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The narrow escape problem refers to the problem of calculating the mean first passage time (MFPT) needed for
an average Brownian particle to leave a domain with an insulating boundary containing N small well-separated
absorbing windows, or traps. This mean first passage time satisfies the Poisson partial differential equation
subject to a mixed Dirichlet-Neumann boundary condition on the domain boundary, with the Dirichlet condition
corresponding to absorbing traps. In the limit of small total trap size, a common asymptotic theory is presented to
calculate the MFPT in two-dimensional domains and in the unit sphere. The asymptotic MFPT formulas depend
on mutual trap locations, allowing for global optimization of trap locations. Although the asymptotic theory for
the MFPT was developed in the limit of asymptotically small trap radii, and under the assumption that the traps
are well-separated, a comprehensive study involving comparison with full numerical simulations shows that the
full numerical and asymptotic results for the MFPT are within 1% accuracy even when total trap size is only
moderately small, and for traps that may be rather close together. This close agreement between asymptotic and
numerical results at finite, and not necessarily asymptotically small, values of the trap size clearly illustrates one
of the key side benefits of a theory based on a systematic asymptotic analysis. In addition, for the unit sphere,
numerical results are given for the optimal configuration of a collection of traps on the surface of a sphere that
minimizes the average MFPT. The case of N identical traps and a pattern of traps with two different sizes are
considered. The effect of trap fragmentation on the average MFPT is also discussed.
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I. INTRODUCTION

Narrow escape problems are ubiquitous in biological mod-
eling, since they arise naturally in the description of Brownian
particles that attempt to escape from a bounded domain
through small absorbing windows on an otherwise reflecting
boundary. In the biological context, the Brownian particles
could be diffusing ions, globular proteins, or cell-surface
receptors. It is then of interest to determine, for example, the
mean time that an ion requires to find an open channel located
in the cell membrane or the mean time for a receptor to hit a
certain target binding site (cf. [1–4]). Similar problems also
arise in the modeling of escape kinetics in chemistry [5].

Consider the trajectory X(t) of a Brownian particle confined
in a bounded domain � ∈ Rd , d = 2,3, for which the boundary
∂� is almost entirely reflecting except for small windows
(traps) centered at the points xj ∈ ∂�, for j = 1, . . . ,N ,
through which the particle can escape (see Fig. 1).

The mean first passage time (MFPT) v(x) is defined as the
expectation value of the time taken for the Brownian particle
starting initially from X(0) = x ∈ � to become absorbed by
one of the boundary traps. It is well known that, in the
continuum limit, the MFPT v(x) satisfies the mixed Dirichlet-
Neumann problem (cf. [3]),

�v = − 1

D
, x ∈ �; ∂nv = 0, x ∈ ∂�r,

v = 0, x ∈ ∂�a =
N⋃

j=1

∂�εj
, (1.1)
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where D is the constant diffusivity. For two- and three-
dimensional problems with diam (�) = O(1), the windows
�εj

are respectively characterized by a length |∂�εj
| = O(ε)

or an area |∂�εj
| = O(ε2), where ε � 1 is a small parameter.

Due to the mixed nature of the boundary condition for the
partial differential equation (PDE) (1.1), no exact and only a
few approximate solutions are known for an arbitrary-shaped
domain. In particular, leading-order terms for the asymptotic
expansion of the MFPT in the limit ε → 0 have been recently
derived for a unit disk with one and two traps [6,7], a
two-dimensional domain with a single trap located at a
cusp of a boundary [8], and a unit sphere and a general
three-dimensional domain with smooth boundary and with
a single trap [9,10]. A recent survey of the calculation of the
MFPT for small targets in the interior or on the boundary of a
confining domain is given in [11].

The method of matched asymptotic expansions was used to
derive new asymptotic MFPT formulas in the limit ε → 0 for
two-dimensional (2D) [12] and three-dimensional (3D) [13]
domains with an arbitrary number of nonidentical, but well-
separated, boundary traps. In Sec. II, we present the asymptotic
formulas for two-dimensional and three-dimensional domains
in a common general framework. These formulas employ the
Neumann Green’s function for each respective domain, and
can be used for direct computations for domains for which this
Green’s function is known analytically. Such domains include
the unit square, the unit disk, or the unit sphere. Importantly,
the formulas for the average MFPT include an additional term,
called the interaction energy, which depends on the mutual
positions of the traps. This leads naturally to certain discrete
variational problems whereby the average MFPT is to be
minimized with respect to the trap locations. Recently, in [14],
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FIG. 1. Schematic of the narrow escape problem in a 2D and 3D
domain.

a rigorous proof of some of the asymptotic results in [12,13]
has been given.

Section II also discusses specific forms of asymptotic
MFPT formulas relevant for the unit disk, the unit square,
and the unit sphere. In particular, for the case of N identical
traps on a unit sphere, the traps “repel” in an analogous
way to the physical situation of N electrons bound to a
sphere. The interaction energy for our pattern of traps is a
combination of a Coulombic energy, a logarithmic energy,
and an additional logarithmic term. The corresponding global
optimization problem that minimizes the combined interaction
energy, and thus the average MFPT, has been discussed in [13]
and the results have been compared with many recent results
on the global optimization of the interaction energy of point
particles on the sphere that interact through either purely
Coulomb or logarithmic forces (see [15–19]). An expression
for a new interaction energy for a pattern of 2N traps, which
consists of N small traps of a common radius and N large
traps of a common radius, is also derived in Sec. II.

In Sec. III, the relation is examined between the average
MFPT result for an equally spaced arrangement of identical
boundary traps for a unit disk and the corresponding result
that can be obtained from the dilute fraction limit of homog-
enization theory [20], where the mixed Dirichlet-Neumann
boundary condition of the problem (1.1) is replaced by an
effective Robin boundary condition.

The common feature of all formal asymptotic results is the
unknown behavior of higher-order (error) terms and, hence,
the applicability limits of the asymptotic theory. In Sec. IV,
this issue is studied by comparing asymptotic results for the
MFPT and the average MFPT for the unit disk, unit square,
and the unit sphere, with full numerical computations obtained
by solving the underlying PDE (1.1) numerically. For each of
these special domains, the Neumann Green’s function required
to evaluate the terms in the asymptotic expansions of the MFPT
is known analytically. Although the asymptotic theory of
[12,13] for the MFPT was developed in the limit of asymp-
totically small trap radii, and under the assumption that the
traps are well-separated, in Sec. IV, we show upon comparison
with full numerical results that the asymptotic results reliably
predict the MFPT to within 1% accuracy when ε is only
moderately small and for traps that may be rather close to
each other. This close agreement between asymptotic and
numerical results at finite, and not necessarily asymptotically
small, values of the trap size ε illustrates one of the often key
benefits of a systematic asymptotic analysis. The quality of the
approximation afforded by the asymptotic MFPT solution in

the vicinity of a trap is examined through the comparison with
numerical results in Sec. IV C.

Another goal of this paper is to compute some optimal
arrangements of traps on the surface of the unit sphere.
The problem of the global optimization of the locations of
surface-bound particles interacting under various types of
forces has been actively studied (cf. [15–19]). In the context
of the narrow escape problem, the third term in the asymptotic
expansion as ε → 0 of the average MFPT depends on the
global configuration of traps on the surface of the sphere.
The associated problem of minimizing the average MFPT
leads to a new class of weighted discrete variational problems
with an interaction energy that has not been studied in the
classical works of [15–19]. In Sec. V, we present optimization
results for the new interaction energy for a pattern of N

identical traps and for a pattern of 2N traps, which consists
of N small traps of a common radius and N large traps of a
common radius. By using scaling laws valid for large N for
the minimal-energy configurations, trap fragmentation effects
on the average MFPT are studied.

II. ASYMPTOTIC FORMULAS FOR THE MEAN
FIRST PASSAGE TIMES

The current section outlines the method of matched asymp-
totic expansions to calculate the asymptotic MFPT v(x) for
the narrow escape problem in two- and three-dimensional
domains. The corresponding asymptotic formulas for the
MFPT and the average MFPT are given in general, as well
as for some specific domains. For specific details, see [12,13].

Consider a small trap centered at a point xj on the domain
boundary. In terms of the local coordinate y = ε−1(x − xj ),
the expansion of the inner solution near this j th trap has the
form

v(x) ≡ w(y) = w0 + w1 + w2 + · · · , (2.1)

where wq for q = 0,1, . . . are proportional to either powers
of ε or terms of the form εp log ε, p ∈ Z, starting from an
appropriate term. In particular, for � ∈ R3, w0 = O(ε−1),
w1 = O(log ε), w2 = O(ε0), etc. For domains in R2, w0 =
O(log ε), w1 = O(ε0), w2 = O (−1/ log ε), etc.

In the outer region, defined at O(1) distances from the traps,
the outer expansion has the form

v(x) = v0 + v1 + v2 + · · · . (2.2)

Then the two expansions are substituted into the PDE (1.1) and,
upon equating comparable terms in ε, linear boundary value
problems for vq and wq , q = 0,1, . . . are obtained. Finally,
unknown constants in the functions vq and wq are determined
in a systematic manner by imposing the matching condition
that

v0(x) + v1(x) + · · · ∼ w0(y) + w1(y) + · · · .
In this condition, the left- and right-hand sides of this
expression must agree as x → xj and as y = ε−1(x − xj ) →
∞, respectively.

A key feature in the analysis is that the solution to the outer
problems for the correction terms vq for q � 1 involves the
Neumann Green’s function G(x; xj ) for the domain � with a
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singularity at xj ∈ ∂�. This Green’s function G(x; ξ ) is the
unique solution of

�G = 1

|�| , x ∈ �; ∂nG = 0, x ∈ ∂� \ {ξ};∫
�

Gdx = 0, (2.3)

which has the following singularity behavior as x → ξ in
either a two- or three-dimensional domain with smooth
boundary:

G(x; ξ ) = − 1

π
log |x − ξ | + R(ξ ; ξ ) (2D),

G(x; ξ ) = 1

2π |x − ξ | − Hm

4π
log |x − ξ | + R(ξ ; ξ ) (3D).

(2.4)

In Eq. (2.3), ∂n is the normal derivative to ∂�, and |�| is
the measure (area in R2 and volume in R3) of �. Here
Hm = Hm(ξ ) is the mean curvature of the boundary at ξ ∈ ∂�,
with Hm = 1 for the unit sphere, and R(ξ ; ξ ) is the (bounded)
regular part of the Green’s function at the singularity.

The following general result characterizes the first cor-
rection term in the outer region for the MFPT v(x) in
terms of the Neumann Green’s function, and holds for both
two-dimensional and three-dimensional domains.

Principal result (2.1). In terms of the Neumann Green’s
function, the MFPT in a domain with N well-separated
boundary traps centered at xj ∈ ∂�, for j = 1, . . . ,N , is given
asymptotically for ε → 0 in the outer region |x − xj | 	 ε by

v(x) = v̄ +
N∑

j=1

kjG(x; xj ) + O(E), (2.5)

where kj for j = 1, . . . ,N are certain constants depending on
ε that are found upon matching the inner and outer expansions,
and E is an error estimate also depending in ε. In Eq. (2.5), v̄

is the average MFPT given by

v̄ = 1

|�|
∫

�

v(x) dx. (2.6)

Particular forms of the expressions for kj and v̄ depend on
the trap sizes, the arrangement of the traps on the domain
boundary, and the domain shape, as described below. The
asymptotic order for the error estimate O(E) for Eq. (2.5)
will also be discussed.

A. Two-dimensional domains

Let � ⊂ R2 be a domain with a smooth boundary. Suppose
that N surface traps of length εlj are centered at xj for j =
1, . . . ,N [cf. Fig. 1(a)]. We define the logarithmic capacitance
dj and the gauge function μj = μj (ε) by

dj = lj

4
, μj = − 1

log(εdj )
. (2.7)

Define the diagonal matrix M and the symmetric Green’s
matrix G by

M = diag(μ1, . . . ,μN ), G ≡

⎛⎜⎜⎝
R1 G12 · · · G1N

G21 R2 · · · G2N

...
...

. . .
...

GN1 · · · GN,N−1 RN

⎞⎟⎟⎠ ,

where Gij ≡ G(xi ; xj ), and Ri ≡ R(xi ; xi) is the self-
interaction term. Also define the vector e = (1, . . . ,1)T and
the matrix E = eeT /N .

As shown in [12] an asymptotic expansion for the MFPT
that accounts for all logarithmic terms in powers of μj is
given by Eq. (2.5) with kj = −πAj , where the vector A =
(A1, . . . ,AN )T is the solution of the linear system,[

I + πM
(

I − 1

μ̄
EM

)
G
]

A = |�|
DπNμ̄

. (2.8)

In Eq. (2.8), μ̄ = (1/N )
∑N

j=1 μj . The average MFPT (2.6) is
given by

v̄ = |�|
DπNμ̄

+ π

Nμ̄
eTMGA. (2.9)

A rigorous proof of this result has recently been given in [14],
together with the error estimate O(E) = O(ε).

The formulas above can be adapted to the case where the
traps are not well-separated [12]. In particular, for a cluster
of two absorbing windows of a common length εlj with edge
separation distance 2εaj , both windows can be replaced by one
effective window with the logarithmic capacitance dj given by
[see Eq. (2.19) of [12]]

dj = lj

2

(
1 + 2aj

lj

)1/2

. (2.10)

This formula for dj , pertaining to a cluster of two traps, is to
replace the formula (2.7) of an individual trap. The formulas
above can be adapted to the case where the traps are not well-
separated by considering trap cluster capacitances dj , and also
to domains with piecewise-smooth boundaries [12].

Explicit formulas for the Neumann Green’s function are
known for the special cases when � is a unit disk or a unit
square. We now summarize these results.

1. The unit disk

When � is the unit disk centered at the origin, the Neumann
Green’s function and its regular part are given explicitly by
[21]

G(x; xi) = − 1

π
log |x − xi | + |x|2

4π
− 1

8π
,

R(xi ; xi) = 1

8π
, |xi | = 1. (2.11)

In the particular case of N absorbing arcs having a common
length |∂�j | = 2ε, a two-term asymptotic result for the aver-
age MFPT, obtained by approximating the infinite-logarithmic
sum result from Eq. (2.9), is

v̄ ∼ 1

DN

[
− log

ε

2
+ N

8
− 1

N

N∑
i=1

N∑
j=i+1

log |xi − xj |
]
.

(2.12)
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FIG. 2. (Color online) Sur-
face (a) and contour (b) plots of
the asymptotic MFPT (2.11) and
(2.12) for a unit disk with N = 7
traps of a common length 2ε =
0.02.

As an example, in Fig. 2, the MFPT v(x) is plotted for
a seven-trap configuration with a common trap length of
2ε = 0.02.

We remark that the simple result (2.12) in fact sums the
infinite logarithmic expansion for the MFPT for the special
case of either exactly two arbitrarily spaced traps or N equally
spaced traps on the boundary of the unit disk. This result
follows since, for these special arrangements of traps, the
symmetric Green’s matrix G has a cyclic matrix structure [12].

In the case of more than two identical traps which are
not equally spaced, one can observe the difference between
the two-term approximation of the average MFPT v̄ given by
Eq. (2.12) and the full asymptotic expression (2.9). This is
illustrated in Fig. 3, where these formulas are compared for a
nonsymmetric and a symmetric arrangement of four traps.

The minimum of the repulsive logarithmic energy term in
Eq. (2.12) is evidently attained when the traps are equally
spaced on the unit circle. For such a symmetric arrangement,
and assuming well-separated traps, a simple calculation yields

v̄ ∼ 1

DN

[
− log

εN

2
+ N

8

]
, v(x) ∼ v̄ − π

DN

N∑
j=1

G(x; xj ).

(2.13)

The error in this approximation is of order O(ε) (cf. [14]),
which is transcendentally small in comparison to any power
of −1/ log ε.

2. The unit square

For a unit square � ≡ {x = (x1,x2)|0 � x1,x2 � 1}, the
explicit form of the Neumann Green’s function with an
interior singularity was found in [22] by calculating a Fourier
series representation of the solution of Eq. (2.3), and using
summation formulas to extract both the logarithmic singularity
and its regular part. Upon taking the limit as the singularity
ξ approaches a noncorner point of the domain boundary, one
obtains a solution of the form

G(x; ξ ) = − 1

π
log |x − ξ | + R(x; ξ ), (2.14)

where the regular part is given by a rapidly convergent infinite
series of the explicit form

R(x; ξ )

= − 1

2π

∞∑
n=0

log(|1 − qnz+,+||1 − qnz+,−||1 − qnζ+,+|)

− 1

2π

∞∑
n=0

log(|1 − qnζ+,−||1 − qnζ−,+||1 − qnζ−,−|)

− 1

2π
log

|1 − z−,−|
r−,−

− 1

2π
log

|1 − z−,+|
r−,+

+ H (x1,ξ1)

− 1

2π

∞∑
n=0

log(|1 − qnz−,−||1 − qnz−,+|). (2.15)
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FIG. 3. (Color online) Comparison of the full asymptotic expression (2.9) and the two-term approximation (2.12) for the average MFPT
v̄ in the case of four unevenly spaced traps of size 2ε centered at θ = π/4, π/2, 3π/4, and 3π/2 (a), and four evenly spaced traps of size 2ε

centered at θ = 0, π/2, π , and 3π/2 (b).

021131-4



MATHEMATICAL MODELING AND NUMERICAL . . . PHYSICAL REVIEW E 85, 021131 (2012)

In Eq. (2.15), x = (x1,x2), ξ = (ξ1,ξ2), |z| denotes the modulus
of a complex number z, and also

H (x1,ξ1) = 1
12 [h(x1 − ξ1) + h(x1 + ξ1)],

h(θ ) = 2 − 6|θ | + 3θ2,

z±,± = eπr±,± , ζ±,± = eπρ±,± , q = e−2π < 1,

r+,± = −|x1 + ξ1| + i(x2 ± ξ2),

r−,± = −|x1 − ξ1| + i(x2 ± ξ2),

ρ+,± = |x1 + ξ1| − 2 + i(x2 ± ξ2),

ρ−,± = |x1 − ξ1| − 2 + i(x2 ± ξ2).

A similar result can be given when the trap is centered at one
of the corner points of the boundary of the unit square [12].

B. Three-dimensional domains: The unit sphere

Next, we consider a unit sphere centered at the origin
that has N locally circular windows on its surface. The traps
have radii εaj for j = 1, . . . ,N and are centered at xj for
j = 1, . . . ,N with |xj | = 1. For this case, the quantity that
characterizes each trap is its electrostatic capacitance cj , which
is defined by the following local problem obtained by making
a tangent-plane approximation to the sphere at xj :

uξ1ξ1 + uξ2ξ2 + uξ3,ξ3 = 0, ξ1 � 0, − ∞ < ξ2,ξ3 < ∞,

u = 1, on ξ1 = 0, ξ 2
2 + ξ 2

3 < a2
j ; uξ1 = 0,

on ξ1 = 0, ξ 2
2 + ξ 2

3 > a2
j ,

u ∼ cj /|ξ |, as |ξ | → ∞, (2.16)

where ξ = (ξ1,ξ2,ξ3). For the circular trap case, this is the well-
known electrified-disk problem with capacitance cj = 2aj/π .
The capacitance is also known analytically for an elliptical-
shaped window, but for a window of arbitrary shape it must be
computed numerically.

For the unit sphere centered at the origin, the surface
Neumann Green’s function satisfying Eq. (2.3) is given
explicitly by (cf. [13])

Gs(x; ξ ) = 1

2π |x − ξ | + 1

8π
(|x|2 + 1)

+ 1

4π
log

(
2

1 − |x| cos γ + |x − ξ |
)

− 7

10π
,

(2.17)

where γ is the angle between the vectors x ∈ � and ξ ∈ ∂�,
defined by |x| cos γ = x · ξ with |ξ | = 1. The self-interaction
term corresponding to Eq. (2.17) is simply

R(ξ ; ξ ) = − 9

20π
. (2.18)

Let c̄ = N−1 (c1 + · · · + cN ) be the average capacitance, and
define κj by

κj = cj

2

[
2 log 2 − 3

2
+ log aj

]
.

Then, for ε → 0, the analysis of [13] showed that the
asymptotic formula for the MFPT v(x) in the outer region
|x − xj | 	 O(ε), for j = 1, . . . ,N , is given by

v(x) = v̄ − |�|
DNc̄

N∑
j=1

cjGs(x; xj ) + O(ε log ε). (2.19)

Correspondingly, the asymptotic average MFPT v̄ is given by

v̄ = |�|
2πεDNc̄

[
1 + ε log

(
2

ε

)∑N
j=1 c2

j

2Nc̄
+2πε

Nc̄
pc(x1, . . . ,xN )

− ε

Nc̄

N∑
j=1

cjκj + O(ε2 log ε)

]
. (2.20)

The O(ε) term in the square bracket in Eq. (2.20) depends
on the specific arrangement of traps on the unit sphere through
the energylike function

pc(x1, . . . ,xN ) = CT GsC,

where the capacitance vector C and the Green’s matrix Gs are
defined by C = (c1, . . . ,cN )T and

Gs ≡

⎛⎜⎜⎝
R Gs12 · · · Gs1N

Gs21 R · · · Gs2N

...
...

. . .
...

GsN1 · · · GsN,N−1 R

⎞⎟⎟⎠ ,

R ≡ R(xj ; xj ) = − 9

20π
, Gsij ≡ Gs(xi ; xj ). (2.21)

A rigorous proof of Eqs. (2.19) and (2.20) has recently been
given in [14], and the error estimate of O(ε2 log ε) sharpened
to O(ε2).

The formulas above simplify in the special case of N

circular traps of a common radius aj = 1, for which cj = 2/π

for j = 1, . . . ,N . For this case, the average MFPT reduces to

v̄ ∼ |�|
4εDN

[
1 + ε

π
log

(
2

ε

)
+ ε

π

(
− 9N

5
+ 2(N − 2) log 2

+3

2
+ 4

N
H(x1, . . . ,xN )

)]
, (2.22)

where the interaction energy H(x1, . . . ,xN ) is defined by

H(x1, . . . ,xN ) =
N∑

i=1

N∑
j=i+1

h(xi ; xj ), (2.23)

and the pairwise interaction energy by

h(xi ; xj ) = 1

|xi − xj | − 1

2
log |xi − xj |

− 1

2
log(2 + |xi − xj |). (2.24)

The total energy (2.23) is a sum of the classical Coulombic
and logarithmic discrete energy terms, and an additional
interaction term between particles (traps) located on the
sphere.

Now consider another special case where there are two
kinds of traps, with radii given by aj = 1 for j = 1, . . . ,N and
aj = α for j = N + 1, . . . ,2N . Each element of the matrix Gs
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FIG. 4. (Color online) (a) Comparison of v̄as and v̄h as functions of N for σ = 0.5; (b) the maximal difference of v̄as and v̄h as functions of
N for 0.01 � σ � 0.8.

is still given by Eq. (2.21). The capacitance vector becomes
C = (2/π )(1, . . . ,1,α, . . . ,α)T , and the average MFPT is

v̄ ∼ |�|
4εDN (1 + α)

[
1 + ε

π
log

(
2

ε

)(
1 + α2

1 + α

)
+ ε

π

(
S + 4

N (1 + α)
H̃(x1, . . . ,xN )

)]
, (2.25)

where the constant S is defined by

S = −9

5
N (1 + α) + 2 log 2

(
(N − 2)(1 + α) + 4α

1 + α

)
+3

2

(
1 + α2

1 + α

)
− α2

1 + α
log α ,

and the interaction energy H̃ is defined by

H̃(x1, . . . ,xN ) =
N∑

i=1

N∑
j=i+1

h(xi ; xj ) + α

N∑
i=1

2N∑
j=N+1

h(xi ; xj )

+α2
2N∑

i=N+1

2N∑
j=i+1

h(xi ; xj ), (2.26)

where h(xi ; xj ) is given by Eq. (2.24).
In Sec. V, the interaction energies (2.23) and (2.26) are

used to find optimal trap arrangements on the surface of
the unit sphere that minimize the interaction energy and,
correspondingly, minimize the average MFPT.

III. DILUTE TRAP FRACTION LIMIT OF
HOMOGENIZATION THEORY FOR THE UNIT DISK

Homogenization theory can be used to provide a simplified
approximate description of the MFPT problem (1.1) in the
case of a large number of small boundary traps. Within this
approach, the strongly heterogeneous boundary conditions are
replaced with an effective boundary condition of a simpler
form, involving parameters that may be theoretically or
empirically determined.

Consider a unit disk with a large number of evenly spaced
small boundary traps of equal size 2ε. In [20], it has been shown
that, in the dilute trap fraction limit, i.e., in the limit of the
number of traps N → +∞, with the total trap length fraction
σ = 2εN/(2π ) kept constant, the mixed Dirichlet-Neumann

problem (1.1) for the MFPT v(x) can be approximated by a
Robin problem for vh(x) � v(x) given by

�vh = − 1

D
, r = |x| < 1; ε∂rvh + κvh = 0, r = 1,

(3.27)

where the effective transfer coefficient κ is given by

κ = −πσ

2

{
log

[
sin

(πσ

2

) ]}−1

.

The problem (3.27) is radially symmetric, and has the solution

vh(r) = − 1

4D

(
1 − r2 + 2ε

κ

)
. (3.28)

Defining v̄h as the average of vh, we calculate that

v̄h = 1

8D
+ ε

2κD
= 1

8D
− 1

DN
log

[
sin

(
πσ

2

)]
. (3.29)

The homogenization theory prediction of the average MFPT
(3.29) can be compared to the approximate solution obtained
from the asymptotic theory considered in the current paper.
For N equal evenly spaced traps of size 2ε, it is given by
Eq. (2.13), which may be written as

v̄as ∼ 1

8D
− 1

DN
log

(
πσ

2

)
, (3.30)

and is evidently related to the homogenization result (3.29)
through the Taylor series expansion of the sine function when
σ is small. Some comparative results for the average MFPT
formulas v̄h (3.29) and v̄as (3.30) are given in Fig. 4.

IV. COMPARISON OF THE ASYMPTOTIC MFPT
WITH FULL NUMERICAL RESULTS

In terms of computational complexity and computational
time required for their evaluation, the asymptotic formulas
for the MFPT and the average MFPT presented in Sec. II
are fundamentally superior to those obtained from other
approximation techniques, such as full numerical solutions of
the PDE problem (1.1) or Brownian random walk simulations.

The primary limitation of the asymptotic formulas is set by
their domain of validity. More specifically, the general MFPT
approximation (2.5) was derived in the limit of small trap
size under the assumption of well-separated small traps, i.e.,
when the centers of the traps are separated by O(1) distances.
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FIG. 5. (Color online) Comparison of asymptotic (a) and numerical (b) predictions for the MFPT v(x) for a three-trap configuration in
the unit disk, with two traps of length ε (centered at θ = π/2 and θ = 3π/2), and one trap of length 3ε (centered at θ = π ). Here ε = 0.06.
Comparison of asymptotic and numeric MFPT along the cross section x1 = 0 (c).

Additionally, since the asymptotic MFPT formulas are singular
at the trap locations, it is important to have an understanding at
which minimal distances from traps the asymptotic formulas
are still sufficiently accurate.

In order to test the applicability limits of the asymptotic
formulas of Sec. II, with respect to both trap size and trap
separation effects, we compare results from the asymptotic
theory with corresponding full numerical results computed
from a direct finite-difference numerical solution of the
boundary value problem (BVP) (1.1). The comparisons are
made for several trap configurations for both the two- and
three-dimensional cases. The Dirichlet-Neumann BVP (1.1)
for the Poisson equation was solved using a finite-difference
method employing variable steps in all space directions, and
mesh refinement in order to resolve small traps.

A. Trap size effects

The error terms in the asymptotic expansions for the MFPT
v(x) and its average v̄ for both the two-dimensional and the
three-dimensional have the order O(ε) when ε � 1 (cf. [14]).
This error estimate does not provide any information regarding
the size of the coefficient of ε, and so does not indicate how
well the asymptotic formulas will predict the true results when
ε is not small. The goal below is to compare the results of
Sec. II for the MFPT v(x) and the average MFPT v̄ with results

obtained from the full numerical solution of the problem (1.1)
in order to quantitatively assess the error, and to provide a
guide some benchmark on how the asymptotic results fare at
finite values of ε.

1. The unit disk

For the unit disk, the following four trap configurations
were studied: a single trap (arc) of arclength ε; two oppositely
placed traps each of arclength ε; seven equally spaced traps
each of arclength ε; and a three-trap configuration: two traps
of length ε centered at θ = π/2 and 3π/2, and one larger trap
of length 3ε located at θ = π .

For the first three arrangements of traps, the result (2.12),
in which ε is replaced by ε/2, determines v(x) and v̄ with an
error that is smaller than any power of −1/ log ε. In order to
obtain the same level of accuracy for the fourth configuration
above, one must first solve the linear system (2.8) to determine
the vector A, and then calculate v(x) and v̄ from Eqs. (2.5),
(2.9), and (2.11).

For each of these four trap configurations, it was found that
the asymptotic and numerical results for the average MFPT v̄

are within 1% agreement when the length of the traps is of the
order of one. A sample comparative contour plot of v(x) for
the three-trap configuration (Fig. 5) shows a close agreement
between the asymptotic and numerical results for the MFPT
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FIG. 6. (Color online) (a) Dependence of the average MFPT v̄ on the trap length ε for one-, two-, three-, and seven-trap configurations in
a unit disk. The curves correspond to the asymptotic formulas and the crosses to numerical results. (b) Percent difference between asymptotic
and numerical results vs ε.
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FIG. 7. (Color online) Comparison of the asymptotic (a) and numerical (b) results for the MFPT v(x) for two traps of a common length
ε = 0.03 for the unit square. Comparison of asymptotic and numerical results along the cross section x2 = 0.5 (c).

everywhere in the domain except for a very small region near
the traps.

The results for the disk are summarized in Fig. 6, where
the average MFPT v̄ is plotted as a function of ε for the
one-, two-, three-, and seven-trap configurations. In particular,
for one trap, the results are within 5% agreement for a trap
length ε � 2, which is roughly 1/3 of the length of the domain
boundary. Similarly, for seven equally spaced traps, the results
are within 5% agreement for a trap length ε � 0.35, which is
roughly 40% of the length of the domain boundary.

2. The unit square

For the unit square, the following four trap configurations
were considered: a single trap of length ε centered at (x1,x2) =
(0,0.5); two traps of lengths ε centered at (x1,x2) = (0,0.5)
and (0.5,0); and four traps of lengths ε located at each of the
centers of the four sides of the square.

The asymptotic MFPT v(x) and the asymptotic average
MFPT v̄ were computed from Eqs. (2.5), (2.14), and (2.15).
A comparative plot of the MFPT v(x) for the case of two
traps of a common length ε = 0.03 is given in Fig. 7, while
the comparisons of the average MFPT v̄ for all three trap
configurations are summarized in Fig. 8. Compared to the
situation for the unit disk, the asymptotic results for v and v̄ for

the square domain reliably predict the full numerical values for
a slightly smaller range of ε. For example, for one trap, the 1%
agreement between the asymptotic and the numerical solution
is only observed for ε � 0.2 (ε � 0.4 for 5% agreement). For
the four-trap case, we have 1% agreement when ε � 0.1 (10%
trap surface area fraction), and 5% agreement when ε � 0.25
(25% trap surface area fraction). These results show that one
can still reliably use the asymptotic theory at rather large values
of the small parameter ε. The slightly smaller range of validity
in ε in comparison to the case of the unit disk can probably be
attributed to the effects of the nonsmooth domain boundary of
the square.

3. The unit sphere

For the unit sphere, we consider the simplest configurations
of one, two, and three, equally spaced circular traps of radius
ε centered on the equator of the unit sphere. A sample
comparative contour plot of the MFPT v(x) in the equatorial
cross section of the sphere for a single trap of radius ε = 0.2,
a = 1, is shown in Fig. 9. As seen from Fig. 10, the 1%
agreement between the asymptotic and the numerical results
for the average MFPT v̄ for a single trap is attained for trap
radii with ε � 0.8, which corresponds to a 16% trap surface
area fraction.
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FIG. 8. (Color online) (a) Dependence of the average MFPT v̄ on the trap length ε for one-, two-, and four-trap configurations in a unit
square. The curves correspond to the asymptotic results and the crosses to the full numerical results. (b) Percent difference between asymptotic
and numerical results.
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FIG. 9. (Color online) Comparison of asymptotic (a) and numerical (b) results for the MFPT v(x) for one trap of radius ε = 0.2, on the
boundary of the unit sphere. Comparison of asymptotic and numerical results along the line x2 = x3 = 0 (c).

B. Trap separation effects

The results (2.9) and (2.20) for the average MFPT in
a general 2D and a spherical 3D domain, respectively, are
valid under the assumption of “well-separated” boundary
traps. To study how the asymptotic results perform when the
traps are not necessarily so well-separated, we compare the
asymptotic and full numerical results for the whole range
of two-trap configurations, ranging from two touching traps
to the maximal possible separation distance in each given
configuration.

The following comparisons suggest that, for the domains
considered below, the asymptotic formulas for the average
MFPT are still rather reliable, in the sense of being within 1%
of the full numerical result, even for small separation distances
of order O(ε).

1. The unit square

For the unit square, two configurations were considered.
In the first configuration, two identical traps of length ε were
located on adjacent sides, centered at a point at a distance
L from the corner (ε/2 � L � 1 − ε/2; see Fig. 7). In the

second configuration, two identical traps were symmetrically
located on one side of the square, at a distance L between their
centers (ε � L � 1 − ε).

For traps of length ε = 0.05, a plot of the numerical
and asymptotic average MFPT and their relative difference
is shown in Fig. 11. For traps located on one side of the
square, the agreement between the asymptotic and numerical
results is within 1% for all values of L. For traps located on
adjacent sides of the square, the asymptotic result overshoots
by approximately 6% when the traps are touching at the origin,
but is within approximately 2% of the full numerical results
when each trap is centered at a distance 0.05 from the origin.

2. The unit sphere and the unit disk

As shown in Fig. 12, a very good agreement between the
asymptotic and numerical results for the average MFPT is also
observed for the case of two arbitrarily spaced traps on the
surface of the unit disk or unit sphere. For the unit disk, traps
of arclength ε = 0.05 were chosen. For the unit sphere, we
chose circular traps of radius ε = 0.2 located on the equator.
For all separation distances, ranging from touching traps to
traps on opposite sides of a diameter, the discrepancy between

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

ε

A
ve

ra
ge

 M
F

P
T

1 trap
2 traps
3 traps

(a)
0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

12

14

16

18

20

ε

%
 d

iff
er

en
ce

1 trap
2 traps
3 traps

(b)

FIG. 10. (Color online) (a) Dependence of the average MFPT v̄ on the common trap radius ε for one, two, and three traps that are equally
spaced on the equator of the unit sphere. The curves correspond to the asymptotic results and the crosses to full numerical results. (b) Percent
difference between asymptotic and numerical results.

021131-9



CHEVIAKOV, REIMER, AND WARD PHYSICAL REVIEW E 85, 021131 (2012)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

7

Distance between trap centers

%
 d

iff
er

en
ce

(i) two traps (adjacent sides)
(ii) two traps (one side)

(a)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Distance from the corner (i) / between traps (ii)

A
ve

ra
ge

 M
F

P
T

(i) two traps (adjacent sides)
(ii) two traps (one side)

(b)

FIG. 11. (Color online) (a) Effect of trap separation in the unit square: comparison of the asymptotic and numerical results for the average
MFPT v̄ for two traps of sizes ε = 0.05. (b) The percent difference. (i) Average MFPT for two traps located on adjacent sides, as a function of
the distance from the corner. (ii) Average MFPT for two traps located symmetrically on one side, as a function of the distance between traps.

the asymptotic and numerical results is well within 1% for
both domains.

C. Asymptotic approximation near traps

The asymptotic formulas for MFPT v(x) given in Sec. II are
valid when the MFPT is measured sufficiently far from the trap.
It is clear that, close to traps, the situation must be different,
since the Green’s functions in formula (2.5) are always
singular: |v(x)| → +∞ at x → xj . In particular, v(x) ∼
O(log |x − xj |) in two dimensions, and v(x) ∼ O(|x − xj |−1)
in three dimensions. In contrast, for the solutions of the
problem (1.1), we must have v(x) → 0 as x → xj .

We now consider an example that illustrates the quality
of the asymptotic approximation close to a trap in a unit
disk. Let the disk have a single boundary trap of the size
2ε, centered at x1 = (−1,0). The difference of the numerical
and the asymptotic MFPT (2.5) is shown in Fig. 13 for a large
trap of size 2ε = 0.4. Similar but smaller scale error behavior
is observed for smaller values of ε, as seen, for instance, in
Fig. 5.

As a measure of the quality of the asymptotic approximation
near a trap, define the largest distance from the trap center to a
point in the disk for which the relative difference between the
numerical and asymptotic MFPT is 100a%:

Xa(ε) = max
D

{|x − x1| : x ∈ �,vas(x) < (1 − a)vnum(x)},
lim
ε→0

Xa(ε) = 0.

As seen in Fig. 14, the dependence of Xa on ε is close
to linear, for a wide range of ε. Xa(ε) � k(a)ε. In partic-
ular, k(0.02) � 2.6584, k(0.05) � 1.9875, k(0.1) � 1.6265,
k(0.15) � 1.4622, and k(0.2) � 1.3668, which is consistent
with the natural expectation that lima→0 k(a) = +∞ and
lima→1 k(a) = 0.

V. OPTIMAL LOCATION OF TRAPS
ON THE UNIT SPHERE

We now determine the optimal arrangements of N traps
on the boundary of a given domain � that minimize the
average MFPT v̄. In [12,13], it was shown that such optimal
trap arrangements also maximize the principal eigenvalue of
the Laplacian in the corresponding domain with traps, thus
maximizing the diffusion rate from a domain with small holes
on an otherwise reflecting boundary. Here the attention is
restricted to the sphere, which is a fundamental domain both
from the point of view of applications and the complexity of
numerical optimization. Indeed, boundary traps on the surface
of two-dimensional domains correspond physically to slitlike
holes extended in the invariant direction on the surface of
three-dimensional cylinders. Location optimization for such
traps can involve permutations, but is otherwise much simpler
than that for a sphere.

Consider N traps located on a unit sphere. In order
to optimize the average MFPT v̄ in Eq. (2.20), one has
to find coordinates of N repelling particles on the sphere,
which correspond to the global minimum of the interaction
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FIG. 12. (Color online) (a) Effect of trap separation in the unit disk (i) and the unit sphere (ii). Comparison of asymptotic and numerical
results for the MFPT v̄. Unit disk: two traps of arclength ε = 0.05. Unit sphere: two circular traps of radius ε = 0.2 located on the equator.
(b) Percent difference between the asymptotic and numerical results.
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FIG. 13. (Color online) Comparison of asymptotic and numerical results for the MFPT v(x), for a unit disk with one trap of arclength
2ε = 0.4. (a) Plot of vnum(x) − vas(x) in the disk. (b) Comparison near the trap, along the radius x � 0, y = 0.

term pc(x1, . . . ,xN ) in Eq. (2.20). One thus has a global
optimization problem for a function of 2N variables (e.g.,
spherical angles).

Many global optimization techniques have recently been
developed, including methods for nonsmooth optimization,
optimization in bounded and unbounded domains, and op-
timization subject to constraints. For low-dimensional prob-
lems, exact methods are available, whereas for higher-
dimensional problems one is usually restricted to using partly
heuristic numerical optimization algorithms. For a review
of continuous global optimization algorithms and software,
see [23,24].

For the computations below, the dynamical systems-based
optimization method (DSO), and the extended cutting angle
method (ECAM) from the open software library GANSO

[25], were used. These algorithms proved to be stable and
sufficiently fast for not-very-large numbers of traps (N � 25).

A. N identical traps

For N traps of a common radius ε on the unit sphere, it
is convenient to use spherical coordinates xj = (1,θj ,φj ), for
j = 1, . . . ,N , where θj is the azimuthal angle and φj is the
polar angle. To minimize the average MFPT v̄, one has to find
a global minimum of the interaction energy H(x1, . . . ,xN ) of
Eq. (2.23) in a hypercube 0 � θj � π , 0 � φj < 2π in 2N

dimensions. We remark that by fixing the position of the first
trap to be at the north pole (θ1,φ1) = (0,0) and by setting
φ2 = 0, the dimension of the problem is reduced to 2N − 3.

Coordinates for optimal spherical arrangements for 3 �
N � 20 and interaction energy values for 3 � N � 65 have
been numerically computed in [13] by using both the DSO and
ECAM methods. For N = 2,3, traps are located on an equator;
for N = 4, they are in the vertices of a regular tetrahedron; for
N = 5,6,7, two traps occupy poles and the other N − 2 lie on
the equator. The majority of configurations of N > 7 traps do
not exhibit an obvious symmetry. Sample minimal energy trap
configurations are shown in Fig. 15 for N = 4,7, and 16 traps.

B. Optimal locations of a pattern with two kinds of traps

Now consider a 2N -trap configuration, with N traps having
radius ε and the other N traps having radius αε, α > 1. The
asymptotic average MFPT for such a configuration is given by
Eq. (2.25). This formula depends on the trap locations through
the interaction energy H̃ as given in Eq. (2.26).

When α is large, the energy H̃ depends significantly on
the locations of the large traps, and much more weakly
on the locations of the small traps. This is because the
“repelling force” between any two traps is proportional to
their radii. This yields a harder global optimization problem,
with multiple local minima that have very close values of the
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FIG. 14. (a) Relative error measure Xa(ε). (b) Plots of Xa(ε) for a = 0.05, 0.1, 0.15, and 0.2 (top to bottom). (Numerical computations
were performed for the step δε = 0.001 in ε. Observed oscillations are a numerical phenomenon, which vanishes as δε → 0.)
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FIG. 15. Minimal energy spherical trap configurations for (a) N = 4, (b) N = 7, and (c) N = 16 identical traps.

energy, yet rather different locations of the small traps. Sample
configurations for α = 10 are given in Figs. 16, 17, and 18.
The global minimum values were the same for both ECAM
and DSO methods.

In particular, for 2N = 4, the resulting configuration is a
distorted tetrahedron, with two large traps tending to occupy

the poles as α increases [see Fig. 16(a)]. For 2N = 6, the large
traps are close to the vertices of an equilateral triangle on the
equator [see Fig. 16(b)]. For 2N = 8, the global minimum is
given by a symmetric configuration with H̃ = −163.615 03.
However, several local minima close to the global minimum
were found using the ECAM algorithm, for example, with

FIG. 16. (Color online) Minimal energy spherical trap configurations for 2N traps of two kinds: (a) 2N = 4; (b) 2N = 6. The radius ratio
of the traps is α = 10. Larger traps are shown in red and smaller in black.
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FIG. 17. (Color online) Spherical trap configurations for 2N = 8 traps of two kinds with radius ratio α = 10. The larger traps are shown in
red and the smaller traps in black. (a) The configuration corresponding to the global minimum of the average MFPT v̄. (b), (c) Configurations
corresponding to nearby local minima of v̄ with H̃ = (−162.502 34, −162.464 60).

energies H̃ = (−162.502 34, − 162.464 60). These local min-
ima correspond to nonsymmetric arrangements (Fig. 17).

For 2N = 10, the global minimum is given by H̃ =
−198.807 59. The ECAM optimization method also gives two
nearby local minima with H̃ = (−198.369 39, − 197.760 83).
In each of these three configurations, the five large traps
are found to be close to the simple optimal configuration of
five identical traps on the sphere, where two traps are at the
poles and the remaining traps occupy the three vertices of an
equilateral triangle on the equator (see Fig. 18).

C. Fragmentation effects: The case of N � 1 traps

In order to study fragmentation effects, we consider N

identical traps of radius ε. We denote the percentage surface
area fraction of traps by 100f , where f ≡ Nπε2/4π =
Nε2/4. Plots of v̄(N ) for several fixed values of f are given
in Fig. 19, using the numerically computed values of the

interaction energy H for optimal spherical trap arrangements
(N = 3, . . . ,65). All curves are decreasing functions. This
confirms the expectation that in order to minimize v̄ using
traps of a fixed trap surface area fraction it is preferable to
have many smaller traps equidistributed over the surface of
the sphere rather than have a small number of larger traps that
cover the sphere only sparsely.

An approximate scaling law for the interaction energy
H(x1, . . . ,xN ) of Eq. (2.23), for N identical optimally dis-
tributed traps on a unit sphere (N 	 1), was derived in [13],
and is given by

H ≈ F(N ) = N2

2
(1 − log 2) + b1N

3/2 + b2N log N + b3N

+ b4N
1/2 + b5 log N + b6, (5.31)

b1 ≈ −0.5668, b2 ≈ 0.0628, b3 ≈ −0.8420,

b4 ≈ 3.8894, b5 ≈ −1.3512, b6 ≈ −2.4523. (5.32)
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FIG. 18. (Color online) Spherical trap configurations for 2N = 10 traps of two kinds with radius ratio α = 10. The larger traps are shown
in red and the smaller traps in black. (a) The configuration corresponding to the global minimum of the average MFPT v̄. (b), (c) Configurations
corresponding to nearby local minima of v̄ with H̃ = (−198.369 39, −197.760 83).

By using Eq. (5.31) in the expression for the average MFPT v̄

as given in Eq. (2.22), one obtains in terms of the trap surface
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FIG. 19. Trap fragmentation effects. The average spherical
MFPT v̄ (2.22) vs N (number of traps) for a fixed trap sur-
face area percentage. Curves for f = 0.1%,0.2%,0.3%,0.5%,

1%,2.2%,4%, and 10% (top to bottom).

area fraction f that

v̄ ∼ |�|
8D

√
f N

[
1 −

√
f/N

π
log

(
4f

N

)
+2

√
f N

π

(
1

5
+ 4b1√

N

)]
. (5.33)

Here it is required that the third term in Eq. (5.33) is asymptot-
ically smaller than the second term. Thus the approximation
(5.33) holds for N 	 1 when the trap area fraction satisfies
f � O(ε).

VI. DISCUSSION

The MFPT v(x) required for a Brownian particle starting
at an arbitrary location x to leave a two-dimensional or a
three-dimensional domain � with boundary traps satisfies a
boundary value problem (1.1) for the linear Poisson equation
with mixed Dirichlet-Neumann boundary conditions. Asymp-
totic results the MFPT v(x) for a 2D domain and for the unit
sphere. These asymptotic formulas have been derived under the
assumption of well-separated asymptotically small traps [trap
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size ∼ ε � diam (�)]. By computing full numerical solutions
of the PDE (1.1), it was shown for certain two-dimensional
domains and for the unit sphere that the asymptotic theory
of [12,13] provide very reliable approximations to the average
MFPT for a rather wide range of trap sizes, not simply those
of very small measure. In particular, for the case of one trap
of size ε, it was shown that the asymptotic and numerical
values of the average MFPT v̄ agree within 1% for the unit
disk when ε � 1.25, for the unit square when ε � 0.2, and for
the unit sphere when ε � 0.8. This close agreement between
asymptotic and numerical results at finite, but not necessarily
asymptotically small, values of the trap size ε illustrates one
of the often key benefits of developing a theory based on
asymptotic analysis.

With regard to the effect of trap separation, the validity
limits of the asymptotic formulas were also tested using
comparisons with full numerical solution for the case of two
identical traps on the boundary of the unit disk, the unit square,
and the unit sphere. It was shown that, for all configurations,
the asymptotic and numerical values of v̄ remain within 1%
agreement for both large and small trap separations, even to
the point when the traps touch.

Due to its essentially singular form, the quality of the
asymptotic MFPT approximation deteriorates when domain
points close to the traps are chosen. However, as shown in
Sec. IV C for a unit disk, this error can be controlled. In
particular, the distance from the trap where any given relative
error occurs decreases as ε → 0. The same can be shown for
the rectangular and the spherical domain.

The asymptotic results for the MFPT for the unit sphere
involve a higher-order term that depends on the global
configuration of the traps. This term, referred to as the
“interaction energy,” involves a sum of two classical discrete
energy functions: the logarithmic energy and the Coulomb
energy, together with an additional logarithmic term. The
optimal point of this interaction energy corresponds to the
minimum value of the average MFPT v̄. This interaction
energy was optimized for N equal traps, and for a pattern
of 2N traps consisting of N small traps and N much larger
traps.

The computed optimal spherical trap configurations for 3 �
N � 65 equal traps were used in the formula for the average
MFPT v̄ to study trap fragmentation effects. Results confirm
that for a fixed surface area fraction of traps f , within the
computed range of N , faster escape is achieved for the case
where N small traps are equidistributed over the surface of the
sphere rather than placing a few large traps on the sphere.

There are two directions that warrant further study. First,
the asymptotic theory relies on detailed knowledge of the
Neumann Green’s function and its regular part. For an
arbitrary 2D domain, it would be worthwhile to develop
a hybrid asymptotic-numerical method for the calculation
of the average MFPT that combines the asymptotic theory
with fast-multipole methods, such as in [26] to calculate the
Neumann Green’s function. For an arbitrary 3D domain with
smooth boundary, it is relatively straightforward to derive a
three-term asymptotic for the average MFPT similar to that
for the sphere given in Eq. (2.20). For the case of one trap,
this has been done recently in [14]. However, to evaluate
the coefficients in this formula, one would have to determine
numerically the Neumann Green’s function and its regular part
for an arbitrary 3D domain with a Dirac source term on the
boundary. The development of reliable numerical methods to
compute this Green’s function is an open problem.

A second open problem is to further study the relationship
between the asymptotic theory in the limit of a large number
of traps and results that can be obtained from the dilute trap
fraction limit of homogenization theory. In particular, for the
unit sphere, can one systematically derive, by using the large
N limit of our asymptotic theory with localized traps, a simple
mixed Robin type boundary condition ∂nv + κv = 0, for some
computable constant κ , which yields the same average MFPT?
For a unit disk, this relation is discussed in Sec. III. For the
unit sphere, work in this direction is in progress.
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