the configurations at t = 1024 MCs.

the two initial conditions, infinite (left column) and critical
temperature (right column).

For g = 3 (Fig. 2), the absence of correlations at Ty — 0o
is clear from panel (a) while the long-range correlations and
a spanning cluster present at 7. can be easily visualized in
panel (b). In panels (c) and (e) the snapshots show the thermal
evolution after a quench from Ty — ocoto Ty = T,./2 at times
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t = 2% and 2'° MCs. In (d) and (f) the snapshots show the
configurations at the same times after a quench from 7y = 7.
The perimeters of the domains at t = 2'© MCs are shown in (g)
and (h). The right column panels demonstrate that the seeds for
the large dynamic domains were already present in the initial
condition and, although these objects do not translate during
the evolution, they get rid of small, internal domains. Indeed,
in the explored time span, basically the modifications are that
small domains are erased and the walls get smoother. A similar
conclusion cannot be drawn from the left column snapshots as
itis difficult to identify a seed for the structures seen at the latest
time from the very disordered initial condition. A common
feature of both Ty = T, and Ty — oo evolved configurations
is that domains with small areas have an approximately round
shape. Instead, for large areas the pattern is rougher and one
finds that these are sometimes stretched. A crossover in the
morphology of the domains is determined by the characteristic
length R(#) and it is discussed in Sec. III.

Figure 3 shows a sequence of snapshots of the ¢ = 8 Potts
model with both Ty — oo (left column) and Ty = T, (right
column) initial conditions. The quench is done to Ty = T../2,
and the configurations at different times, t = 128 MCs (second
row) and r = 1024 MCs (third row), are shown. Since none
of the initial configurations is critical, thus having either a
vanishing (Ty — o0) or a finite (7T, = 7,) correlation length,
one might expect them to be statistically equivalent. However,
the dynamically evolved configurations are different in at least
two senses. First, the domains evolved from 7, are larger, as can
be clearly seen with the naked eye. More importantly, the shape
of the large domains are very different. Panels (g) and (h) take
the configurations in panels (e) and (f) and color in the same
way domains with areas A < cR? (green), cR?> < A < 10R?
(white), and A > 10R? (red). In this way we highlight the
density of domains with small, intermediate, and large size as
compared to the typical one, R?, at the measuring time. On the
one hand, when the initial state is uncorrelated (left column
panels) few domains with area A > 10R? survive at the latest
time (two) and those have a stretched form. On the other hand,
when the initial state is critical (panels in the right column)
more domains remain at the chosen time (five), have larger
area, and are usually less stretched. The difference is made
quantitative in Sec. IIT A. It is clear from these figures that it
is very hard to collect good statistics for large areas.

III. AREAS AND PERIMETERS

In this section we analyze the relation between hull-
enclosed areas and hull perimeters. For any sensible definition
of volume and interface, the volume V of a compact domain
with a compact interface S should satisfy

V~pt s~ pt ©)
with p a linear dimension and d the dimension of space,
leading to

S~ yl-ld, 7

However, if a domain has a fractal surface or holes (other
domains) in its interior, Eqs. (6) are not necessarily valid [5].
In practice, the presence of holes inside domains depends on
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the dimension of space and the number of ground states of the
system. While for d = 2 and ¢ = 2 many domains have other
internal domains [29], for d = 2 and ¢ > 3 internal domains
are much rarer (this can be checked from the snapshots in
Fig. 3 for ¢ = 8). Therefore, domain areas and hull-enclosed
areas differ by very little for ¢ > 3 [22]. In the rest of this
paper we focus on hull-enclosed areas and in this section on
their relation to the hull perimeters themselves.

There are many possible definitions of a hull for a system
defined on a lattice. We choose to use the one in which the
hull perimeter is the number of sites that are on the external
perimeter of a domain (see Fig. 1), matching the nomenclature
in Ref. [5].

A. Scaled scatter plots

We analyze scatter plots of areas vs perimeters and their
scaling properties. The results found in Ref. [29] for the Ising
case are extended in a natural way to the g = 3, 4 cases
as discussed below. Further subtleties are found in models
with g > 4 for which none of the initial states (7y = T, and
Ty — 00) are critical.

As in the Ising case, and independently of the initial
condition having long- or short-range correlations, we can
distinguish two types of domains depending on their relation
to the characteristic length R(¢). Hull-enclosed structures with
area A < R?(t) have a regular form and the area-perimeter
relation is A ~ p? as in Eq. (6). Instead, domains with area
A > R?(t) exhibit a rough surface and the area-perimeter
relation keeps the power-law form, A ~ p®:, although with
an exponent o, < 2 that depends on the initial condition and
q. Figure 4 shows examples of domains—taken from our
simulations—with different exponents, a;, =2 (a), | < o, <
2 (b), and «j, >~ 1 (c). Once hull-enclosed areas and perimeters
are measured with respect to the crossover value, itself written
in terms of the characteristic length R(z), we can write the
scaling relation

A P\
—~(£) 8
=~ (%) ®
where
=2 for A < R%*(1),
% { <2 for A > R*1). ©)

(a) (b) (c)

FIG. 4. (Color online) Examples of typical domain structures
obtained in the simulations. In (a) aregular domain with area A ~ p“
and o, = 2. The domain in (b) has a rougher morphology and a
smaller exponent ;, certifies this feature, 1 < ¢, < 2.1In(c) adomain
with very rough and stretched morphology, A ~ p; the exponent «;,
reaches it minimum value, «;, = 1, in this case.
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FIG. 5. (Color online) Scaling relation between hull-enclosed
areas and hull perimeters at several measuring times for ¢ = 3 after a
quench from Ty — oo to Ty = T,/2. The inset shows the raw data at
several times from ¢ = 0 to 2!* MCs (bottom to top). The extent up
to which the law A ~ p? (red solid line) applies increases with time,
demonstrating that the domains become more regular in the course
of evolution.

Figure 5 shows the rescaled relation (8) for ¢ = 3 after a
quench from Ty — oo to Ty = T,/2 and several measuring
times (r =0,2,...,2'" MCs). We used the characteristic
length R(t) >~ (A, )72 obtained from the analysis of the equal
time correlation C(r,t), as in Ref. [22]. The data collapse
confirms that A scales as R and p as R. We see below that
this applies to all g and to quenches from different initial
conditions. While for small areas, A < R%(¢), the exponent
can be obtained from a fit performed on a conveniently long
interval, for A > R?(¢) the fitting interval is rather short.
Nevertheless, the exponent obtained, «;, ~ 1.06, is so far from
the regular value 2 that we can definitely conclude that a change
in morphology operates upon the domains at the crossover
determined by R(#). The domains with small areas are regular
and A ~ p”. The ones with large areas are rough and stretched,
the hull perimeters being very close to the hull-enclosed area
itself, A >~ p. The inset shows the raw data for the area A
versus the hull perimeter p for t = 0 to t = 2'* MCs (bottom
to top). This figure confirms that during evolution the domains
grow and become more regular. The red solid line is a guide
for the eye and represents A ~ p2.

Next, in Fig. 6 we compare the relation between hull-
enclosed areas and hull perimeters for systems with different
values of g quenched from different initial conditions. In all
cases we find a power-law relation, A ~ p®, with varying
values of «;,. The group of curves labeled (a) corresponds to
g =2, 3, and 8 quenched from Ty =7, to Ty = T./2 and
the fit yields oy ~ 1.44. Interestingly, even the case g = 8
with short-range correlation presents an exponent o > 1.
On the other hand, when the initial state is one of infinite
temperature, the exponent ¢y, is smaller and decreases with
increasing number of states. In the first case (b) for g = 2
we find o, ~ 1.12. For larger values of ¢ it is harder to be
conclusive about the actual value of the exponent since the
number of domains with area larger than R” decreases with
increasing ¢ and the fitting interval gets smaller. Within our
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FIG. 6. (Color online) Scaling relation between hull-enclosed
areas and hull perimeters at t = 2, . ..,2!° MCs for different models

(various g values) and initial conditions. The curves labeled (a)
correspond to g = 2,3,8 and T, = T, those labeled (b) are forg = 2
and T, — oo, the ones labeled (c) have been obtained using ¢ = 3
and Ty — oo and, finally, the ones carrying the label (d) are for
q = 8and Ty — oo. All quenches are to Ty = T,./2. When the initial
state is at the critical point, case (a), the relation A >~ p“ presents
a similar exponent for all ¢, «; =~ 1.44. Instead, after a quench
from the 7, — oo uncorrelated state the exponent o, decreases
from its ¢ = 2 value o, >~ 1.15 to o, =~ 1.06. Notice that for the
case ¢ =8 and Ty = T, case (a), the observed exponent is 1.44
because the measure was taken at a relatively small time, in which
the finite correlations present at the initial state are still large compared
with the characteristic length. At later times, this exponent will
decrease, eventually approaching 1.06, as the characteristic length
grows beyond those initial correlations.

numerical accuracy, for ¢ =3 (c¢) «a; ~ 1.06 and for g = 8
(d) ap < 1.06, but this value is not precise enough to be
conclusive.

Summarizing, in all cases the characteristic length R grows
as t!/2, the structures become more regular, and the power law
A ~ p? for A < R? is more evident. Concomitantly, fewer
domains have an area larger than R?. For Ty — oo the value
of the exponent «;, characterizing the shape of the large hull-
enclosed areas decreases with increasing g, consistent with
ap — 1 for ¢ — oo. For Ty = T, the exponent «, takes a
higher value, though still smaller than 2 for large areas and,
within our numerical precision, no dependence on g forg = 2,
3, and 8 was observed.

IV. THE VON NEUMANN-MULLINS LAW

The von Neumann-Mullins law Eq. (2) predicts that each
hull-enclosed area has a different rate of change depending
only on its number of sides (and not on its area). This
equation is not fully general; it has been derived under certain
assumptions that include, as in the Allen-Cahn case [27], the
fact that the domain wall should be close to flat away from the
triple points for g > 2, a feature that can be achieved at long
times and for long interfaces only. The law ruling the dynamics
of small areas with highly curved interfaces or large areas with
very rough walls is not known in general (in the Ising case,
however, some exact results for small areas are known [39,40]).
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FIG. 7. (Color online) Rate of change of the individual hull-
enclosed area at time ¢ = 1024 MCs after a quench from 7y — oo
to T, /2 (¢ = 8). The data are grouped by the number of sides n = 4
(top) and n = 8 (down). The vertical dashed line indicates R?(f) o t.

In this section we numerically analyze the validity of the von
Neumann-Mullins law by putting Eq. (2) and its average over
small (Ag < A < cR?)orlarge (A > cR?) areas to the test (A
is a small area cutoff and ¢ a tunable parameter). We estimate
the individual area time derivate as A;(t + 1) — A;(¢).

In Fig. 7 we examine Eq. (2) by plotting dA/dt vs A for
n =4andn = 8bothatt = 1024 MCsinag = 8 Potts model
quenched from Ty — oo to T,./2 (similar ellipsoidal clouds are
obtained for Ty = T, and for ¢ = 3). The vertical dashed line
shows R%(t) o t. The large vertical spreading of the data points
let us conclude that the von Neumann-Mullins law does not
hold strictly in our case, contrary to what was found for a phase
field simulation of ideal grain growth [41] and for very large g
Potts models with modified microscopic updating to ensure a
local ¢ = 6 constraint and thus accelerate the evolution [42].

Figure 8 (top panel) shows the area rate of change averaged
over small areas:

dA 1 dA,
<E><=N<(t) 2 dr (10)

Ag<A;<cR?

where N_(¢) is the number of areas obeying Ay < A; < cR2.
When one area leaves the defining interval [Ag,cR?], it is no
longer taken into account in the sums; on the other hand, new
areas can enter this interval. These are the reasons for the time
dependence in N_. Each curve in the figure corresponds to
different values of ¢ and temperature of the initial conditions:
@qg=2atTy—>o00,(b)g=3aTy=T, (c) g=3 at
To —>00,(d) g=8at To=T,, and (e) g = 8 at Tp — .
In cases (a) and (b) the averaged area rate of change has
reached a constant (within the fluctuations). In the other cases,
although the average continues to evolve within the explored
time window, the variation is much smaller than the total mean
area. In all cases (dA/dt) . is negative and, according to the
von Neumann-Mullins’s law, this implies an average number
of sides smaller than six. The fluctuations observed mainly in
the case g = 3 are the result of coalescence and dissociation
processes that become increasingly rare as the number of
ground states of the system increases.
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FIG. 8. (Color online) (Top) The area rate of change averaged
over small areas, Ay =8 < A < cR?, for (a) ¢ =2 and Ty — oo
(red), (b) ¢ = 3 and Ty = T, (blue), (c) ¢ = 3 and Ty — oo (green),
(d) g =8 and Ty = T, (pink), and (e) ¢ = 8 and Ty — oo (cyan). In
all cases the averaged rate of change seems to asymptotically reach a
negative constant. (Bottom) The time-dependent average number of
sides, (n(t)) - for the same parameters is shown with the same color
and label code. See the text for the discussion.

The results in the top panel of Fig. 8 are to be compared
to those in the bottom panel, where the small-area average of
the time-dependent number of sides, (n(?)) -, is displayed. The
results are qualitatively and quantitatively consistent with the
averaged von Neumann-Mullins law,

<d A > Ag

— ) = ((n()<-6). (1)
dt[_ 6

The values for A, found by comparing the two sets of curves are
consistent with A, decreasing for increasing ¢ and independent
of the initial temperature 7Ty, as is also found from the analysis
of the space-time correlation function [22].

The same analysis performed on the large areas is much
more delicate. To start with, it is difficult to collect good
statistics since only a few sufficiently large areas remain in
the samples at long times, especially for large values of g.
Figure 9 presents data for the same set of parameters as in
Fig. 8. Clearly, the fluctuations in the averaged area rate of
change are much larger than when the average was performed
over small areas. Still, one can argue that the rate of change
asymptotically approaches a constant in all cases. However,
and contrary to the small area case, the constant is negative

PHYSICAL REVIEW E 85, 021135 (2012)
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FIG. 9. (Color online) The same as in Fig. 8 but averaging over
large areas, A > cR?, for the same choice of parameters and color
code used in that figure. Notice the order of the labels in the top panel.

only in the cases in which the initial state is critical (g = 3
and 4, not shown, at Ty = T,) and for the special case g = 2
with Ty — oo. In all other cases [¢ = 3, Tp — oo (c), g = 8,
To =T, (d),and g = 8, Ty — oo (e)] the constant is positive.
In cases (a) and (b) one finds agreement between the negative
averaged area rate of change and the fact that the averaged
number of sides of these areas is smaller than six. Moreover, the
Ag values found, within our numerical accuracy, are consistent
with the ones stemming from the analysis of the data averaged
over small areas.

The remaining three cases have to be discussed separately.
While the signs are consistent, that is, positive averaged area
rate of change and average number of sides larger than six,
the trend of these curves is not systematic and shows that such
large structures do not follow the linear behavior predicted by
the von Neumann-Mullins law. This might be due to different
reasons. For instance, in the case ¢ = 3 with Ty — oo (¢)
we ascribe this feature to the fact that the long-time domain
structure is special in this case, with many large domains with
a rather rough surface, as shown in panel (e) of Fig. 2 and
confirmed by the fact that «;, is very close to one (see Fig. 5)
in this regime.

Figure 10 displays the total number of hulls with » sides,
Np(n,t), in a log-log scale, showing the behavior at four
different times, for ¢ = 3 after a quench from 7, — oo (solid
symbols) and Ty = T, (open symbols) to Ty = T,./2. The
dotted horizontal and vertical lines indicate N, = 1 andn = 6,
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FIG. 10. (Color online) Total number of hulls with n sides for
q =3, To — oo (solid symbols, upper group of curves) and Ty = T,
(open symbols, lower group of curves). The dotted lines indicate N, =
1 (horizontal) and n = 6 (vertical). The different symbols correspond
to different measuring times as given in the key. The distribution has
weight well above N;, = 1 for n > 6 when the initial conditions have
finite correlation length.

respectively. For initial conditions with finite correlation length
(upper group of curves) many interfaces have more than six
sides and the average value (n) is less representative of the
fluctuating behavior. The distribution tail seems exponential.
Instead, for critical initial conditions (lower group of curves),
the number of hulls with six or more sides becomes negligible
during evolution and the distribution decays as a power
law. Interestingly, for T — oo the curves are monotonically
decreasing forn > 4 while for Ty = T they are monotonically
decreasing for n > 2 (note that for the case g = 3 shown here,
n only takes even values). The former feature is experimentally
established although it is not captured by simplified random
neighbor models [43,44].

The summary of our analysis of the von Neumann-Mullins
law is given in Fig. 11 where we averaged the area rate of
change over all areas with given value of n and displayed the

30

q=3,1Tp — 0

25+ ¢=8T)y—o00 ©
q=3,Ty=T. =
20 | q=8Ty=T. * §° o

15 f

(dA/dt)

10

0 5 10 15 20 25 30
n
FIG. 11. (Color online) The full averaged area rate of change as
a function of the number of sides at # = 64 MCs for the parameters
given in the key. The solid lines correspond to the function f(x) >~ x7,

with y =1, 1.5, 2, from bottom to top, and serve as guides for the
eye.

PHYSICAL REVIEW E 85, 021135 (2012)

results as a function of n for the ¢ = 3 and ¢ = 8 models
quenched from 7y = T, and Ty — oo. The data are measured
at t = 64 MCs. Although the n — 6 dependence is observed
for both values of ¢ and the different initial conditions, the
behavior is linear in the averaged data only up ton ~ 10 (lower
solid straight line). Deviations appear for larger values of » in
all cases.

V. HULL PERIMETER DISTRIBUTIONS

In a previous work [22] the hull-enclosed area distribution,
n;,(A,t), was studied for the g-state Potts model after tempera-
ture quenching the system from above the critical temperature
into the ordered phase. We now describe the time evolution of
the hull perimeter distribution, n,(p,?), following this quench
and relate it to n,(A,t). The form of the distribution depends
on the initial condition and on the value of g. In particular,
there is a dependence on the morphological characteristics of
each domain, which are different for structures with large or
small sizes, when compared to the characteristic length R(z).

A. Critical initial condition

For 2 < g < 4 the transition is continuous and the initial
state at Tp = T, is critical; hence, all initial distributions, that
is, of areas and perimeters, should have a power-law tail.
The functional form of the equilibrium number density of
hull-enclosed areas att = Qisn,(A,0) = (g — 1)02(1’)/A2 [22].
Since one and only one hull is associated to each hull-enclosed
area, the number density of hull perimeters should be linked
to the one of hull-enclosed areas according to n,(p,0)dp =
np(A,0)dA. Using A >~ p* arelation that is valid one-to-one,
one finds

m(p.0) ~ 1L (12)
p h

where y, = a(q — l)cg” and ¢, = o, + 1. The exponent &j, is
the equivalent to the Fisher exponent 7 for the area distribution
now describing the perimeter distribution. In two dimensions
¢ is linked to the fractal dimension of the perimeter D, as
[5] ¢n = 1 4+ 2/Dy. In the special case g = 2 at T, one has
D, = 11/8 [35,45].

Using the fact that areas and perimeters are related one
to one also dynamically, n,(p,t)dp = n;(A,t)dA, and the
power-law relation between areas and perimeters Eq. (8),
the time-dependent number density of hull perimeters can be
easily written as

v ("

R L@

The value of o) depends on which of the two regimes,
p < R and p > R, one focuses on, with o, = 2 in the former
and o < 2 in the latter. A similar argument was used in
Refs. [29,46] to obtain the perimeter number density in the 2d
Ising model with nonconserved and conserved order parameter
dynamics, respectively.

Figure 12 shows the hull perimeter number density, scaled
by the characteristic length R(¢), for the critical model with
g = 3 after a quench to Ty = T./2. The long-range correla-
tions present in the critical initial state are preserved during

np(p,t) ~ 13)
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FIG. 12. (Color online) Rescaled hull perimeter distribution for
q = 3 at several times (1 = 2,22,...,2* MCs), after a quench from
Ty = T. to Ty = T./2. The solid black line represents the theoretical
prediction Eq. (13) valid for small areas, A/R* < 10, with o, = 2,
and for large areas, A/R? > 10, with o), >~ 1.44.

evolution and lead to the power-law tail in the distribution.
The exponent of this tail is ¢, ~ 2.5, in agreement with the
theoretical estimate ¢, = o, + 1 >~ 1.44 + 1 (see Fig. 6). For
small areas, p < R, one finds R3n,(p,t) ~ Y¢P/R also in
good agreement with the analytic prediction. Thus, Eq. (13)
describes well these two limits.

B. Noncritical initial condition

Being far from critical percolation, the initial state at
Tp — oo for a system with g > 2 does not become critical
during its evolution and the area (and consequently the
perimeter) distribution does not develop a power-law tail. In
Fig. 13 we use log-log scale to show the g = 8 hull perimeter
distribution after a quench from Ty — oo to Ty = T,/2 at
several times. Similarly to what happens with the hull-enclosed
area distribution for ¢ > 2 [22], there is a p~3 envelope that is
a consequence of dynamical scaling.

For very large g, after the quench, domains start to increase
from localized density fluctuations that are randomly scattered

256 -

1024

ERANA 2048 -

10 | AN | | 4096 -
10 8192
2\ 16384

FIG. 13. (Color online) Hull perimeter distribution for ¢ = 8 at
several times given in the key after a quench from equilibrium at
Ty — oo to Ty = T, /2. The declivity of the envelope, ¢, ~ 3.0, is a
direct consequence of dynamical scaling.
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FIG. 14. (Color online) Hull-enclosed area distribution for ¢ =8
at several times after a quench from equilibrium at Ty — oo to Ty =
T./2, rescaled by R?(¢). The solid line is a fit with Eq. (14) and
a>~1.21,b~1.22, c >~ 0.6. (Inset) The same data in a linear scale,
showing that for small areas, the collapse improves at large times.

throughout the system in a similar way to the Avrami-Johnson-
Mehl method [47] used to produce Voronoi diagrams. Thus,
neglecting coalescence effects that are only important for small
g, it can be conjectured that the set of domain centers (defined,
for example, as the center of mass of a domain) may be
approximately described as a set of random points from which
Voronoi domains are drawn. Indeed, as we show in Fig. 14
for g = 8 (see also Ref. [22]), the distribution of areas after a
temperature quench from 7y — oo to 7,./2, is well described
by the generalized gamma (or Voronoi) distribution [47],
widely used in grain growth literature [42,48-50]:

A a—1 A c
np(A,t) ~ <ﬁ> exp [—b (ﬁ) :| , (14)

with a ~ 1.21, b >~ 1.22, ¢ >~ 0.6. Simpler versions of the
above function have also been proposed, with two (¢ = 1)
or a single (¢ = 1 and a = b) parameter. Indeed, the values
that we get for a and b are almost the same, but ¢ # 1.

Once the distribution of areas is known, in principle,
one could relate it, as in the preceding section, to the
perimeter distribution using Eq. (8), obtaining, once again,
a I" distribution:

apa—1 ayc
nh(p,t)~R<%> exp[—b(%) } (15)

Differently from the area distribution, the dependence on o,
characterizes two distinct regimes, o, =2 for p < R and
ap <2 for p > R. As one can see from Fig. 15, the data
are well described by the above distribution. However, the fit
parameters are not only different from those obtained from
the area distribution but differ as well between the regions
with small and large p. One possible reason is that although
Eq. (14) is a good approximation, the dynamics of a growing
domain is not equivalent to the Avrami-Johnson-Mehl method.
If the Voronoi cells of the domain centers are drawn, there will
be a large superposition with the actual domains, but those
regions close to the interfaces could be wrongly assigned
because, differently from Voronoi diagrams in which the
borders are as straight as they can be on a lattice, a coarsened
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FIG. 15. (Color online) Hull perimeter distribution for ¢ = 8 at
several times after a quench from equilibrium at Ty — oo to Ty =
T./2, rescaled by R(t). The solid line is Eq. (15) with «;, = 2 for
p < Randoy, >~ 1.06 for p > R.The fit parameters, however, besides
being different from those of Fig. 14, differalsofor p < Rand p > R.
(Inset) The same data in a linear scale.

domain has rougher interfaces. Thus, the deviations are on the
scale of the perimeter length and, although they may not be
noticeable for area distributions, they become visible in the
perimeter distributions.

VI. CONCLUSIONS

We studied several geometric properties of the nearest-
neighbor g-state Potts model quenched below its phase tran-
sition. In particular, we analyzed the von Neumann-Mullins
law, the hull perimeter length distribution, and the relation
between hull perimeters and their enclosed areas. Diversely
from the so called cellular Potts model, in which several layers
of interacting neighbors are considered in order to decrease the
lattice anisotropy, here it is an important ingredient. Moreover,
coalescence is also relevant when ¢ is not too large, as the
values considered here. These two factors, necessary for the
single domain von Neumann-Mullins law, are here violated
and deviate the model from the ideal grain growth conditions.

After having confirmed that all dynamic observables satisfy
dynamic scaling with respect to the growing length R(¢) ~
(Aqt)l/z, we studied the fractal properties of the hulls by
plotting A/R?(t) against (p/R(1))*, Eq. (8). We found that
for p/R(t) < 1 interfaces are smooth with o), =2, while
for p/R(t) > 1 they are fractal, with «; being smaller for

PHYSICAL REVIEW E 85, 021135 (2012)

Ty — oo than for Ty = T, and decreasing with g. Thus, the
behavior of objects with linear sizes that are smaller that
the typical growing length have a rather different dynamics,
morphology, and statistical properties than those whose linear
sizes are larger than the dynamical length.

The linear proportionality between d A /dt and n (indepen-
dently of A), the von Neumann-Mullins law, does not hold
for each individual area for the nearest neighbor Potts model
in the temperature interval considered here after the quench.
This may be due to thermal fluctuations occurring along the
perimeter that may mask the curvature-driven contribution.
We then examined the law on the mean, by averaging over
areas that are smaller or larger than the typical one, R*(¢). In
the small area regime the linear von Neumann-Mullins law
is verified on the mean while for larger areas it is not, with
deviations from linearity depending on the value of ¢ and
initial conditions. The same separation of regimes is found
when averaging over all areas that have the same number of
sides. The behavior at large values of n seems to be captured
by a modified power law involving «;, but our data are not
extensive enough to test this conjecture.

Finally, we studied the hull perimeter distribution distin-
guishing critical (Ty = T, for g > 4) from noncritical (all
other cases, especially large g for 7o — 00). In the former
case we found that the scaling function can be derived with
an argument that combines the use of Eq. (8) with the form of
the distribution of hull-enclosed areas found in Ref. [22]. For
noncritical initial conditions we found, instead, that the gamma
distribution commonly used in studies of ideal grain growth
describes well both the hull-enclosed area and the perimeter
distributions, although the expected relation between the
exponents of both distributions is not obeyed. The reason is
due to the fact that the perimeter distribution is much more
sensitive to the differences between the actual domains and
their Voronoi approximations, as discussed in Sec. V B.

There are, however, several statistical properties of interface
sides and topological properties for cellular systems that were
not yet fully studied for the nearest-neighbor Potts model and
will be the subject of a future publication.
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