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Linear response theory for long-range interacting systems in quasistationary states
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3Dipartimento di Energetica “Sergio Stecco” and CSDC, Università di Firenze, CNISM and INFN, via S. Marta 3, IT-50139 Firenze, Italy

(Received 4 December 2011; published 23 February 2012)

Long-range interacting systems, while relaxing to equilibrium, often get trapped in long-lived quasistationary
states which have lifetimes that diverge with the system size. In this work, we address the question of how
a long-range system in a quasistationary state (QSS) responds to an external perturbation. We consider a
long-range system that evolves under deterministic Hamilton dynamics. The perturbation is taken to couple to
the canonical coordinates of the individual constituents. Our study is based on analyzing the Vlasov equation for
the single-particle phase-space distribution. The QSS represents a stable stationary solution of the Vlasov equation
in the absence of the external perturbation. In the presence of small perturbation, we linearize the perturbed Vlasov
equation about the QSS to obtain a formal expression for the response observed in a single-particle dynamical
quantity. For a QSS that is homogeneous in the coordinate, we obtain an explicit formula for the response. We
apply our analysis to a paradigmatic model, the Hamiltonian mean-field model, which involves particles moving
on a circle under Hamiltonian dynamics. Our prediction for the response of three representative QSSs in this
model (the water-bag QSS, the Fermi-Dirac QSS, and the Gaussian QSS) is found to be in good agreement
with N -particle simulations for large N . We also show the long-time relaxation of the water-bag QSS to the
Boltzmann-Gibbs equilibrium state.
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I. INTRODUCTION

Systems with long-range interactions are ubiquitous in na-
ture [1–3]. In these systems, the interaction potential between
two particles decays asymptotically with separation r as 1/rα ,
where α is smaller than or equal to the spatial dimension
of the system. Examples are dipolar ferroelectrics and ferro-
magnets, self-gravitating systems, non-neutral plasmas, two-
dimensional geophysical vortices, etc. Long-range interactions
result in nonadditivity, thereby giving rise to equilibrium
properties which are unusual for short-range systems, e.g.,
a negative microcanonical specific heat, inequivalence of
statistical ensembles, and others [1].

Long-range systems often exhibit intriguingly slow relax-
ation toward equilibrium [4–7]. Such slow relaxation has been
widely investigated in a model of globally coupled particles
moving on a unit circle and evolving under Hamiltonian
dynamics. This model is known as the Hamiltonian mean-field
(HMF) model [8]. In this model, a wide class of initial
conditions relaxes to equilibrium over times that diverge with
the system size. It has been demonstrated that, depending
on the initial condition, the relaxation to equilibrium for
some energy interval occurs through intermediate long-lived
quasistationary states (QSSs). These non-Boltzmann states
involve slow evolution of thermodynamic observables over
time, and have a lifetime which grows algebraically with the
system size [4]. An immediate consequence is that the system,
in the limit of infinite size, never attains the Boltzmann-Gibbs
equilibrium, but remains trapped in the QSSs. Generalizations
of the HMF model to include anisotropy terms in the energy
[9] and also to particles which are confined to move on
a spherical surface rather than on a circle [10] have also
shown slow relaxation toward equilibrium and the presence of
QSSs.

Dynamics of systems with long-range interaction, in the
infinite-size limit, is described by the Vlasov equation that
governs the time evolution of the single-particle phase-space
distribution [11]. This equation allows a wide class of
stationary solutions. Their stability can be determined from
the temporal behavior of small fluctuations by linearizing
the Vlasov equation around the stationary solutions. Stable
stationary states of the Vlasov equation correspond to QSSs
of the finite-size system. The first clear demonstration of this
correspondence was achieved for the HMF model [4]. In this
paper, we refer interchangeably to stable stationary states of
the Vlasov equation and QSSs of the finite-size dynamics.

The study of the time evolution of fluctuations around
a stationary solution of the Vlasov dynamics is relevant in
many applications, for instance, in the phenomenon of Landau
damping that arises due to energy exchange between particles
and waves in an electrostatic plasma [12]. In this process and
in many others, spontaneous statistical fluctuations around a
stable stationary state of the Vlasov equation are considered,
and their rate of exponential decay in time is determined
by solving an initial value problem involving the linearized
Vlasov equation through a careful use of the Laplace-Fourier
transform.

In this paper, we follow a different approach to the study
of fluctuations by the linearized Vlasov equation. Inspired by
Kubo linear response theory [13], we analyze the response
of a Vlasov-stable stationary state to the application of a
small external perturbation described by a time-dependent
term in the Hamiltonian. The perturbation induces forced
fluctuations around the stationary state that we treat to linear
order in the strength of the perturbation, and study their
evolution in time by using the linearized Vlasov equation.
Such forced fluctuations are known to be generically finite for
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Boltzmann-Gibbs equilibrium states. We show here theoret-
ically that they are finite and small, of the order of the
perturbation, also for Vlasov-stable stationary states. We
support our analysis with N -particle numerical simulations
of the HMF model.

The paper is organized as follows. In Sec. II, we develop
the linear response theory for a general QSS by using the
Vlasov framework. In Sec. III, we specialize to a QSS that
is homogeneous in the coordinate, and derive a closed form
expression for the change induced by the external perturbation
in a single-particle dynamical quantity. Section IV is devoted
to the application of the theory to study the response of three
representative homogeneous QSSs in the HMF model, namely,
the widely studied water-bag QSS, the Fermi-Dirac QSS, and
the homogeneous equilibrium state, which is also a QSS. In
the following section, we compare results from N -particle
numerical simulations of the HMF dynamics with those from
the linear response theory, and obtain good agreement. We
also discuss the long-time relaxation of the water-bag QSS
to Boltzmann-Gibbs equilibrium under the action of the
perturbation. We draw our conclusions in Sec. VI.

II. LINEAR RESPONSE THEORY FOR QSS

Consider a system of N particles interacting through a long-
range pair potential. The Hamiltonian of the system is

H0 =
N∑

i=1

p2
i

2
+ 1

N

N∑
i<j

v(qi − qj ), (1)

where qi and pi are, respectively, the canonical coordinate
and momentum of the ith particle, while v(qi − qj ) is the
interaction potential between the ith and j th particles. We
assume that v(q) is suitably regularized for zero argument.
We regard qi and pi as one-dimensional variables, though our
formalism may be easily extended to higher dimensions. The
mass of the particles is taken to be unity. The factor 1/N in
Eq. (1) makes the energy extensive, in accordance with the Kac
prescription [14]. In this work, we take unity for the Boltzmann
constant. The system evolves under deterministic Hamiltonian
dynamics: the equations of motion for the ith particle are

q̇i = pi, ṗi = − ∂

∂qi

1

N

N∑
i<j

v(qi − qj ), (2)

where dots denote differentiation with respect to time.
We start with the system in a quasistationary state (QSS) at

time t = 0, and apply an external field K(t). A QSS represents
a stable stationary solution of the dynamics (2) in the limit
N → ∞. For finite N , however, size effects lead to instability
and a slow relaxation of the QSS to the Boltzmann-Gibbs
equilibrium state over a time scale that diverges with N

[4–7,9,10].
Assuming the field K(t) to couple to the coordinates of the

individual particles, the perturbed Hamiltonian is

H (t) = H0 + Hext = H0 − K(t)
N∑

i=1

b(qi). (3)

Here, b(qi) denotes the dynamical quantity for the ith particle
that is conjugate to K(t). The equations of motion are modified
from Eq. (2) to

q̇i = pi, ṗi = − ∂

∂qi

1

N

N∑
i<j

v(qi − qj ) + K(t)
∂b(qi)

∂qi

. (4)

In this work, we study the temporal response of the initial QSS
to the field K(t), in particular, the linear response. We ask: How
does a single-particle dynamical quantity a(q) that starts from a
value corresponding to the QSS evolve in time under the action
of K(t)? We seek answers to this question by considering the
system in the limit N → ∞, so that size effects are negligible
and the evolution of the QSS is due to the field K(t) alone. We
also regard K(t) to satisfy the following conditions: K(t) is a
monotonically increasing function of t and has a value � 1 at
all times, K(t = 0) = 0, and K(t → ∞) = a constant much
smaller than 1. While discussing the time-asymptotic response,
we will mean the ordering of limits N → ∞ first, followed
by t → ∞. Note that the perturbed dynamics of Eq. (4) does
not conserve the total energy of the system as does Eq. (2),
although the variation is expected to be small for small K(t).

The framework we adopt to address our queries is that of the
Vlasov equation for the time evolution of the single-particle
phase-space distribution. For a system like Eq. (1) in the limit
N → ∞, such an equation faithfully describes the N -particle
dynamics in Eq. (2) [11,15]. That for small K(t) the Vlasov
equation describes the perturbed dynamics of Eq. (4) in the
infinite-size limit is illustrated later in the paper by comparing
the predictions of our analysis with N -particle simulations for
large N .

Let the function fd (q,p,t) count the fraction of particles
with coordinate q and momentum p at time t :

fd (q,p,t) = 1

N

N∑
j=1

δ(q − qj (t))δ(p − pj (t)). (5)

In the limit N → ∞, the function fd (q,p,t) converges to the
smooth function f (q,p,t), which may be interpreted as the
single-particle phase-space distribution function. The Vlasov
equation for the time evolution of f (q,p,t) may be derived
by using the equations of motion (4) and following standard
approaches [11,15], and is given by

∂f

∂t
− L(q,p,t)[f ]f = 0, (6)

where the operator L(q,p,t)[f ] is given by

L(q,p,t)[f ] = −p
∂

∂q
+ ∂�(q,t)[f ]

∂q

∂

∂p
− K(t)

∂b

∂q

∂

∂p
, (7)

while �(q,t)[f ] is the mean-field potential:

�(q,t)[f ] =
∫ ∫

dq ′ dp′v(q − q ′)f (q ′,p′,t). (8)

We investigate the response of the system to the external field
by monitoring the observable

〈a(q)〉(t) ≡
∫ ∫

dq dp a(q)f (q,p,t). (9)
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To obtain its time dependence, we need to solve Eq. (6) for
f (q,p,t), with the initial condition

f (q,p,0) = f0(q,p). (10)

Here, f0(q,p) characterizes a QSS, i.e., a stable stationary
solution of the Vlasov equation for the unperturbed dynamics
of Eq. (2). Thus, f0(q,p) satisfies

L0(q,p)[f0]f0 = 0, (11)

where

L0(q,p)[f0] = −p
∂

∂q
+ ∂�̄(q)[f0]

∂q

∂

∂p
, (12)

and

�̄(q)[f0] =
∫ ∫

dq ′ dp′ v(q − q ′)f0(q ′,p′). (13)

To solve Eq. (6) for K(t) � 1, we expand f (q,p,t) to linear
order in K(t) as

f (q,p,t) = f0(q,p) + �f (q,p,t), (14)

with the initial condition

�f (q,p,0) = 0. (15)

Substituting Eq. (14) in Eq. (6), and separating terms to order
1 and K(t), we get, respectively,

∂f0

∂t
− L0(q,p)[f0]f0 = 0, (16)

and

∂�f

∂t
− L0(q,p)[f0]�f = Lext(q,p,t)[�f ]f0. (17)

Here, the operator

Lext(q,p,t)[�f ] = ∂�(q,t)[�f ]

∂q

∂

∂p
− K(t)

∂b

∂q

∂

∂p
(18)

describes the effects of the external field, which are two-fold:
(i) to generate a potential due to its direct coupling with the
particles, and (ii) to modify the mean-field potential Eq. (8)
from its value �̄(q)[f0] in the absence of the field. Defining
an effective single-particle potential,

veff(q,t)[�f ] = �(q,t)[�f ] − K(t)b(q), (19)

Eq. (17) may be written as

∂�f

∂t
− L0(q,p)[f0]�f = ∂veff(q,t)[�f ]

∂q

∂f0

∂p
. (20)

Equation (16) is satisfied by virtue of the definition of f0(q,p).
We thus solve Eq. (20) for �f (q,p,t) in order to determine
f (q,p,t) from Eq. (14). With the condition (15), the formal
solution is

�f (q,p,t) =
∫ t

0
dτe(t−τ )L0(q,p)[f0] ∂veff(q,τ )[�f ]

∂q

∂f0(q,p)

∂p
.

(21)

Using Eq. (21) in Eqs. (9) and (14) gives the change in the
value of 〈a(q)〉(t) due to the external field:

〈�a(q)〉(t) ≡
∫ ∫

dq dp a(q)[f (q,p,t) − f0(q,p)]

=
∫ t

0
dτ

∫ ∫
dq dp a(q)e(t−τ )L0(q,p)[f0]

× ∂veff(q,τ )[�f ]

∂q

∂f0(q,p)

∂p

= −
∫ t

0
dτ

〈
∂a(t − τ )

∂p

∂veff(q,τ )[�f ]

∂q

〉
f0

. (22)

Here, angular brackets with f0 in the subscript denote
averaging with respect to f0(q,p), e.g.,

〈a(q)〉f0 ≡
∫ ∫

dq dp a(q)f0(q,p), (23)

while

a(t − τ ) = e−(t−τ )L0(q,p)[f0] a(q) (24)

is the time-evolved a(q) under the dynamics of the unperturbed
system. In obtaining the last equality in Eq. (22), we have used
the definition of L0, have performed integration with respect
to q, and have assumed the boundary terms involving f0(q,p)
to vanish.

Defining the Poisson bracket between two dynamical
variables g(q,p) and g′(q,p) in the single-particle phase space
as

{g(q,p),g′(q,p)} ≡ ∂g

∂q

∂g′

∂p
− ∂g′

∂q

∂g

∂p
, (25)

Eq. (22) may be rewritten as

〈�a(q)〉(t) =
∫ t

0
dτ 〈{a(t − τ ),veff(q,τ )[�f ]}〉f0

. (26)

This is the central result of the paper. The above equation
has a form similar to the Kubo formula for the response of a
dynamical quantity defined in the full 2N -dimensional phase
space to an external perturbation [13]. The relation of formula
(26) with more general ones derived by Ruelle [16] in the
context of dynamical system theory remains to be investigated.
In the following section, we discuss the special case of a
homogeneous QSS, i.e., f0(q,p) = P (p) is a function solely
of the momentum, to obtain an explicit form of the formal
solution (21).

III. HOMOGENEOUS QSS

We consider a homogeneous QSS with f0(q,p) = P (p),
where P (p) is any distribution of the momentum, with the
normalization∫

dq dpP (p) = 1,

∫
dpP (p) = 1

V
, (27)

where

V ≡
∫

dq (28)

is the total volume of the coordinate space.
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For a homogeneous QSS, Eq. (12) gives

L0(q,p)[f0] = −p
∂

∂q
, (29)

so that Eq. (21) becomes

�f (q,p,t) =
∫ t

0
dτe

−(t−τ )p ∂
∂q

∂veff(q,τ )[�f ]

∂q

∂P (p)

∂p
, (30)

which implies that the spatial Fourier and temporal Laplace
transform of �f (q,p,t) satisfies [17]

�̂f (k,p,ω) = ∂P (p)

∂p
ikL[e−tpik]

[
2πṽ(k)

∫
dp′�̂f (k,p′,ω)

− K̂(ω)̃b(k)

]
. (31)

Here, L denotes the Laplace transform:

L[e−tpik] =
∫ ∞

0
dt eiωt−tpik = 1

i(kp − ω)
, (32)

assuming Im(ω) to be positive. Thus,

�̂f (k,p,ω) = ∂P (p)

∂p

k

kp − ω

[
2πṽ(k)

∫
dp′�̂f (k,p′,ω)

− K̂(ω)̃b(k)

]
. (33)

Now, integrating both sides of Eq. (33) with respect to p gives∫
dp�̂f (k,p,ω) = K̂(ω)̃b(k)

2πṽ(k)

ε(k,ω) − 1

ε(k,ω)
. (34)

Here, ε(k,ω) is the “dielectric function” [1]:

ε(k,ω) = 1 − 2πkṽ(k)
∫

LC

dp

kp − ω

∂P (p)

∂p
, (35)

where the integral has to be performed along the Landau
contour (LC) that makes Eq. (34) valid in the whole of the
ω plane; we have [11,18]

ε(k,ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − 2πkṽ(k)
∫ ∞
−∞

dp

kp−ω

∂P (p)
∂p

[Im(ω) > 0],

1 − 2πkṽ(k)P
∫ ∞
−∞

dp

kp−ω

∂P (p)
∂p

−i2π2ṽ(k) ∂P (p)
∂p

∣∣∣
ω/k

[Im(ω) = 0],

1 − 2πkṽ(k)
∫ ∞
−∞

dp

kp−ω

∂P (p)
∂p

−i4π2ṽ(k) ∂P (p)
∂p

∣∣∣
ω/k

[Im(ω) < 0],

(36)

where P denotes the principal part.
From Eq. (14), the change in the distribution due to the

external field is

f (q,p,t) − P (p) = 1

2π

∫
C

dω e−iωt

∫
dk eikq�̂f (k,p,ω),

(37)

where C is the Laplace contour. Integration over p gives∫
dpf (q,p,t) = 1

V
+ 1

2π

∫
C

dω e−iωt

∫
dk eikq

×
[
K̂(ω)̃b(k)

2πṽ(k)

(
ε(k,ω) − 1

ε(k,ω)

)]
, (38)

where we have used Eq. (34). Let us suppose that the
expression enclosed by square brackets has singularities which
are isolated poles of any order. Let {ωp(k)} be the set of poles,
while {rp(k)} is the set of residues at these poles. Then, by the
theorem of residues, we get∫

dpf (q,p,t) = 1

V
+ 1

2π

∫
dk eikq

∑
p

(2πi)rp(k)e−iωp(k)t .

(39)

From Eq. (38), we see that the poles correspond either to poles
of K̂(ω) or to the zeros of the dielectric function, i.e., values
ωp(k) (complex in general) that satisfy

ε(k,ωp(k)) = 0. (40)

Equation (39) implies that these poles determine the growth or
decay of the difference

∫
dpf (q,p,t) − 1

V
in time depending

on the location of the poles in the complex-ω plane. For
example, when there are poles in the upper-half complex-ω
plane, the difference grows in time. If, on the other hand, the
poles lie either on or below the real-ω axis, the difference does
not grow in time, but oscillates or decays in time, respectively.

We have to ensure that our analysis leading to Eq. (39) is
consistent with the decomposition in Eq. (14) for perturbations
about a stable stationary state f0(q,p) = P (p). It is thus
required that

∫
dpf (q,p,t) − 1

V
does not grow in time, which

means that the aforementioned poles cannot lie in the upper-
half ω plane. Now, since K(t) was chosen to satisfy the
conditions K(t = 0) = 0 and K(t → ∞) = a constant much
smaller than 1, it follows that K̂(ω) cannot have poles in the
upper-half ω plane. We therefore conclude that Eq. (39) is
valid when the poles ωp(k) that come from the zeros of ε(k,ω)
satisfy

ε(k,ωp(k)) = 0; Im[ωp(k)] � 0, (41)

corresponding to linear stability of the stationary state P (p).
The condition Im[ωp(k)] = 0 corresponds to marginal stability
of P (p). In this case, the zeros of the dielectric function lie on
the real-ω axis so that ωp(k) = ωpr(k) is real. From Eqs. (40)
and (36), we find that ωpr(k) satisfies

1 − 2πkṽ(k)P
∫ ∞

−∞

dp

kp − ωpr(k)

∂P (p)

∂p

− i2π2ṽ(k)
∂P (p)

∂p

∣∣∣∣
ωpr(k)/k

= 0. (42)

Equating the real and the imaginary parts to zero, we get

1 − 2πkṽ(k)P
∫ ∞

−∞

dp

kp − ωpr(k)

∂P (p)

∂p
= 0, (43)

∂P (p)

∂p

∣∣∣∣
ωpr(k)/k

= 0. (44)
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We now move on to apply our analysis to the Hamiltonian
mean-field model, a paradigmatic model of long-range inter-
actions.

IV. APPLICATION TO THE HAMILTONIAN
MEAN-FIELD MODEL

A. Model

The Hamiltonian mean-field (HMF) model belongs to the
class of models with Hamiltonian (1), with the additional
feature that the potential v(q) is even:

v(q) = 1 − cos q, (45)

so that the Hamiltonian is [8]

H0 =
N∑

i=1

p2
i

2
+ 1

N

N∑
i<j

[1 − cos(qi − qj )]. (46)

The model describes particles moving on a unit circle under
Hamiltonian dynamics (2). The canonical coordinate qi ∈
[0,2π ] specifies the angle for the location of the ith particle on
the circle with respect to an arbitrary fixed axis, while pi is the
conjugate momentum [19]. The model in the equilibrium state
shows a continuous transition from a low-energy clustered
phase, in which the particles are close together on the circle, to
a high-energy homogeneous phase corresponding to a uniform
distribution of particles on the circle. The clustering of the
particles is measured by the magnetization vector 〈m〉(t) with
components

(〈mx〉(t),〈my〉(t)) =
∫ ∫

dq dp(cos q, sin q)f (q,p,t), (47)

and magnitude 〈m〉(t) = √〈mx〉2(t) + 〈my〉2(t). In terms of
〈m〉(t), the energy density is

e =
〈
p2

2

〉
(t) + 1

2
[1 − 〈m〉2(t)], (48)

where the kinetic energy 〈p2

2 〉(t) defines the temperature T of
the system:〈

p2

2

〉
(t) =

∫ ∫
dq dp

p2

2
f (q,p,t) = T

2
. (49)

Note that e is conserved under the dynamics.
In equilibrium, the single-particle distribution assumes the

canonical form, feq(q,p), which is Gaussian in p with a
nonuniform distribution for q below the transition energy
density ec and a uniform one above [20]:

feq(q,p) =
√

β exp
[ − β

(
p2

2 − m
eq
x cos(q − φ)

)]
(2π )3/2I0

(
βm

eq
x

) . (50)

Here, I0 is the modified Bessel function of zero order, β

is the inverse temperature, while m
eq
x is the equilibrium

magnetization that decreases continuously from unity at zero
energy density to zero at ec and remains zero at higher energies.
The arbitrary phase φ in Eq. (50) is a result of the rotational

invariance of the Hamiltonian (46). The energy at equilibrium
is

e = 1

2β
+ 1 − (

m
eq
x

)2

2
. (51)

The phase transition in the HMF model occurs within both mi-
crocanonical and canonical ensembles [8,21]. Thus, ensemble
equivalence, though not guaranteed for long-range interacting
systems, holds for the HMF model [1]. The microcanonical
transition energy is ec = 3/4, which corresponds to a transition
temperature Tc = 1/2 in the canonical ensemble.

B. Linear response of homogeneous QSS

Consider the QSS distribution f0(q,p) = P (p) which is
homogeneous in coordinate (thus, 〈mx〉f0 = 〈my〉f0 = 0), but
has an arbitrary normalized distribution for the momentum.
Here, we study the response of this QSS to the external
perturbation

Hext = −K(t)
N∑

i=1

cos qi, (52)

which corresponds to the choice

b(q) = cos q (53)

in Eq. (3). The specific K(t) we choose is a step function:

K(t) =
{

0 for t < 0,

h for t � 0; h � 1.
(54)

The changes in the magnetization components due to the field
are

〈�mx〉(t) =
∫ ∫

dq dp [f (q,p,t) − P (p)] cos q

= 1

2

∫
C

dω e−iωt

∫
dp[�̂f (1,p,ω)

+ �̂f (−1,p,ω)], (55)

and

〈�my〉(t) =
∫ ∫

dq dp[f (q,p,t) − P (p)] sin q

= 1

2i

∫
C

dω e−iωt

∫
dp[�̂f (−1,p,ω)

− �̂f (1,p,ω)]. (56)

Using

ṽ(k) =
[
δk,0 − δk,−1 + δk,1

2

]
, (57)

b̃(k) = δk,−1 + δk,1

2
, (58)

K̂(ω) = − h

iω
, (59)

and Eq. (34) in Eqs. (55) and (56) gives

〈�mx〉(t) = h

2π

∫
C

dω e−iωt 1

iω

(
ε(1,ω) − 1

ε(1,ω)

)
, (60)
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and

〈�my〉(t) = 0. (61)

Here, we have used the fact that for the HMF model,

ε(1,ω) = ε(−1,ω), (62)

as may be easily checked by using Eq. (57) in Eq. (35). It may
also be seen that

ε(k,ω) = 1 for k �= ±1. (63)

Now, using the fact that 〈mx〉f0 = 〈my〉f0 = 0, Eqs. (60) and
(61) imply that

〈mx〉(t) = h

2π

∫
C

dω e−iωt 1

iω

(
ε(1,ω) − 1

ε(1,ω)

)
, (64)

and

〈my〉(t) = 0. (65)

It can be proven straightforwardly from the Vlasov equation (6)
that Eq. (65) holds also in the nonlinear response regime [K(t)
not necessarily small] for all homogeneous P (p) which are
even in p.

When the zeros of ε(1,ω) lie only in the lower-half complex-
ω plane, Eq. (64) gives the time-asymptotic response:

mx ≡ lim
t→∞〈mx〉(t) = h

(
1 − ε(1,0)

ε(1,0)

)
. (66)

This equation implies diverging magnetization at ε(1,0) = 0,
which is clearly not possible as the magnetization is bounded
above by unity. Therefore, in such a case, the linear response
theory makes an incorrect prediction. Thus, we rely on formula
(66) only when the result is much smaller than unity.

Note that K̂(ω), given in Eq. (59), has a pole only at ω = 0.
Following the discussions in Sec. III, we thus conclude that
the conditions (43) and (44) solely determine the parameters
characterizing the distribution P (p) such that it is marginally
stable. For the HMF model, we need to consider only k = ±1
in these conditions. Since ε(1,ω) = ε(−1,ω), we write
ωpr(1) = ωpr(−1) = ωpr, so that these conditions become

1 + πP
∫ ∞

−∞

dp

p ∓ ωpr

∂P (p)

∂p
= 0, (67)

∂P (p)

∂p

∣∣∣∣
ωpr

= 0. (68)

We now consider two representative P (p) and obtain the linear
response of the corresponding QSS by using Eq. (64). For the
first case, we obtain the full temporal behavior of the response,
while in the second case, we discuss only the time-asymptotic
response.

1. Water-bag QSS

The water-bag state corresponds to coordinates uniformly
distributed in [0,2π ] and momenta uniformly distributed in
[−p0,p0]:

P (p) = 1

2π

1

2p0
[
(p + p0) − 
(p − p0)], p ∈ [−p0,p0].

(69)

Here, 
(x) denotes the unit step function. The energy density
is obtained from Eq. (48) as

e = p2
0

6
+ 1

2
. (70)

The dielectric function may be obtained straightforwardly by
using Eq. (35) to get

ε(1,ω) = 1 − 1

2
(
p2

0 − ω2
) , (71)

which is analytic in the whole of the ω plane, except at the two
points ω = ±p0.

As discussed in Sec. III, the zeros of the dielectric
function determine the temporal behavior of the difference∫

dpf (q,p,t) − 1/V (here V = 2π ). The zeros of Eq. (71)

occur at ωp = ±
√

p2
0 − 1/2. For p0 < p∗

0 = 1/
√

2, (corre-
spondingly, e < e∗ = 7/12), the pair of zeros lies on the
imaginary-ω axis, one in the upper half plane and one in the
lower. The one in the upper half plane makes the water-bag
state linearly unstable for e < e∗. As e approaches e∗ from
below, the zeros move along the imaginary-ω axis and hit the
origin when e = e∗. At higher energies, the zeros start moving
on the real-ω axis away from the origin in opposite directions.
The fact that the zeros of the dielectric function are strictly real
for e � e∗ implies that the water-bag state is marginally stable
at these energies, and is therefore a QSS at these energies.

From the discussions in Sec. III and those following
Eq. (66), it follows that the result of the linear Vlasov
theory, Eq. (64), is valid and physically meaningful only when
p2

0 > 1/2. Using Eq. (71) in Eq. (64) and performing the
integral by the residue theorem gives

〈mx〉(t) = 2h

2p2
0 − 1

sin2

(
t

2

√
p2

0 − 1

2

)
, p2

0 >
1

2
. (72)

Thus, the linear Vlasov theory predicts that in the presence
of an external field along x, the corresponding magnetization
exhibits oscillations for all times and does not approach any
time-asymptotic constant value. This prediction is verified in
numerical simulations discussed in Sec. V A. The average of
〈mx〉(t) over a period of oscillation is

〈mx〉time av ≡ 1

T

∫ T

0
dt〈mx〉(t) = h

2p2
0 − 1

, p2
0 >

1

2
, (73)

where T is the period of oscillation. In Sec. V, we will compare
this average with numerical results.

2. Fermi-Dirac QSS

We now consider a Fermi-Dirac state in which the coordi-
nate is uniformly distributed in [0,2π ], while the momentum
has the usual Fermi-Dirac distribution:

P (p) = A
1

2π

1

1 + eβ(p2−μ)
, p ∈ [−∞,∞]. (74)

Here, β � 0 and μ � 0 are parameters characterizing the
distribution, while A is the normalization constant. We
consider the state (74) in the limit of large β in which analytic
computations of various physical quantities is possible. As
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β → ∞ the Fermi-Dirac state converges to the water-bag state
(69) with p0 = √

μ.
As shown in the Appendix, to leading order in 1/β2, the

normalization is given by

A = 1

2
√

μ

(
1 + π2

24β2μ2

)
, (75)

while the energy density is

e = μ

6

(
1 + π2

6β2μ2

)
+ 1

2
. (76)

Let us now investigate the conditions (67) and (68) for
the marginal stability of the state (74). Since P (p) satisfies
∂P (p)

∂p
|p=0 = 0, the condition (68) implies that ωpr = 0, which

on substituting in condition (67) gives

ε(1,0) = 0, (77)

where, as shown in the Appendix, to order 1/β2, we have

ε(1,0) = 1 − 1

2μ

(
1 + π2

6β2μ2

)
. (78)

Solving Eq. (77) gives μ∗, the value of μ at the marginal
stability of the state (74). To order 1/β2, we get

μ∗ = 1

2
+ 2π2

3β2
, (79)

which gives the corresponding energy density

e∗ = 7

12
+ π2

6β2
, (80)

such that at higher energies, the state (74) is a QSS.
Following our earlier discussions on the regime of validity

of the linear Vlasov theory, and using Eq. (78) in Eq. (66), we
get

mx =
h
(
1 + π2

6β2μ2

)
2μ − 1 − π2

6β2μ2

, μ > μ∗. (81)

C. Linear response of the homogeneous equilibrium state

It is interesting to consider the response of the distribution
(50) with magnetization m

eq
x = 0, which is the equilibrium

state of the HMF model for energies e > ec. We thus consider
the choice

P (p) =
√

β

2π
exp

[
−βp2

2

]
. (82)

It is known that the equilibrium state (82) is also a QSS [1].
Indeed, stability condition (68) gives ωpr = 0, so that Eq. (67)
gives

ε(1,0) = 0, (83)

where ε(1,0) is given by

ε(1,0) = 1 − β

2
. (84)

Thus, the state (50) is marginally stable at β = 2, and
correspondingly, e = e∗ = 3/4 = ec. For e > e∗, the state is a
QSS and also the Boltzmann-Gibbs equilibrium state.

Using Eqs. (84) and (66), one gets

mx = h

2/β − 1
, β < 2. (85)

Therefore, under the perturbation, Eqs. (52) and (54), the
equilibrium state evolves to an inhomogeneous QSS predicted
by our linear response theory. Let us compare the value of mx

in Eq. (85) with the one predicted by equilibrium statistical
mechanics, m

eq
x (β,h), at the same values of the energy and

h. This latter quantity is obtained by solving the implicit
equation [1]

X

β
− h = I1(X)

I0(X)
, (86)

with I1(X) the modified Bessel function of first order, and
using the solution X̄(β,h) to get

meq
x (β,h) = I1(X̄)

I0(X̄)
. (87)

The corresponding energy is

e = 1

2β
+ 1 − [

m
eq
x (β,h)

]2

2
− hmeq

x (β,h). (88)

The two values given in Eqs. (85) and (87) are in general
different. However, in the high-energy regime, one can
solve Eq. (86) for small X to obtain for the equilibrium
magnetization the same formula as the one obtained by the
linear response theory, Eq. (85). While comparing the two
magnetization values with numerical results at high energies
in Sec. V B, we are thus not able to distinguish between
equilibrium and QSS magnetization in the presence of the
field.

V. COMPARISON WITH N-PARTICLE SIMULATIONS

To verify the analysis presented in Sec. IV, we performed
extensive numerical simulations of the N -particle dynamics
(4) for the HMF model for large N . The equations of motion
were integrated using a fourth-order symplectic scheme [22],
with a time step varying from 0.01 to 0.1. In simulations, we
prepare the HMF system at time t = 0 in an initial state by
sampling independently for every particle the coordinate q

uniformly in [0,2π ] and the momentum according to either
the water-bag, the Fermi-Dirac, or the Gaussian distribution.
Thus, the probability distribution of the initial state is

P (q1,p1,q2,p2, . . . ,qN ,pN ) =
N∏

i=1

P (pi), (89)

where P (p) is given by either Eqs. (69), (74), or (82). The
energy of the initial state is chosen to be such that it is a QSS.
Then, at time t0 > 0, we switch on the external perturbation,
Eqs. (52) and (54), and follow the time evolution of the x

magnetization.
In obtaining numerical results, two different approaches

were adopted. In one approach, we followed in time the
evolution of a single realization of the initial state. These
simulations are intended to check if our predictions based on
the Vlasov equation for the smooth distribution f (q,p,t) for
infinite N are also valid for a typical time-evolution trajectory

021133-7



PATELLI, GUPTA, NARDINI, AND RUFFO PHYSICAL REVIEW E 85, 021133 (2012)

of the empirical measure fd (q,p,t) for finite N , where the
initial condition fd (q,p,0) is obtained from Eqs. (89) and
(5), while f (q,p,0) = P (p). Rigorous results from Braun and
Hepp and further analysis by Jain et al. show that these typical
trajectories stay close to the trajectory of f (q,p,t) for times
that increase logarithmically with N [9,15]. When P (p) is a
stable stationary solution of the Vlasov equation, it is known
numerically [4] and analytically [23] that these times diverge
as a power of N , and are therefore sufficiently long to allow
us to check even for moderate values of N the predictions of
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FIG. 1. (Color online) 〈mx〉(t) vs time t for the (a) water-bag QSS
and (b) Fermi-Dirac QSS in the HMF model under the action of the
perturbation, Eqs. (52) and (54), with h = 0.1 switched on at time
t0 = 25. (a) The full line in the main plot shows the result of N -
particle simulation, while the dashed horizontal line is the theoretical
time-averaged value of 〈mx〉(t) given in Eq. (73). The system size is
N = 105, while the parameter p0, corresponding to energy e = 0.7,
is approximately 1.095. In the inset, the numerical result (full line) is
compared with the theoretical prediction (72) (dashed line). (b) The
full line represents simulation results, while the horizontal dashed
line is the theoretical asymptotic value given in Eq. (81). The system
size is N = 105, while β = 10 and μ = 1.2, giving energy e ≈ 0.7.

our linear Vlasov theory for perturbations about Vlasov-stable
stationary solution P (p).

In a second approach, we obtained numerical results by
averaging over an ensemble of realizations of the initial state.
The time evolution that we get using this second method is
different from the first one. This approach allows us to reach
the average and/or asymptotic value of an observable, here
〈mx〉(t), on a faster time scale because of a mechanism of
convergence in time, as we describe below.

A. Linear response of homogeneous QSS: Single realization

The oscillatory behavior of 〈mx〉(t) predicted for the
water-bag state, see formula (72), is checked in Fig. 1(a).
Oscillations around a well-defined average persist indefinitely
with no damping, as predicted by the theory. In the inset of
the same panel, the theoretical prediction is compared with the
numerical result for a few oscillations. While the agreement
is quite good for the first two periods of the oscillations, the
numerical data display a small frequency shift with respect to
the theoretical prediction. Moreover, an amplitude modulation
may also be observed. We have checked in our N -particle
simulations that different initial realizations produce different
frequency shifts, which has a consequence when averaging
over an ensemble of initial realizations, as discussed below.

In Fig. 1(b), we show 〈mx〉(t) for the Fermi-Dirac QSS.
In this case, we have the theoretical prediction only for the
asymptotic value mx given in Eq. (81). The time evolution of
〈mx〉(t) displays beatings and revivals of oscillations around
this theoretical value, shown by the dashed horizontal line in
the figure. There is no sign of asymptotic convergence, even
running for longer times. For this high value of β, which makes
the Fermi-Dirac distribution very close to the water-bag one,
we cannot conclude that there will be damping in time. We
have observed a damping for smaller values of β when the
Fermi-Dirac distribution comes closer to a Gaussian.
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x
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FIG. 2. (Color online) 〈mx〉(t) vs time t for the Gaussian QSS
in the HMF model under the action of the perturbation, Eqs. (52)
and (54), with h = 0.1 switched on at time t0 = 25. The line made
of pluses represents the result of N -particle simulation, while the
dashed horizontal line is the theoretical asymptotic value given in
Eq. (85). The system size is N = 105, while β = 0.5, so that the
energy e = 1.5.
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FIG. 3. (Color online) Linear response of a water-bag QSS [(a), (b)], a Fermi-Dirac QSS with β = 10 [(c), (d)], and the homogeneous
equilibrium state [(e), (f)] for the HMF model under the perturbation, Eqs. (52) and (54), with h = 0.01. All simulation data have been averaged
over several thousand realizations of the initial state; for details, see text. In each case, left panel shows the time evolution of the averaged
magnetization 〈mx〉ensemble av(t) as obtained from N -particle simulations, and its asymptotic approach either to the time average in Eq. (73) for
the water-bag initial state or to mx given in Eq. (81) for the Fermi-Dirac QSS, or to mx given in Eq. (85) for the Gaussian QSS. In the right
panel, we show the N -particle simulation results for the asymptotic magnetization as a function of energy (the parameter μ in the Fermi-Dirac
case). The error bars denote the standard deviation of fluctuations around the asymptotic value. The results compare well with the theoretical
predictions. The system size N is 16000 for panels (a)–(d) and 10000 for panels (e) and (f).
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B. Linear response of the homogeneous equilibrium state:
Single realization

In Fig. 2, we show 〈mx〉(t) for the Gaussian QSS. After
the application of the external field, the magnetization sharply
increases and fluctuates around a value which is slightly below
the theoretical prediction, Eq. (85). Convergence to this latter
value is observed on longer times.

C. Average over initial realizations

In this section, we present numerical results for the three
initial QSSs (water-bag, Fermi-Dirac, Gaussian), obtained
after averaging the time evolution of 〈mx〉(t) over a set of
realizations (typically a thousand) of the initial state. We define
the average

〈mx〉ensemble av(t) = 1

Ns

Ns∑
n=1

〈mx〉n(t), (90)

where 〈·〉n labels the sample and Ns is the total number of
different realizations.

In all cases, we observe a relaxation to an asymptotic value.
For the water-bag distribution, this value compares quite well
with the time-averaged magnetization given in formula (73),
see Figs. 3(a) and 3(b). The mechanism by which the relaxation
to the asymptotic value occurs in the water-bag case, in the
absence of a true relaxation of a single initial realization, is
the frequency shift present in the different initial realizations.
This leads at a given time to an incoherent superposition of the
oscillations of the magnetization. For other distributions, the
numerically determined asymptotic value is compared with
the theoretical value for the single realization mx , given in
Eq. (81) and Figs. 3(c) and 3(d), and in Eq. (85) and Figs. 3(e)
and 3(f). The agreement is quite good.

FIG. 4. (Color online) Two-step relaxation of the water-bag
QSS toward the Boltzmann-Gibbs equilibrium: 〈mx〉(t) vs time t

for increasing system size from N = 2000 to N = 64 000 (left to
right). Under the perturbation, Eqs. (52) and (54) with h = 0.01,
the water-bag initial QSS with e = 0.65 relaxes to an intermediate
inhomogeneous QSS with 〈mx〉 ≈ 0.125 (lower horizontal dash-
dotted line) and then to the equilibrium state with 〈mx〉 ≈ 0.42 (upper
horizontal dashed line). The blue thick lines refer to running averages
performed to smooth out local fluctuations.

D. Relaxation of QSS to equilibrium

For finite values of N , the perturbed HMF system finally
relaxes to the Boltzmann-Gibbs equilibrium state. The pres-
ence of a two-step relaxation of the initial water-bag QSS with
energy e = 0.65, first to the perturbed Vlasov state and then to
equilibrium, is shown in Fig. 4 for increasing system sizes for
perturbation, Eqs. (52) and (54), with h = 0.01. The relaxation
to the first magnetization plateau with value ≈ 0.125 predicted
by the linear response theory takes place on a time of O(1). The
final relaxation to the equilibrium value of the magnetization
≈0.42 occurs on a time scale that increases with system size,
presumably with a power law that remains to be investigated
further.

VI. CONCLUDING REMARKS

In this paper, we studied the response of a Hamiltonian
long-range system in a quasistationary state (QSS) to an
external perturbation. The perturbation couples to the canon-
ical coordinates of the individual constituents. We pursued
our study by analyzing the Vlasov equation for the time
evolution of the single-particle phase-space distribution. The
QSSs represent stable stationary states of the Vlasov equation
in the absence of the external perturbation. We linearized the
perturbed Vlasov equation about the QSS for weak enough
external perturbation to obtain a formal expression for the
response observed in a single-particle dynamical quantity. For
a QSS that is homogeneous in the coordinate, we derived a
closed form expression for the response function. We applied
this formalism to a paradigmatic model, the Hamiltonian
mean-field model, and compared the theoretical prediction
for three representative QSSs (the water-bag QSS, the Fermi-
Dirac QSS, and the Gaussian QSS) with N -particle simulations
for large N . We also showed the long-time relaxation of the
water-bag QSS to the Boltzmann-Gibbs equilibrium state.
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APPENDIX: NORMALIZATION, ENERGY DENSITY,
AND STABILITY CRITERION FOR THE FERMI-DIRAC

DISTRIBUTION [Eq. (74)]

Normalization: Consider the distribution in Eq. (74). The
normalization A satisfies

A

∫ ∞

−∞

dp

1 + eβ(p2−μ)
= 1. (A1)

Changing variables and doing an integration by parts, we get

2βA

∫ ∞

0
dx

√
xeβ(x−μ)

[1 + eβ(x−μ)]2
= 1. (A2)
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The left-hand side may be written in terms of the derivative
∂fFD(x)/∂x of the Fermi-Dirac-like function fFD(x) = 1/[1 +
eβ(x−μ)]. We get

2A

∫ ∞

0
dx

√
x

(−∂fFD(x)

∂x

)
= 1. (A3)

In the limit of large β, the derivative ∂fFD(x)/∂x approaches
the δ function: limβ→∞ ∂fFD(x)/∂x = −δ(x − μ). In this
limit, we may expand

√
x in a Taylor series about μ,

√
x = √

μ + x − μ

2
√

μ
− (x − μ)2

8μ3/2
+ · · · , (A4)

which on substituting in Eq. (A3) gives

A

(
2
√

μI0 + 1

β
√

μ
I1 − 1

4β2μ3/2
I2 + · · ·

)
= 1. (A5)

Here,

I0 =
∫ ∞

0
dx

(−∂fFD(x)

∂x

)
=

∫ ∞

−βμ

dy
ey

(1 + ey)2

β→∞−→
∫ ∞

−∞
dy

ey

(1 + ey)2
= 1, (A6)

I1 = β

∫ ∞

0
dx(x − μ)

(−∂fFD(x)

∂x

)
=

∫ ∞

−βμ

dy
yey

(1 + ey)2

β→∞−→
∫ ∞

−∞
dy

yey

(1 + ey)2
= 0, (A7)

I2 = β2
∫ ∞

0
dx(x − μ)2

(−∂fFD(x)

∂x

)

=
∫ ∞

−βμ

dy
y2e2

(1 + ey)2

β→∞−→
∫ ∞

−∞
dy

y2ey

(1 + ey)2
= π2

3
. (A8)

Thus, to order 1/β2, we find from Eq. (A5) that

A

(
2
√

μ − π2

12β2μ3/2

)
= 1, (A9)

which gives

A = 1

2
√

μ

(
1 + π2

24β2μ2

)
. (A10)

Average energy: The average energy density is obtained from
Eq. (48) as

e = A

∫ ∞

−∞
dp

p2/2

1 + eβ(p2−μ)
+ 1

2
. (A11)

Changing variables and doing an integration by parts, we get

e = A

3

∫ ∞

0
dx x3/2

(−∂fFD(x)

∂x

)
+ 1

2
. (A12)

Expanding x3/2 in a Taylor series about μ and substituting in
Eq. (A12) give

e = A

3

(
μ3/2I0 + 3

2β

√
μI1 + 3

8β2√μ
I2 + · · ·

)
+ 1

2

= Aμ3/2

3

(
1 + π2

8β2μ2

)
+ 1

2
. (A13)

Using Eq. (A10), we find that to O(1/β2), the energy density
is

e = μ

6

(
1 + π2

6β2μ2

)
+ 1

2
. (A14)

Dielectric function: Using Eqs. (74) and (35), we get

ε(1,0) = 1 − A

∫ ∞

0
dx

1√
x

(−∂fFD(x)

∂x

)
. (A15)

Expanding 1/
√

x in a Taylor series about μ and substituting
in Eq. (A15) give

ε(1,0) = 1 − A

( I0√
μ

− I1

2βμ3/2
+ 3I2

8β2μ5/2
+ · · ·

)
, (A16)

so that to O(1/β2), we get

ε(1,0) = 1 − 1

2μ

(
1 + π2

6β2μ2

)
, (A17)

where we have used Eq. (A10).
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