
PHYSICAL REVIEW E 85, 021127 (2012)

Level-number variance and spectral compressibility in a critical two-dimensional
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We study level-number variance in a two-dimensional random matrix model characterized by a power-law
decay of the matrix elements. The amplitude of the decay is controlled by the parameter b. We find analytically
that at small values of b the level number variance behaves linearly, with the compressibility χ between 0 and 1,
which is typical for critical systems. For large values of b, we derive that χ = 0, as one would normally expect
in the metallic phase. Using numerical simulations we determine the critical value of b at which the transition
between these two phases occurs.
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I. INTRODUCTION

Random matrix models whose eigenstates exhibit a transi-
tion from extended to localized states provide an efficient tool
for studying the Anderson metal-insulator transition [1–7].
Their main advantage, compared to the original Anderson
model [8], is that the transition occurs not just at a single
point in the parameter space, but rather on a critical line
described by the variation of an additional parameter, such
as the bandwidth of the power-law banded random-matrix
model [3]. The models are accessible to perturbative treatment
when this parameter is either large or small [9–13].

So far, most of the critical random-matrix models which
have been studied intensively are one dimensional. Their
Hamiltonians describe random hopping of a particle on a one-
dimensional lattice in a random on-site potential. The existence
of the Anderson transition in such one-dimensional systems is
related to the long-range nature of the hopping amplitudes. In
our recent work [14], we studied the scaling of the moments
of the eigenstates in a two-dimensional generalization of
the power-law banded random-matrix model [15,16]. In this
ensemble, the matrix elements of the Hamiltonian Hmn are
complex independent Gaussian random variables, whose mean
values are equal to zero and whose variances are determined
by the distance between sites of a two-dimensional lattice:

〈|Hmn|2〉 ≡ 1

1 + (|m − n|/b)4
, (1)

where m = (mx,my), n = (nx, ny), 1 � mα, nα � L are
two-dimensional vectors representing two sites on a two-
dimensional square lattice of size L × L, and b is a parameter
of the model. Thus the Hamiltonian is represented by a random
L2 × L2 matrix.

One natural way to convince oneself that this system is
critical is to study how the moments of its eigenfunctions
ψn(r) scale with the system size L. Namely, we define

Iq = Ld〈|ψn(r)|2q〉 ∝ L−dq (q−1), (2)

where d is the dimensionality of the space and the averaging
is performed over the ensemble as well as over a small energy
window. Trivial exponent values dq = 0 and dq = d signify
localized and extended states, respectively. For critical states,
0 < dq < d and what is more, dq generally depends on q,

indicating that the eigenfunctions are multifractal. The above
scaling of the moments of the eigenfunctions was obtained
analytically and confirmed by numerical simulations in various
critical random-matrix ensembles [7]. In particular, it was
found that in the power-law banded random-matrix model
dq � 1 when the bandwidth b � 1 (strong multifractality)
and d − dq � 1 when b � 1 (weak multifractality) [3,9].

One of the surprising features of the model (1) revealed in
Ref. [14] was the absence of a pure power-law scaling of the
moments of the eigenfunctions at b � 1. Instead of Eq. (2),
the scaling was surmised to be

Iq ∝ L−2(q−1) lnνq (q−1) L, (3)

where the exponents νq play the role of the anomalous fractal
dimensions d − dq and can be calculated perturbatively in a
similar way [14]. At the same time, the standard power-law
scaling (2) with dq � 1 was found at b � 1, in full analogy
with the one-dimensional version of the model.

The existence of two different scaling laws at large and
small values of b suggests that there should be a critical value
of b = bcr separating these two regimes. One of the aims of
the present paper is to show that such a critical value of b does
exist. While the model can be treated analytically at b � 1 or
b � 1, the existence of the transition between two regimes can
be investigated only with the help of numerical simulations.
These are more efficient for spectral properties rather than for
the statistics of the eigenvectors. For this reason, in the present
work we focus on studying the spectral compressibility.

The spectral compressibility χ is defined by the asymptotic
behavior of the level number variance:

〈δn2(E)〉 = 〈n2(E)〉 − 〈n(E)〉2 ≈ χ〈n(E)〉, 〈n(E)〉 � 1,

(4)

where n(E) is the number of eigenvalues in a spectral window
of the width E. It is well known that χ plays the role of a
critical exponent: χ = 0 in the metallic phase, χ = 1 in the
localized phase, and 0 < χ < 1 at criticality [7].

Our main results concerning the behavior of the level num-
ber variance and the compressibility in the two-dimensional
model (1) can be formulated as follows. The asymptotic
behavior of 〈δn2(E)〉 is described by Eq. (4) for all values
of b such that 0 � b � bcr. The spectral compressibility χ (b)
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is a monotonically decaying function of b with χ (0) = 1 and
χ (bcr) = 0. The latter equation is used as the definition of bcr.
At small values of b, χ (b) can be calculated perturbatively:

χ (b) = 1 − π2b2

√
2

+ O(b4). (5)

For b � bcr, spectral compressibility is equal to zero. The
level number variance in this case has the same asymptotic
behavior as in the Wigner-Dyson random-matrix theory:

〈δn2(E)〉 = 1

π2
[ln(2π〈n〉) + γ + 1] , 〈n〉 � 1, (6)

where γ is the Euler constant. Our analysis, based on numerical
simulations, shows that the transition between these two
regimes occurs at bcr = 5.2 ± 0.2.

The remainder of this paper has the following structure. In
Sec. II we present a derivation of Eq. (5) at b � 1 and confirm
the obtained result by numerical simulations. The opposite
case of b � 1 and the transition between the two phases are
considered in Sec. III. We summarize our results in Sec. IV.
Finally, the Appendix contains an alternative derivation of
Eq. (5), easily extended to the orthogonal symmetry class.

II. SPECTRAL COMPRESSIBILITY AT b � 1

A typical random matrix from the ensemble (1) has the
diagonal elements of order one and the off-diagonal elements
of order b. Thus, the off-diagonal elements are parametrically
smaller than the diagonal ones provided that b � 1. This al-
lows developing a perturbation expansion of the eigenfunction
moments, spectral compressibility, or any other quantity of
interest in a power series of b. In Refs. [9,17] this method
was applied to the calculation of spectral compressibility in
the one-dimensional power-law banded random-matrix model.
Below we use the same approach in the two-dimensional
model (1).

The zeroth order term in the expansion corresponds to a
pure diagonal random matrix, which has completely localized
eigenvectors and uncorrelated eigenvalues. As a result, χ = 1
in this case. The first order correction to this trivial result can
be found from the relation between χ and the form factor
K (1)(t,N ) [17]:

χ = 1 + lim
t→∞ lim

N→∞
K (1)(t,N ), (7)

where N is the matrix size, which is equal to L2 in our case,
and the form factor is calculated in the lowest order of the
perturbation theory. The general expression for the latter reads
[17–19]

K (1)(t,N ) = −2
√

π

t

∑
m�=0

x(|m|)e−x(|m|), (8)

x(|m − n|) = 1

2
〈|Hmn|2〉t2. (9)

Since we are interested in the limit N → ∞, the sum over m in
Eq. (8) can be replaced by a two-dimensional integral, which

FIG. 1. Level number variance as a function of the average level
number, for different values of b < 1 and L = 64.

can be transformed to the polar coordinates upon substitution
of 〈|Hmn|2〉 given in Eq. (1):

lim
N→∞

K (1)(t,N ) = −2π3/2t

∫ ∞

1
dr

re−{t2/[1+(r/b)4]}

1 + (r/b)4
. (10)

This integral can be evaluated in the limit t → ∞ by changing
the variable from r to s = b4t2/2r4:

lim
t→∞ lim

N→∞
K (1)(t,N ) = −π3/2b2

√
2

∫ ∞

0

e−s

√
s

= −π2b2

√
2

, (11)

leading to the formula announced in Eq. (5). The same
result can be obtained directly by calculating χ for a random
2 × 2 matrix, as shown in the Appendix. The corresponding
expression for χ in the orthogonal symmetry class (real
symmetric matrices) is also given there.

In order to test this prediction we performed numerical
simulations with random matrices generated according to
Eq. (1). The spectra of these matrices were obtained by
standard diagonalization subroutines [20], and the number of
realizations for each b was 20 000, 2000, and 500 for L = 64,
128, and 180, respectively.

The numerical findings for b < 1 are summarized in Figs. 1
and 2. The first one shows the level number variance 〈δn2(E)〉
as a function of 〈n(E)〉 for different values of b. The linear
behavior suggested by Eq. (4) is evident. Extracting the slopes
of the straight lines we obtain the numerical values for χ (b),
which are presented in Fig. 2. They are in good agreement
with our analytical prediction (5), which is valid only when
the absolute value of the perturbative correction (11) is much
smaller than one, i.e., b2 � √

2/π2 ≈ 0.14.

III. LEVEL NUMBER VARIANCE AT b � 1
AND THE TRANSITION POINT

To study the limit b � 1 we exploit the fact that in this
case the model can be mapped onto a nonlinear σ model [14].
In the σ -model description the key ingredient characterizing
a particular model is the propagator. In Ref. [14] it was found
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FIG. 2. Spectral compressibility as a function of b, obtained from
the slopes of the lines in Fig. 1. The data is presented for three different
system sizes. The error bars are smaller than the symbol sizes.

that the propagator of the two-dimensional model (1) is given
by


(k) = −π3

2

1

k2 ln bk
(12)

in the momentum space. Its eigenvalues determine various
spectral properties of the model [21,22]. In particular, they
allow us to calculate the two-level correlation function

R(ω) = �2

2π2
Re

∑
k

1
2b2

π2ν
k2 ln bk − iω

, (13)

where � is the mean level spacing, ν = 1/�L2 is the density
of states, and the sum runs over the discrete momenta
k = (2πmx/L,2πmy/L), mα ∈ Z. The two-level correlation
function allows us to find the derivative of 〈δn2(E)〉 [21],

d〈δn2〉
d〈n〉 = lim

L→∞

∫ 〈n〉

−〈n〉
ds R(s), s = ω/�. (14)

Substituting expression (13) into this formula and integrating
over s we obtain

d〈δn2〉
d〈n〉 = 〈n〉

(8πb2)2
lim

L→∞

∑
m

1

m4 ln2
(

2πbm
L

) + ( 〈n〉
8b2

)2 . (15)

Since the sum over m = (mx,my), mα ∈ Z converges and
each term with m �= (0,0) tends to zero in the limit L → ∞,
we conclude that only the zero mode k = 0 has a nonvanishing
contribution in the thermodynamic limit. It is well known that
the contribution of the zero mode of the σ model reproduces
the results of the Wigner-Dyson random-matrix theory [23].
Thus we must expect that in this regime 〈δn2(E)〉 is given by
the standard random-matrix theory result [24]:

〈δn2(E)〉 = 1

π2
[ln(2π〈n〉) + γ + 1] , 〈n〉 � 1. (16)

The absence of the linear in 〈n〉 term in this asymptotic law
implies that χ = 0, as one usually finds in the metallic phase.
We would like to point out that similar calculations for the
one-dimensional version of the model give a nonzero result

FIG. 3. Level number variance as a function of the average level
number, for different values of b > 1 and L = 64. Dots are numerical
data. The solid line at b = 5 is Eq. (16). The other solid lines are the
results of fitting the data with Eq. (17).

for χ [3,4]. It is the logarithmic term in the propagator (12)
that leads to the vanishing of χ . The same logarithmic term is
responsible for the unusual scaling behavior of the moments
of the eigenfunctions (3).

Figure 3 shows the results of numerical simulations for
b � 1. We observe a very good agreement between Eq. (16)
and the numeric data at b = 5. One can also see how the
behavior of 〈δn2〉 changes gradually from linear for small b

to logarithmic for large b. To quantify this change, as well as
to determine the transition point between the two regimes, we
assume that the most general functional form of 〈δn2〉 is given
by

〈δn2〉 = χ〈n〉 + a1

π2
ln(2π〈n〉) + a2, 〈n〉 � 1. (17)

This formula naturally interpolates between Eqs. (4) and (16).
Moreover, we note that Eq. (4) is never realized in its pure
form: there is always a subleading logarithmic term. If the
transition between the two regimes occurs at some finite value
of b = bcr, one should expect that χ decays as a function of b

and goes to zero at bcr.
Using χ , a1, and a2 as fitting parameters, we were able

to reproduce the behavior of 〈δn2〉 at intermediate values of
b as shown in Fig. 3. Moreover, the best-fit parameters for
large values of b are in agreement with Eq. (16). At b = 5,
for example, we find χ = 0.000 12 ± 0.000 16, a1 = 1.007 ±
0.007, and a2 = 0.1573 ± 0.003, while the standard random-
matrix theory prediction (16) corresponds to χ = 0, a1 = 1,
and a2 = 0.1598.

The values of χ , obtained in this way for different values
of b, are presented in Fig. 4. One can see that, indeed, χ

monotonically decreases as a function of b and becomes zero
within numerical accuracy for b � bcr. A close study of χ in
the interval 4.5 � b � 5.5 allowed us to determine the critical
value bcr = 5.2 ± 0.2.
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FIG. 4. Spectral compressibility as a function of b, extracted from
the data in Fig. 3 using Eq. (17). The error bars are smaller than the
symbol size.

IV. CONCLUSIONS

The random-matrix model described by Eq. (1) was studied
numerically in Refs. [15,16]. The results of those works
suggest that the model is critical at all values of b. All ana-
lytical and numerical findings known for the one-dimensional
counterpart of the model support the same expectation [3,7].

In this paper we show that the situation is actually more
subtle. For b � 1 we found the expected critical behavior,
characterized by a nonzero value of the spectral compress-
ibility (5). Also, the scaling of the eigenstates is the standard
power law (4) with nontrivial multifractal dimensions dq . For
b � 1, on the other hand, we obtained χ = 0. This is normally
a signature of the standard metallic phase corresponding to
completely extended states with dq = d. However, this is not
the case in our model, where the moments of the eigenstates
contain an additional anomalous part which scales as a power
of the logarithm of system size (3). Therefore, the phase at
b � 1 is not entirely metallic. We may say that it has some
traces of the critical behavior. We found that the transition
between the two phases—“critical” and “metallic-critical”—
occurs at bcr = 5.2 ± 0.2.

We believe that two important features of the model
are responsible for the emergence of the two phases: the
dimensionality d = 2 and the long-range nature of the
Hamiltonian (1). Recently, a similar behavior was predicted
for another two-dimensional long-range random Hamiltonian
[25]. Our results might also be relevant for other physical
systems characterized by the long-range hopping amplitudes
(see Refs. [9,15,26], and references therein).

Finally, we would like to point out that χ given in Eq. (5) and
d1 = √

2π2b2, as calculated in Ref. [14], satisfy the relation

χ + d1

d
= 1, (18)

which was suggested recently in Ref. [27] and verified for
various one-dimensional random-matrix models.
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APPENDIX: CALCULATION OF SPECTRAL
COMPRESSIBILITY AT b � 1

In the limit of an almost diagonal Hamiltonian Hij the
problem can be reduced to a 2 × 2 Hamiltonian [7]:

H2 =
(

ε1 bh

bh∗ ε2

)
, (A1)

whose eigenvalues λ± are the solutions of the characteristic
equation

(ε1 − λ)(ε2 − λ) − b2|h|2 = 0. (A2)

Both ε1,2 are Gaussian with variance σ 2. The density-density
correlator of this 2 × 2 matrix correlator near E = 0 is R(ω) =
1
4 〈δ(ω − λ+)δ(λ−)〉 . We are interested in the true density
correlator of the original large random matrix. Although
the correlators in these two cases are related, they are not
the same: it turns out that we need to double the 2 × 2
R(ω). Indeed, in a very large matrix diagonal matrix (the
limit b = 0) 〈ρ(ω)ρ(0)〉 = 〈ρ(ω)〉〈ρ(0)〉, whereas in the 2 × 2
matrix the right-hand side contains a coefficient 1/2. Doubling
the correlator, we have

R(ω) = 1

8πσ 2

〈∫
e−[(ε2

1+ε2
2 )/2σ 2]δ(ω − λ+)δ(λ−)dε1 dε2

〉
h

,

(A3)

where 〈 〉h is the average over the off-diagonal elements. Using
Eq. (A2) we can change the integration variable ε1 → λ−.
One integral is then removed by δ(λ−). The other δ function
ensures ε2 + b2|h|2

ε2
= ω, which can be used in the exponential.

Afterward it becomes clear that the exponential can be
neglected, as long as we are working in an energy window
ω � σ . In this limit,

R(ω) = 1

4πσ 2

〈 |ω|√
ω2 − 4b2|h|2

1|ω|>2b|h|

〉
h

. (A4)

The average density of states at E = 0 is given by a simpler
and similar calculation: 〈ρ(0)〉 = 1√

2πσ 2
. Knowing the density

correlator in the 2 × 2 case, we can find the leading order of
the density correlator in the original large system by replacing
bh with the off-diagonal elements Hij and introducing the
summation over i,j . Then we can substitute the connected
correlator into Eq. (14). As a result,

χ = 1 − lim
〈n〉→∞

(
2〈n〉 − 2〈n〉

N2

×
∑
i �=j

〈√
1 − 2N2

π〈n〉2

1

σ 2
|Hij |21|Hij |2<πσ 2(〈n〉2/2N2)

〉)
.

(A5)
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This result is general—valid for any dimensionality and for
any symmetry class. Note that each term of the sum is
an independent random variable and so can be averaged
separately. Performing the averaging in the unitary case, we
obtain χ = 1 − lim〈n〉→∞ I , where

I (U ) =
∑
r,r′

√
2ar,r′

N
exp

(
− π〈n〉2

2a2
r,r′N2

)
erfi

(√
π

2

〈n〉
ar,r′N

)
.

(A6)

Here we used the standard notation for the variance 〈|Hr,r′ |2〉 =
a2

r,r′ . In our 2D system it is sufficient to set ar,r′ = b2

|r−r′|2 .
To simplify the calculation, we can imagine that our system
occupies a very large disk of radius R (so that N = πR2),
replace summation with integration over r and r′ and subse-
quently change the integration variables to r − r′ and r + r′.

The integrals can be computed in polar coordinates. The
first integration depends weakly on the large upper limit and
so we can set it to R. Afterward the integrand does not
depend on r + r′, making the second integration trivial. The
result is

I (U ) ≈ 2〈n〉 pFq

(
1

2
,1;

3

2
,
3

2
; − 〈n〉2

2πb4

)
. (A7)

Taking the large 〈n〉 limit,

χ (U ) = 1 − π2b2

√
2

+ O(b4). (A8)

The case of the orthogonal symmetry is treated in precisely
the same way, starting from Eq. (A5). There we obtain

χ (O) = 1 − 2πb2 + O(b4). (A9)
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