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Efficiency of a thermodynamic motor at maximum power
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Several recent theories address the efficiency of a macroscopic thermodynamic motor at maximum power and
question the so-called Curzon-Ahlborn (CA) efficiency. Considering the entropy exchanges and productions in an
n-sources motor, we study the maximization of its power and show that the controversies are partly due to some
imprecision in the maximization variables. When power is maximized with respect to the system temperatures,
these temperatures are proportional to the square root of the corresponding source temperatures, which leads to
the CA formula for a bithermal motor. On the other hand, when power is maximized with respect to the transition
durations, the Carnot efficiency of a bithermal motor admits the CA efficiency as a lower bound, which is attained
if the duration of the adiabatic transitions can be neglected. Additionally, we compute the energetic efficiency,
or “sustainable efficiency,” which can be defined for n sources, and we show that it has no other universal upper
bound than 1, but that in certain situations, which are favorable for power production, it does not exceed 1

2 .
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I. INTRODUCTION

The efficiency γC of a thermal motor was defined by Carnot
as the ratio of the power produced over the heat received from
the higher temperature source [1]. Carnot efficiency played
a crucial role in theoretical and applied thermodynamics,
which especially distinguished its upper bound ηC, i.e., the
celebrated Carnot limit ηC = 1 − T2/T1, with T1 and T2 being
the temperatures of the hot and cold sources. This upper
bound can only be attained when reversibility is realized
so that the power produced vanishes. Thus the Carnot limit
is not appropriate for an actual motor, which must have a
finite power production. Many authors over the years [2–17]
have considered the Carnot efficiency of a bithermal motor
when it produces its maximum power either for macroscopic
motors or for microscopic systems. Clearly, this maximum
depends on the parameters, which are supposed to be varied,
and different responses can be found in different conditions.
Nevertheless, the efficiency at maximum power has been found
by many authors [2–7] to be the so-called Curzon-Ahlborn
(CA) value, ηCA = 1 − (T2/T1)1/2. The hypotheses used for
deriving this formula became more and more sophisticated,
and it was extended to broader situations [18–21]. Recently,
a new energetic efficiency, called the “sustainable efficiency”
γS, was proposed for stationary systems in the framework
of stochastic thermodynamics [13–15]. According to this
definition, which applies for an arbitrary number of temper-
ature sources, γS is the ratio of the power produced over
the maximum power which could be produced if the power
dissipation could vanish. It can be shown that under specific
but reasonably wide conditions, its maximum value is 1

2 : this
conclusion implies that in this situation, the Carnot efficiency
at maximum power of a stationary stochastic motor may be
higher than the Curzon-Ahlborn value ηCA, with an upper
bound η̄C = (T2 − T1)/(T2 + T1). The same conclusion was
obtained shortly afterward for classical thermodynamic motors
[16] thanks to very general arguments.

The present work is devoted to macroscopic thermody-
namic motors, including an arbitrary number of sources, in
the context of endoreversible systems [8,22]: the entropy

production is due to heat exchanges only, with all other sources
of entropy creation being neglected. We study their efficiency
at maximum power by computing the entropy exchanges and
productions in each transition of a cycle, after discussing the
assumptions currently used in similar studies, and avoiding
some questionable hypotheses used in them. We carefully
distinguish different kinds of power maximizations, showing
that when the power is maximized with respect to the system
temperatures (different from the source temperatures), the
Carnot efficiency of a bithermal motor has the CA value,
ηCA. On the contrary, if power is maximized with respect to
the durations of the transitions, then ηCA is a lower bound
of the efficiency, which can in principle attain the Carnot
limit. Additionally, the energetic efficiency previously named
sustainable efficiency for stochastic systems [15] is defined and
computed for n-sources macroscopic motors. This quantity
proves to have properties similar to those of its stochastic
version, but with different consequences.

Before addressing these points, it is useful to discuss the
pioneering derivations of the Curzon-Ahlborn bound [2–4],
which used the simplest and perhaps clearest, although imper-
fect, method: this is the purpose of Sec. II. In Sec. III, we define
a generalized cyclic motor, compute its power production,
and maximize it with respect to the system temperatures.
The maximization with respect to the transition durations is
addressed and discussed in Sec. IV. Eventually, the sustainable
efficiency of macroscopic motors is studied in Sec. V.

II. A SHORT DISCUSSION OF THE EARLIEST
DERIVATIONS OF THE CURZON-AHLBORN BOUND

A. The principle of the derivations

The original derivation of Carnot efficiency at maximum
power by Yvon [2] is not known in full detail, since this
author only sketched it in a lecture at a Geneva conference
in 1955 and, as far as we know, did not publish it completely
elsewhere. Nevertheless, his reasoning was clearly described
and apparently very simple. In later years, Chambadal [2]
and Novikov [3] followed the same method, which can be
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summarized as follows. The engine performs a Carnot cycle
between the hot and cold sources at respective temperatures
T1 and T2, but the actual temperature of the system during
its contact with the hot source should be T1 < T2 in order to
have a finite heat flux input Q̇1 = K1(T1 − T ′

1), where K1 is a
constant including the thermal conductivities and the areas of
the walls allowing for the heat exchanges with the hot source.
The efficiency of the engine has the Carnot value (1 − T2/T ′

1)
and the power produced is P = K1(T1 − T ′

1)(1 − T2/T ′
1). It is

then straightforwardly found that the power is maximum for
T ′

1 = (T1T2)1/2, which yields the Curzon-Ahlborn value of the
Carnot efficiency,

ηCA = 1 − (T2/T1)1/2. (1)

As mentioned above, this formula was rederived later by
several authors [5–8] based on more sophisticated arguments,
but the previous method may be the simplest one. Nevertheless,
it is clearly imperfect for several reasons, in particular
because, logically, one should also consider that the lowest
temperature T ′

2 of the Carnot cycle is higher than the cold
source temperature: T ′

2 > T2. Furthermore, the durations of
the various phases of the Carnot cycle are not taken into
account, although they clearly play a role in power production.
These points were addressed by subsequent researchers [5–8]
in different formalisms, and they can be implemented in the
original method, as shown in Appendix A.

Clearly, most actual motors do not follow a Carnot cycle
(see, for instance, Ref. [22]). In fact, maintaining the system
temperature constant during the heat exchanges is only
approximately realized after transient regimes and requires
special conditions that may be difficult to satisfy in practice.
Nevertheless, it will be shown below that the maximum
power is obtained, theoretically, in this situation, which, for
a bithermal motor, corresponds to a Carnot cycle. This is why
we focus on this cycle.

B. Temperatures and durations of the heat exchanges

The average power produced by the system can be maxi-
mized with respect, not to T ′

1, T ′
2, but to other variables, such

as the durations τ1, τ2 of the exchanges with the reservoirs: this
was the point of view considered, for instance, in Ref. [16]. It
should be noted that the durations τ1 and τ2 are not independent
of the internal temperatures T ′

1 and T ′
2. As a matter of fact, the

entropy of the system, being a state variable, must not change
during a whole cycle: thus it satisfies the “closure relation”∑

i

δS ′
i = 0, (2)

where δS ′
i is the variation of the system entropy during a

transition i, which is the sum running on all transitions of the
cycle. By the kinetic laws of irreversible thermodynamics, the
increments can be expressed as functions of the other variables
and of the transition durations, so that the previous equation
relates the durations and the temperatures of the transitions.

Other such relations can be established, taking into account
the exact mechanism of the transitions. Assume, for instance,
that the system is a perfect gas performing a Carnot cycle
including (i) the isothermal expansion (T ′

1) at temperature T ′
1

from the initial volume V1 to volume V2, (ii) the adiabatic

expansion (A1) from temperature T ′
1 and volume V1 to

temperature T ′
2 and volume V3, (iii) the isothermal expansion

(T ′
2) at temperature T ′

2 from volume V3 to volume V4, and
(iv) the adiabatic expansion (A2) from temperature T ′

2 and
volume V4 to temperature T ′

1 and volume V1. Let τ1, τa1, τ2,
and τa2 be the respective durations of these successive steps
and τ be the total duration of the cycle. If the molar heat
capacities at constant volume, CV, and at constant pressure,
CP, are constant, then it is well known that

V3

V2
= V4

V1
=

(
T ′

1

T ′
2

)CV /R

≡ λ, (3)

where R is the perfect gas constant and R/CV = CP/CV − 1 ≡
γ − 1. In the simplest circumstances, the gas is contained in a
cylinder closed by a piston moving with the constant velocities
v during the expansions and −v during the compressions.
Then, the ratios τi/t are easily expressed in the function of λ

and of the compression ratio c = V2/V1. In particular, we have

τ2 = λτ1.

Moreover, the ratio of the total time of the adiabatic processes
over the total time of the heat exchanges is

τa1 + τa2

τ1 + τ2
= (c + 1)(λ − 1)

(c − 1)(λ + 1)
(4)

and it also depends on the temperatures, which is contrary to
the assumption used in Ref. [5] for deriving the famous value
(1).

We remark that it is generally assumed in the literature
[16] that the weak dissipation regime holds, implying that
τa1 + τa2 � τ1 + τ2. However, formula (4) shows that this is
only valid if λ ≈ 1. In practical cases, a typical value of CV

is of the order of 2.5 R and T1/T2 ranges between 2 and
3 (see Table I). At the optimal regime of Curzon-Ahlborn,
T ′

1/T ′
2 ≈ (T1/T2)1/2 ≈ 1.6, and λ ≈ (1.6)2.5 ≈ 3.1: then the

weak dissipation approximation is questionable.
Of course, relations (3) and (4) are only valid for this special,

elementary model. In realistic cases, similar relations should
hold, but they presumably become very complex and highly
specific. Even if they could be written explicitly, they would
not lead to any general relation. Thus, we will ignore them
and consider that the temperatures and durations of the heat
exchanges are only related by Eq. (10). Then we can obtain
general results, but it is possible that the theoretical maximal
power calculated later is not attained exactly for actual engines.

C. Some experimental data

It has been pointed out previously [5,16] that the efficiencies
of actual power plants are generally much closer to the CA
value than to the Carnot limit. Some examples are given
in Table I: it is seen that in several cases, the experimental
efficiency is larger than the CA value, and even larger than
the upper bound ofn̄C predicted by some theories [14,16].
This is no surprise, in view of the previous remarks, since
it is doubtful if the theoretical maximization conditions are
actually satisfied. This remark, however, makes the interest
of the previous values of efficiency questionable, and it
shows the importance of specifying the conditions under
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TABLE I. Experimental and theoretical efficiencies for some industrial power plants. The Carnot limit ηC, CA efficiency ηCA, and theoretical
upper boundη̄C can be compared to the experimental efficiency ηexp.

Plant T1 (K) T2 (K) ηC ηCA η̄C ηexp

Almaraz II (Nuclear, Spain) [16] 600 290 .52 .30 .35 .34
Calder Hall (Nuclear, UK) [16] 583 298 .49 .29 .32 .19
CANDU (Nuclear, Canada) [5] 573 298 .48 .28 .32 .30
Cofrentes (Nuclear, Spain) [16] 562 289 .49 .28 .32 .34
Doel 4 (Nuclear, Belgium) [16] 566 283 .50 .29 .33 .35
Heysham (Nuclear, UK) [16] 727 288 .60 .37 .43 .40
Larderello (Geothermal, Italy) [5] 523 353 .32 .18 .19 .16
Sizewell B (Nuclear, UK) [16] 581 288 .50 .30 .34 .36
West Thurrock (Coal, UK) [5] 838 298 .64 .40 .48 .36
Pressurized water nuclear reactor [24] 613 304 .50 .30 .34 .33
Boiling water nuclear reactor [24] 553 304 .45 .25 .29 .33
Fast neutron nuclear reactor [24] 823 296 .64 .40 .47 .40

which the theoretical maximization of the power production is
performed.

III. ENTROPY PRODUCTION IN A GENERALIZED
MOTOR

A. A general cyclic engine

Let us consider a system performing a cycle consisting of
N, possibly infinitesimal, steps i = 1,2,. . .N, with respective
positive durations δt1,δt2,. . .δtN. During step i, the system
receives the heat δQi from a reservoir at fixed temperature
Ti , whereas the system is at temperature T ′

i , which may be
considered to be constant if δti is small enough. δQi can be
0, and several successive temperatures Ti may be identical,
whereas the corresponding T ′

i could in principle be different,
thus describing a time-dependent system temperature.

Assuming that the laws of irreversible thermodynamics near
equilibrium hold, we can write, by Fourier law,

δQi = Ki(Ti − T ′
i )δti . (5)

It can be remarked that other expressions of the heat fluxes
have been used [23], without definite theoretical support.
Such expressions are equivalent to the Fourier law for a
very small temperature difference between the source and the
system, but not if this difference becomes significant while
remaining relatively small. We assume that the Fourier law
remains valid in this case. In fact, although this classical
law is only approximate, its validity has been confirmed
both experimentally and theoretically in many circumstances
(see, for instance, among the abundant literature, the classical
textbook [25] for gases, or [26,27] for solids, and references
therein).

The adiabatic transitions are considered in the same
formalism by taking Ki = 0 for them. According to elementary
calculations, the entropy change of the reservoir during step i
is

δSi = −δQi

Ti

(6)

and the entropy change of the system is

δS ′
i = δQi

T ′
i

≡ −δSi + δsi, (7)

with −δSi being the entropy received from the reservoir and
δsi being the entropy produced during the exchange, so

δsi = δQi

(
1

T ′
i

− 1

T i

)
= Ki

(Ti − T ′
i )2

T iT
′
i

δti . (8)

The work produced during the whole cycle is

−W =
∑

i

δQi = Ki(Ti − T ′
i )δti, (9)

while the total entropy variation of the system vanishes,

0 =
∑

i

δQi

T ′
i

=
∑

i

Ki

Ti − T ′
i

T ′
i

δti . (10)

We remark that for these classical formulas to be valid, the
system temperature T ′

i should be positive, so

δS ′
i = Ki

Ti − T ′
i

T ′
i

δti > −Kiδti, (11)

which we will always assume. If now we let δti → 0, then
the previous formulas apply, replacing the finite increments by
differentials and the sums by time integrals.

B. Maximization of the power production with respect to the
temperatures

If we assume that the durations of the transitions are fixed
whereas the system temperatures T ′

i are varied while respect-
ing equality (10), then it is easily found that the maximum
power per cycle is attained when for each nonadiabatic step

T ′
i = (μTi)

1/2, with μ1/2 =
∑

i Ki(Ti)1/2δti∑
i Kiδti

, (12)

the maximum power produced is

Pmax =
(∑

i KiTiδti
) (∑

i Kiδti
) − (∑

i Ki(Ti)1/2δti
)2( ∑

i Kiδti
)(∑

i δti
) � 0.

(13)
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In the case of infinitesimal time increments δti , Eqs. (11) and
(12) apply for each nonadiabatic phase, replacing the sums
by the corresponding integrals. Equation (12) implies that the
maximum power is obtained when the system temperature T ′

i is
constant during the heat exchange, with source i at temperature
Ti. In practice, this condition may be difficult to satisfy, and it
certainly implies particular mechanisms, but for maximizing
the power, it is favorable to approach it as far as possible.
Thus, as most authors (see, in particular, [22]) have done, we
assume from now on that this condition is realized: τi ≡ δti
will represent the total duration of the exchanges with source
i, where δi ≡ δS ′

i is the corresponding variation of the system
entropy.

If there are only two reservoirs with temperatures T1 and T2

(T1 > T2), then the heat received from reservoir i (i = 1 or 2)
is δQi = (Ti − T ′

i ) Kiτi = T ′
i δi , and Eq. (10) indeed shows

that the Carnot efficiency has the CA value ηCA.

IV. MAXIMIZATION OF THE POWER PRODUCTION
WITH RESPECT TO THE TRANSITION DURATIONS

In the previous multitemperature machine, let us now
suppose that we can vary the durations of the different steps.
We first remark that by Eq. (8), the entropy production during
step i can be written for a nonadiabatic transition,

δsi = Ki

(Ti − T ′
i )2

T iT
′
i

δti = −δSiδS
′
i

Kiδti
. (14)

During an adiabatic transition i, we assume that δSi = δS ′
i =

δsi = 0. Using (14), if i is not adiabatic, then we obtain

δsi = (δS ′
i)

2

Kiδti

(
1 + δS ′

i

Kiδti

)−1

. (15)

Writing τ = �i=1,...N δti , the power produced after N steps,
i.e., after a (pseudo) cycle, is

P = −W

τ
= 1

τ

∗∑
i

δQi = 1

τ

∗∑
i

Ti(−δSi)

(16)

= 1

τ

∗∑
i

Ti(δS
′
i − δsi) = 1

τ

∗∑
i

Ti

δS ′
i

1 + δS ′
i

Kiδti

,

where �∗ denotes the sum over nonadiabatic transitions. From
now on, we will use the previous formulas with the condensed
notation δi ≡ δS ′

i and τi ≡ δti , assuming that, according to
Sec. III B, δi > −Kiτi .

A. Weak dissipation regime

The weak dissipation regime (see, for instance, [16]) can
be considered as the standard situation where the usual laws
of irreversible thermodynamics hold. Then the heat exchanges
are slow and we can consider that δi � Kiτi . So the power
produced is

P ≈ 1

τ

∗∑
i

Ti

(
δi − (δi)2

Kiτi

)
. (17)

According to the methods of Ref. [16], we can maximize the
power produced with respect to the τi , considering that the
entropy variation δi = δS ′

i of the system during each step i

is fixed. Such a choice implies that the entropy changes of
the system are relevant quantities, to be used in the best
possible way: this arbitrary convention is contrary to the
usual consideration that only the energy inputs import, but
it is reasonable in the scope of sustainable development,
now adopted in many circumstances. Then, we obtain, for
nonadiabatic transitions,

Ti(δS ′
i)

2

Ki(τi)2
= P, (18)

where we consider only the situations when P is positive. Thus,
if transition i is not adiabatic, then

τi = |δi | p−1/2

(
T i

Ki

)1/2

, (19)

whereas the adiabatic transitions should obviously be as short
as possible in order to maximize the power produced. The
maximum power and the heat received from each source can
be expressed (Appendix B) in terms of the δi and the other
parameters.

In the case of a bithermal motor operating successively with
two sources at temperatures T1 and T2 (T1 > T2), we obtain
(Appendix B)

P 1/2 = 1

2
(T1 − T2)

[(
T1

K1

)1/2

+
(

T2

K2

)1/2
]−1

(20)

and the Carnot efficiency is found to be

λC = 1 + δQ2

δQ1

= T1 − T2

2T1 − (T1 − T2)[1 + (T2/T1)1/2(K1/K2)1/2]−1
. (21)

We recover the main result of Ref. [16] as well as its
consequences. λC is a decreasing function of K1/K2: if this
ratio tends to ∞, then one obtains a lower bound of λC,

λC min = 1

2

(
1 − T2

T1

)
= 1

2
ηC,

whereas if K1/K2 → 0, then one finds the upper boundη̄C

which was previously obtained for stationary stochastic motors
[14,15],

λCmax = T1 − T2

T1 + T2
= η̄C.

Eventually, if K1/K2 = 1, then the Curzon-Ahlborn value ηCA

is recovered. We will see, however, that these conclusions
are not preserved in a more general regime, when the weak
dissipation approximation does not hold.

B. A generalized regime

We now maximize the general expression (16) of the power
produced with respect to the τi , again considering that the
entropy variation δi ≡ δS ′

i of the system during each step i is
fixed. Thus, we admit that the Fourier law remains valid outside
of the weak dissipation regime, when δS ′

i is not necessarily
much smaller than Kiτi , which implies that |T ′

i − Ti | can be
of the order of T ′

i . In fact, this is currently realized in actual
heat engines where, nevertheless, the Fourier law is assumed
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to be valid. In this case, maximizing expression (15) of P > 0
yields, for a nonadiabatic transition,

Ti(δi)2

Ki(τi)2
[
1 + δi

Kiτi

]2 = P, (22)

if τi > 0. It results from (22) that
δi

Kiτi

1 + δi

Kiτi

= εi

(
P

KiT i

)1/2

, (23)

where εi is the sign of the left-hand side. We have seen that
di > −Kiτi , so that εi = sign(δi). Thus,

τi = |δi |
Ki

[(
P

KiT i

)−1/2

− εi

]
, (24)

with the right-hand side being positive, provided that P <

KiTi for each step with positive entropy variation. It is easily
seen from (16) that this inequality is satisfied for at least one
of these steps. If the inequality was not satisfied for some step
j with positive entropy variation, then this step j should be
skipped (τj = 0) in order to maximize the power production.
We assume that such steps, if any, have been suppressed. On the
other hand, it can be checked by (24) that τi satisfies inequality
(11), as it should be. From (16), (22), and (24), we obtain

τP = A − P 1/2B
(25)

τ = τa + P −1/2B − C

with

A =
∗∑
i

Tiδi, B =
∗∑
i

(
Ti

Ki

)1/2

|δi | , C =
∗∑
i

1

Ki

δi .

(26)

It is clear that B > 0 and that by (25), P > 0 implies A > 0
(so, obviously, all of the temperatures Ti cannot be equal), but
C may be negative as well as positive. Equations (25) yield

(C − τa)P − 2BP 1/2 + A = 0, (27)

which has (at least) one positive solution if

τa � C − B2/A. (28)

It is always possible to satisfy (28) if τa is large enough, but
then the power production is small. In order that no minimum
value is assigned to τa, it is desirable that B2 − AC � 0: we
assume that we are in this situation. Then, Eq. (27) has one
positive solution such that τ > 0,

P 1/2 = A

B + (B2 − AC + τaA)1/2
. (29)

This formula shows that in order to maximize P, the duration
τa of the adiabatic transitions should be as small as possible, as
already pointed out. We see that the power production P can be
higher than the value A2/(2B)2 obtained in the standard weak
dissipation regime (see Appendix B), provided that C > τa .
So, in order to consider a favorable situation, we may assume
that C is positive and that τa , if not completely negligible, is
at least less than C : τa < C.

The heat exchanged with source i is, by (17),

δQi = Ti

δi

1 + δSi

Kiτi

= TiδSi − P 1/2εiδSi

(
Ti

Ki

)1/2

, (30)

and the temperature T ′
i of the system during the heat exchanges

with source i is

T ′
i = Ti − P 1/2εi

(
Ti

Ki

)1/2

, (31)

which implies that P < KiTi for each step i such that δS ′
i >

0, as noticed previously. It can be shown that this solution is
indeed a maximum of the power production.

As an example, let us consider a bithermal motor with
sources at temperatures T1 and T2 (T1 > T2). We have δS ′

1 =
−δS ′

2 > 0, and

δQ1 = T1δS
′
1

(
1 − P 1/2

(K1T 1)1/2

)
,

δQ2 = −T2δS
′
1

(
1 + P 1/2

(K2T2)1/2

)
.

It is found that B2 − AC = (T1/K2 + T2/K1)2 > 0, so that τa

may indeed be arbitrarily small. Equation (29) yields

P 1/2 = (T1 − T2)

[(T1/K1)1/2 + (T2/K2)1/2] + {[(T1/K2)1/2 + (T2/K1)1/2]2 + τa(T1 − T2)}1/2
. (32)

If τa is small enough to be neglected, we obtain

P 1/2 ≈ (T1)1/2 − (T2)1/2

(K1)−1/2 + (K2)−1/2
≡ (P 0)1/2. (33)

P0
1/2 is, furthermore, an upper bound for P 1/2. The Carnot efficiency is

γC = 1 + δQ2

δQ1
= (T1 − T2) − P 1/2[(T1/K1)1/2 + (T2/K2)1/2]

T1 − P 1/2(T1/K1)1/2
≡ γC(P ), (34)
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which is a decreasing function of P . Cumbersome but
elementary calculations show that if τa→ 0, then

γC → γC(P0) = 1 −
(

T2

T1

)1/2

= ηCA. (35)

Thus, when the total duration of the adiabatic steps tends to
0, the Curzon-Ahlborn efficiency is recovered for all values of
K1 and K2, and not only when K1 = K2, as found in the weak
dissipation regime. Moreover, for finite τa , P < P0, so that

γC(P ) > γC(Po) = ηCA, (36)

which is one of our main results: the Curzon-Ahlborn
efficiency is a lower bound of Carnot efficiency at maximum
power in the present maximization conditions. A similar
conclusion was obtained, in certain circumstances, from the
explicit study of the so-called three-level model motor [17].

V. MULTISOURCES MOTOR AND SUSTAINABLE
EFFICIENCY

A. Sustainable efficiency of a macroscopic thermodynamic
motor

The notion of sustainable efficiency was introduced in
stochastic thermodynamics for a mesoscopic motor operating
in a nonequilibrium stationary state in Ref. [14], noticing that
the power produced P can be written as

P = A − DP ,

where DP is the power dissipation, i.e., the energetic equivalent
of the entropy production rate, which is always positive out of
equilibrium. Here, A is the power which would be produced if
the power dissipation could vanish. The sustainable efficiency
γS was defined [14] as

γS = P

A
= P

P + DP

Thus, the sustainable efficiency makes sense for any mul-
tisource motor without favoring one the sources, and it
may be appropriate for an unbiased estimation of the motor
performances. For these reasons, and its relations with Carnot
efficiency [14,15], it is interesting to extend this concept to the
present macroscopic formalism. The heat δQi received by the
system during step i can be written, by (15),

δQi = −TiδSi = TiδS
′
i − Tiδsi,

where δSi and δS ′
i are the entropy variations of reservoir i and

of the system, respectively, and δsi is the entropy production
during step i. The work produced during the cycle is

−W =
∑

i

δQi =
∑

i

TiδS
′
i −

∑
i

Tiδsi . (37)

The energy dissipation during step i is Tiδsi , and the total
energy dissipation during the cycle is

DW =
∑

i

Tiδsi, (38)

whereas A ≡ �iTiδS
′
i = −W + DW is the maximum work

that could be produced during a cycle if all dissipation could
be avoided. In fact, during step i, the temperature of the

heat source is Ti and the exergy [28] of the system (in
the absence of a pressure reservoir) is Exi = E′

i − TiS
′
i ,

E′
i , with S ′

i being the internal energy and the entropy of
the system, respectively. According to classical engineering
thermodynamics, the maximum work that can be produced by
the system during step i is −δExi , and the maximum work
produced during a complete cycle is −�i Exi ≡ �i Ti S ′

i = A,
in agreement with definitions (26). Thus, for a macroscopic
engine, the sustainable efficiency can be defined by

γS = −W

−W + DW

=
∑

i δQi∑
i T iδS

′
i

� 1. (39)

In similarity with the stochastic case, it is interesting to
consider the value of the sustainable efficiency at maximum
power. In this situation, we use formulas (29), (30), and (39)
and obtain

γS = A − P 1/2B

A
= 1 − B

B + (B2 − AC + τaA)1/2
. (40)

It is clear that if τa < C, and in particular if C > 0 and τa → 0,
then γS � 1

2 . This situation is not general: the sustainable
efficiency, as defined above, can be larger than 1

2 at maximum
power, and it even tends to 1 if the adiabatic transitions are
infinitely slow, as shown by (40): then the Carnot efficiency
reaches the classical Carnot limit, as shown below by formula
(41), but the power produced vanishes. On the other hand, we
have seen that in order to maximize the power production,
it is desirable to minimize the duration of the adiabatic
phases and to have a positive C coefficient larger that τa:
in such situations, the maximum value of the thermodynamic
sustainable efficiency is 1

2 . This upper bound is attained if
C = τa and, in particular, when all Fourier coefficients Ki are
equal and τa → 0.

It can be remarked that the stochastic sustainable efficiency
defined in Refs. [14] and [15] also admit the upper bound 1

2
in certain situations; essentially, when the stochastic dynamics
is varied while maintaining constant the stationary probability
distribution. In the absence of any specific condition, however,
the stochastic sustainable efficiency has no general upper
bound lower that 1, like its macroscopic version.

B. Macroscopic and stochastic sustainable efficiencies

At this point, it can be useful to summarize the analogies
and differences between the macroscopic and stochastic
sustainable efficiencies. Clearly, the macroscopic sustainable
efficiency considered in Sec. V A has much similarity with
the stochastic sustainable efficiency of Refs. [14] and [15],
by its definition and it properties. Nevertheless, an important
difference between these efficiencies is that the first one
only depends on a few macroscopic parameters, whereas the
stochastic efficiency depends on the complete dynamics of the
system and implies a large number of microscopic parame-
ters. For this reason, the constraint of a constant stationary
probability, imposed in maximizing the stochastic sustainable
efficiency, can hardly be transposed to the macroscopic case.

These analogies and differences are also manifested in the
relation existing between the Carnot and sustainable efficien-
cies. It can be shown (see Appendix C) that the macroscopic
sustainable efficiency satisfies the relation already found [15]
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in the stochastic case, which reads (if the only sources of
entropy production are the heat exchanges, as assumed here)

γC =
(

1 − T2

T1

)

×
[

1 − T2
δs1+δs2

(1−γS)−1(T1δs1+T2δs2)−(T1−T2)δs1

]
.

(41)

Thus, γC is an increasing function of γS. It tends to the
Carnot limit ηC if γS→1, which is in principle possible. In
practice, we saw that in favorable situations, we should have
γS � 1

2 . In the macroscopic theory, however, this inequality,
combined with (41), does not imply any new effective upper
bound for γC, because the parameters in Eq. (41) cannot be
varied independently (Appendix C), which is contrary to the
stochastic case [15]. Then the Carnot efficiency can in principle
attain the Carnot limit, as found in the complete analytical
study of the three-level stochastic motor [17], and developed
more generally in a recent paper [29].

VI. CONCLUSION

The efficiency of a thermal motor, conditioned on maximal
power production, has been discussed intensively from more
than 50 years. The original derivations were completed and
generalized, and alternative derivations were proposed, until
recent papers contested these apparently well-established
results, either proposing a higher upper bound on the efficiency,
or even asserting that there is no general upper bound
other than the Carnot value. These discussions concern the
classical engine considered in macroscopic thermodynamics,
as well as the mesoscopic motors introduced in stochastic
thermodynamics. In the present paper, focused on macroscopic
thermodynamics, we have shown that the controversies are
partly due to the imprecise definition of the maximization
conditions. When the maximization is taken over the system
temperatures during the nonadiabatic transitions (or equiva-
lently over the corresponding system entropy variations), the
Curzon-Ahlborn efficiency is obtained for a bithermal motor.
On the other hand, if the maximization is taken over the
durations of the transitions, then the CA efficiency is a lower
bound of the actual efficiency: it is attained if the total duration
of the adiabatic transitions can be neglected with respect to the
duration of the other transitions.

In analogy with a definition given for stochastic motors, we
have also introduced the notion of “sustainable efficiency” to
macroscopic motors, i.e., the ratio of the power produced to
the maximum power which could be produced with the same
resources if all irreversible effects could be suppressed. This
efficiency γS not only can be used for any number of reservoirs
without favoring one of them, but also gives a new light on the
more usual Carnot efficiency. The only general upper bound
of the sustainable efficiency is 1, implying that in the most
general situation, the Carnot efficiency at maximum power can
in principle approach the Carnot limit. Practically, however,
maximizing the power is preferably obtained in situations
where γS � 1

2 , and the energy exchanges with the reservoir
obey the law of heat diffusion: these conditions lead to the
Curzon-Ahlborn efficiency found by direct calculations.

In conclusion, the concept of efficiency at maximum
power can be misleading, because it depends on the kind of
maximization which is considered. As well as the other values
that have been proposed, the Curzon-Ahlborn efficiency is not
“universal.” However, it plays a crucial role when the energy
exchanges with the reservoirs are governed by the Fourier
law: in certain situations, it represents the lowest bound of the
efficiency at maximum power, which is attained in specific
circumstances. This is why it remains an essential value in the
theory of macroscopic motors.
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APPENDIX A: COMPLEMENTS ON THE EARLIEST
DERIVATION OF CURZON-AHLBORN BOUND

These derivations can be completed to include ingredients
which were discarded initially, mainly, the durations of the
exchanges. These durations were considered, for instance, in
Ref. [5], with questionable assumptions on the durations of the
adiabatic transitions, which can be avoided. With the notations
of Sec. II, we again study a bithermal motor operating with a
hot source at temperature T1 and a cold source at temperature
T2. Assume that during the exchanges with source i (i = 1, 2),
the heat flux is finite and given by Q̇i = Ki(Ti − T ′

i ) < 0, with
Ki being a constant. We now take into account the durations of
the different transitions occurring during a Carnot cycle. Let
the isothermal phase (T ′

1) of exchange with the hot source 1
have a duration τ1, and the isothermal exchange phase (T ′

2) with
the cold source 2 have a duration τ2, whereas the total duration
of the cycle is τ . Considering a stationary statistical ensemble
of identical, independent systems operating according to the
same Carnot cycle, at a given time the proportion of systems
undergoing a transition (T ′

i ) is τi/τ , so that the ensemble
average of the heat flux received by a system from source
(i) is

〈Q̇i〉 = Ki(Ti − T ′
i )τi/τ ≡ κi(Ti − T ′

i ), (A1)

which is clearly identical to the time average of this heat flux
over a period much larger than τ for a unique system.

It results from classical thermodynamics that the entropy of
the system should not change during a whole cycle, so that if
the transitions connecting the isothermal phases are rigorously
adiabatic, then

〈Q̇1〉
T ′

1

+ 〈Q̇2〉
T ′

2

= 0. (A2)

The average work 〈Ẇ 〉 received by the system by unit time
results from the energy conservation

〈Ẇ 〉 + 〈Q̇1〉 + 〈Q̇2〉 = 0. (A3)

Thus, the average power produced by the system is 〈P 〉 ≡
−〈Ẇ 〉 = 〈Q̇1〉 + 〈Q̇2〉 and its Carnot efficiency is

γC ≡ 〈P 〉
〈Q̇1〉

= 1 − 〈Q̇2〉
〈Q̇1〉

= 1 − T ′
2

T ′
1

. (A4)
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The temperatures T ′
1 and T ′

2 cannot be chosen independently,
since they must satisfy the relation resulting from (A1) and
(A2),

κ1(T1 − T ′
1)

T ′
1

+ κ2(T2 − T ′
2)

T ′
2

= 0, (A5)

where (A2) and (A3) obviously imply that T ′
1 < T1 and

T ′
2 > T2. It is easily shown that if the temperatures T ′

1 and
T ′

2 are varied while respecting condition (A2), then the power
produced 〈P 〉 is maximum when

T ′
1 = (α1

√
T 1 + α2

√
T2)

√
T 1,

(A6)
T ′

2 = (α1

√
T 1 + α2

√
T2)

√
T 2,

with αi = κi

κ1+κ2
(i = 1,2). It results from (A3) and (A4) that

the Carnot efficiency has the expected CA value of

ηCA = 1 −
√

T2√
T1

. (A7)

APPENDIX B: POWER MAXIMIZATION IN THE WEAK
DISSIPATION APPROXIMATION

In the weak dissipation regime, the transitions are slow [16]
and we have δi � −Kiτi . Then the power produced is

P ≈ 1

τ

∗∑
i

Ti

(
δi − (δi)2

Kiτi

)
. (B1)

Following the methods of Ref. [16], we now maximize the
power produced with respect to the τi considering that the
entropy variation δi = δS ′

i of the system during each step i is
fixed. To be physically meaningful, this assumption implies
that the important quantities to consider when running a motor
are the entropy inputs from or to the reservoirs, rather than
the energy inputs. This is not the usual point of view, which
focuses on the fuel consumptions or energies rejected to the
environment. Nevertheless, we think that the entropy changes
could be more significant than the energy variations, since
energy is in principle conserved, even if it can hardly be used
in certain forms, whereas entropy is not. In any case, this
maximization condition can be considered as a mathematical
condition but, once more, it is connected with considerations
that are not purely scientific. Then, the δi should satisfy the
constraint ∑

i

δi = 0, (B2)

which, nevertheless, does not affect the variables τi . Maximiz-
ing P gives, for nonadiabatic transitions,

Ti(δS ′
i)

2

Ki(τi)2
= P, (B3)

where we consider only the situations when P is positive. Thus,
if transition i is not adiabatic, then

τi = |δi | p−1/2

(
T i

Ki

)1/2

, (B4)

whereas the adiabatic transitions should obviously be as short
as possible in order to maximize the power produced. So,

P = 1

τ

∗∑
i

Ti

(
δi − (δi)2

Kiτi

)
= 1

τ
A − P 1/2

τ
B, (B5)

where we have defined

A =
∑

i

Tiδi,B =
∗∑
i

(
Ti

Ki

)
1/2 |δi | . (B6)

On the other hand, if τa is the total duration of the adiabatic
steps, then we have

τ = τa + τb, where τb =
∗∑
i

τi = P −1/2B. (B7)

In the weak dissipation approximation, τa should be small with
respect to τ : τa � τ . So, combining (B5) and (B7) yields

P 1/2 = A

2B
,τ = 2B2

A
. (B8)

The heat received from source (i) at temperature Ti during step
i is, in the present approximation,

δQi ≈ Ti

(
δi − (δi)2

Kiτi

)
. (B9)

In the case of a bithermal motor operating successively with
two sources at temperatures T1 and T2 (T1 > T2),

P 1/2 = 1

2
(T1 − T2)

[(
T1

K1

)1/2

+
(

T2

K2

)1/2
]−1

, (B10)

and the Carnot efficiency is

γC = 1 + δQ2

δQ1

= T1 − T2

2T1−(T1−T2)[1+(T2/T1)1/2(K1/K2)1/2]−1
. (B11)

We recover, with different notations, the main result of
Ref. [13], as well as the following conclusions. γC is a
decreasing function of K1/K2. Its lower bound is obtained
if K1/K2→∞,

γC min = 1

2

(
1 − T2

T1

)
= 1

2
ηC,

whereas if K1/K2→0, then one finds the upper boundη̄C,

which was also obtained for stationary stochastic motors
[14,15],

γC max = T1 − T2

T1 + T2
≡ η̄C.

Eventually, if K1/K2 = 1, then the Curzon-Ahlborn value ηCA

is recovered. These conclusions, however, essentially depend
on the weak dissipation assumption, as shown in Sec. IV B.

APPENDIX C: CARNOT EFFICIENCY AND SUSTAINABLE
EFFICIENCY FOR A BITHERMAL MOTOR

The Carnot efficiency γC of a bithermal motor exchanging
heat with a hot source at temperature T1 and a cold source at
temperature T2, as considered in Sec. III, can be expressed in
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terms of its sustainable efficiency γS defined by (39), as done
in Refs. [14,15] for the stochastic efficiency. Using (36), we
obtain (40),

γC =
(

1 − T2

T1

)

×
[

1 − T2
δs1 + δs2

(1−γS)−1(T1δs1+T2δs2)−(T1−T2)δs1

]
,

(C1)

where we supposed that there is rigorously no entropy
production during the adiabatic phases nor during the energy
exchanges with mechanical systems (whereas the contrary
hypothesis was considered in the stochastic version of this
problem [15]). Then, γC is an increasing function of γS if
the other parameters remain constant. If γS � 1

2 , as discussed
above, then we have

γC � [1 − (T2/T1)]

[
1 − T2

1 + δs2/δs1

2(T1+T2δs2/δs1)−(T1−T2)

]
.

(C2)

As in the case of stochastic efficiency [15], the right-hand side
of (C2) increases from 1

2 (1 − T2/T1) to η̄C = (T1 − T2)/(T1 +
T2) when δs2/δs1 decreases from ∞ to 0, but nowη̄C is not an
effective upper bound of γS, since in practice δs2/δs1 cannot
vanish, nor vary independently of the other parameters. In fact,
as an example, let us consider the symmetric case, where the
coefficients K1 and K2 of the Fourier law (5) are equal,

K1 = K2 ≡ K.

Then it is seen from (26) and (40) that γS = 1/2 (if the
duration of the adiabatic phases is neglected). From (15) and
the maximization condition (23), it is found that δs2/δs1 =
(T1/T2)1/2, and (C1) implies that

γC = 1 − (T2/T 1)1/2 = ηCA,

in agreement with (35).
This result is also valid for a stochastic motor if γS � 1

2
and if δs2/δs1 = (T1/T2)1/2. The last relation holds whenever
the heat exchanges are governed by diffusion phenomena and
obey the Fourier law, but it is not necessarily true if the energy
is transferred differently, as it may happen in molecular motors
or in complex biochemical phenomena.
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