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Generalized Lyapunov exponents of the random harmonic oscillator: Cumulant expansion approach
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The cumulant expansion is used to estimate generalized Lyapunov exponents of the random-frequency
harmonic oscillator. Three stochastic processes are considered: Gaussian white noise, Ornstein-Uhlenbeck, and
Poisson shot noise. In some cases, nontrivial numerical difficulties arise. These are mostly solved by implementing
an appropriate importance-sampling Monte Carlo scheme. We analyze the relation between random-frequency
oscillators and many-particle systems with pairwise interactions like the Lennard-Jones gas.
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I. INTRODUCTION

Lyapunov exponents quantify sensitivity to initial con-
ditions in dynamical systems. The existence of a positive
Lyapunov exponent implies that trajectories initially close
in phase space will typically diverge exponentially fast in
time. In practice, this sets a limit for predicting the future
behavior of the system, because small imprecisions in the
knowledge of the initial state will be amplified at a rate given by
the largest Lyapunov exponent. Even if determinism subsists
on a short time scale, on longer time windows the system
exhibits features of randomness. This property lies at the basis
of the statistical description of many-particle deterministic
systems, hence the interest in analytical estimates of Lyapunov
exponents in simple statistical-mechanics models.

The theory of Lyapunov exponents of hard-ball systems
has a long history. It started with the pioneering work of
Krylov [1,2], was rigorously developed by Sinai [3] and
collaborators, and completed (to some extent) by van Beijeren,
Dorfman, and co-workers [4–8]. The analytical calculation of,
e.g., the largest Lyapunov exponent of a dilute rigid-sphere gas,
is based on the fact that the dynamics consists of free rectilinear
motions interrupted by instantaneous elastic collisions [6];
the expressions so obtained agree quantitatively with the
numerical experiments [6,9,10].

The case of a dilute gas with finite-range interactions can
be handled in close analogy with the rigid-sphere problem:
Though the collisions are not trivial any more, the dynamics
is still ruled by occasional pairwise encounters [6,11,12].
However, when one considers long-range interactions (or
short-range interactions and high densities), the theoretical
approach must be substantially modified.

In the general case, we must deal with the full system
of coupled differential equations that govern the evolution of
multidimensional tangent vectors η(t). Consider for instance
a gas of N particles in three dimensions described by the
Hamiltonian

H =
3N∑
i=1

p2
i

2m
+ V(q1, . . . ,q3N ), (1)
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where qi and pi , are conjugate position-momentum coordi-
nates. Assuming m = 1, tangent vectors evolve according to

η̇ =
(

0 1
−V(t) 0

)
η (2)

(dot meaning time derivative), where V is the Hessian matrix
of the potential V , namely

Vij = ∂2V
∂qi∂qj

. (3)

The Hessian depends explicitly on time, because it is calculated
along a reference trajectory q(t). Once initial conditions
z0 = (q0,p0) and η0 have been specified, one can find η(t)
from Eq. (2). Then the Lyapunov exponent λ is obtained by
calculating the limit [13]

λ = lim
t→∞ λ (t ; z0,η0) , (4)

where

λ (t ; z0,η0) = 1

t
ln |η(t ; z0,η0)|. (5)

The finite-time Lyapunov exponent λ (t ; z0,η0) depends on the
initial conditions z0 and η0. However, assuming ergodicity on
the energy shell, λ becomes independent of z0, which can then
be chosen randomly, e.g., according to the microcanonical
distribution. There will also be no dependence on initial
tangent vectors, because if η0 is also chosen randomly, it will
always have a nonzero component along the most expanding
direction. In spite of being redundant, the averaging over z0

and η0 permits us to treat equations (2) formally as a system of
stochastic differential equations [14]. So, in this “stochastic”
approach one attempts the analytical estimation of the average

λ = lim
t→∞

1

t
〈ln |η(t ; z0,η0)|〉. (6)

This is a hard task, however. It is much simpler to evaluate the
generalized Lyapunov exponent [15,16]

λ2 = lim
t→∞

1

2t
ln〈|η(t ; z0,η0)|2〉 (7)

and assume it approximately coincides with the standard
Lyapunov exponent, which is justified in the absence of
intermittency [16].
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Moreover, if the Hamiltonian of the system can be
decomposed as some “free” part plus weak interactions,
then perturbative techniques, like the cumulant expansion
[14,17,18], can be invoked. This is essentially the approach
followed by Barnett et al. [19–21], Pettini et al. [22–24], and
the present authors [25–27]. Though there are some differences
among the formulations of the three groups above, it may be
said that the main theoretical conclusion extracted from that
body of work is the following. As far as λ2 is concerned, if one
combines the cumulant expansion with some kind of isotropy
approximation (which may be fully justified in some cases), the
original problem of 6N differential equations can be reduced
to a system of only two equations for a “representative” single
degree of freedom:

(
η̇1

η̇2

)
=

(
0 1

−κ(t) 0

) (
η1

η2

)
. (8)

In this kind of mean-field approximation, the “curvature” κ(t)
is a scalar stochastic process, whose cumulants can be related
to the operator cumulants of the Hessian V(t) (see, e.g.,
Ref. [25]).

The comparison of theoretical results obtained with the
cumulant expansion—truncated at the second order—versus
numerical simulations has met mixed success. The agreement
is very good for some many-particle systems with bounded
weak interactions [26,27] and for the Fermi-Pasta-Ulam
system [24]. On the other side, the results for the 1d-XY

model [24] and for a dense one-component plasma [19,28]
are not so satisfactory.

Anyway, the mentioned tests, which compare theoretical
estimates for λ2 against numerical calculations for λ, should
be taken with some reservations: (a) Pettini et al. did
not check if the approximate equality λ ≈ λ2 indeed holds
[22–24]. Moreover, their theory includes a fitting parameter
[the correlation time of the process κ(t)]. Then, it may
happen that the theory really agrees with the simulations,
or, alternatively, it may be the case of a disagreement that
is compensated by a suitable choice of the correlation time.
(b) The authors of Refs. [25–27] derived Eq. (8) from first
principles (no fitting parameters) and verified numerically that
λ ≈ λ2 holds in their tests. However, they used a simple (“brute
force” [29]) Monte Carlo sampling for doing the average (7).
And it is known (e.g., Ref. [29]) that simple samplings tend to
produce wrong estimates of generalized Lyapunov exponents

λQ = lim
t→∞

1

Qt
ln〈|η(t ; z0,η0)|Q〉. (9)

The larger the value of Q, the stronger this spurious effect.
(Consistently, there are no difficulties in the numerical calcu-
lation of the standard λ, given that λQ → λ for Q → 0.)

In conclusion, if one wants to assess the quality of theoret-
ical predictions unabiguously, then it is necessary to develop
trustable Monte Carlo algorithms for the calculation of λQ. An
importance-sampling [30] algorithm was recently proposed by
Vanneste for calculating λQ in stochastic dynamical systems.
The algorithm was shown to perform efficiently for white
noise and Q not too large [29]. (This algorithm is essentially

equivalent to that presented by Tailleur and Kurchan in
Ref. [31]; see also Ref. [32].)

The present work is part of a larger project that aims at
defining the limits of validity of the cumulant approach for the
Lyapunov exponent of many-particle Hamiltonian systems.
We start our investigations with the simplified mean-field
setting (8). This is the simplest possible case having the same
formal structure as the many-body problem. By choosing κ(t)
to be a stochastic process, we shall be able to use importance
sampling in the numerical calculations. For several choices of
κ(t), we shall both analyze the performance of the cumulant
expansion and test the numerical algorithms.

It has been argued [24] that, for typical chaotic many-body
systems, κ(t) should be close to Gaussian white noise; this
is the first case we shall consider. For Gaussian white noise,
the second-order cumulant expansion for λ2 is exact, thus this
case is ideally suited for analyzing the difficulties that appear
in the numerical calculation of λ2 (Sec. IV).

Next, we keep the Gaussian and Markov properties but
allow for finite correlation times, leading to the Ornstein-
Uhlenbeck process. In this case, we calculate the fourth
cumulant contribution to λ2. This test will give us some idea of
(i) the convergence rate of the cumulant expansion, and (ii) the
performance of the importance-sampling method for colored
noise (Sec. V).

Lastly, we study the situation of κ(t) being Poisson white
shot-noise. This appears to be the appropriate choice for
modeling the tangent-vector dynamics in dilute gases with
short-range interactions. Like in the case of Gaussian white
noise, here we have analytical expressions for the generalized
exponents λ2, λ4, λ6, etc. So, this case will provide an
opportunity for further testing of the numerical algorithm.
At the same time it will be helpful for characterizing the
distribution of finite-time Lyapunov exponents, e.g., when is
this distribution approximately Gaussian? (See Sec. VI).

Section II contains a short review of the cumulant expansion
as applied to the determination of some generalized Lyapunov
exponents. In Sec. III, we describe the three Monte Carlo
methods considered in this paper: simple, simple-Gaussian,
and importance-sampling. Section VII presents a summary of
our results and the final remarks.

Before proceeding to the bulk of the paper, let us comment
that the random oscillator of Eq. (8) is formally equivalent to
the Schrödinger equation for a particle in a disordered potential
(Anderson localization problem in one dimension). Thus many
useful results related to random oscillators can be found in the
condensed-matter literature [33–41].

II. CUMULANT EXPANSION FOR THE KUBO
OSCILLATOR

Equation (8) describes a harmonic oscillator with a random
frequency ω such that ω2 = κ (Kubo oscillator). It is worth
extending this model a bit to account for the possibility of
damping, i.e., we shall consider an oscillator described by the
first-order equations

q̇ = p, ṗ + αp + κq = 0. (10)
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Let us make the identifications q = η1, p = η2.1 Then, putting
α = 0, we recover (8).

Some analytical results for the Lyapunov exponent of the
Kubo oscillator (10) can be found in the literature (see, e.g.,
Refs. [42–44]). Here we shall concentrate on the generalized
exponent λ2. For this purpose, we must consider the dynamics
of second-order products:

d

dt

⎛
⎝ q2

p2

qp

⎞
⎠ =

⎛
⎝ 0 0 2

0 −2α −2κ

−κ 1 −α

⎞
⎠

⎛
⎝ q2

p2

qp

⎞
⎠ ≡ B(t)

⎛
⎝ q2

p2

qp

⎞
⎠ .

(11)

Let us assume that both parameters α and κ are stationary
stochastic processes. If fluctuations are small enough (in a
sense that will be discussed later), one can obtain dynamical
equations for the second-order averages using the cumulant
expansion [14]. Splitting the stochastic matrix as an average
plus fluctuations,

B(t) = B0 + B1(t), (12)

it can be shown that for long times one has [14]:

d

dt

〈(
q2

p2

qp

)〉
= K

〈(
q2

p2

qp

)〉
, (13)

where K is the 3 × 3 matrix given by the operator cumulant
expansion [14]

K = B0 +
∫ ∞

0
〈B1(τ )eB0τ B1(0)〉e−B0τ dτ + · · · . (14)

Ellipsis stand for third and higher cumulants (some explicit
expressions can be found in Ref. [18]). The exponent λ2 is
related to the eigenvalue of K that has the largest real part:

λ2 = 1
2 max Re {k1,k2,k3} , (15)

with ki the eigenvalues of K.
Starting from the evolution equations for higher-order

products [analogous to Eq. (11)] and repeating the same steps
above, one can derive the corresponding expressions for λ4,
λ6, etc. Of course, the algebraic difficulties increase with the
order of the exponent.

III. NUMERICAL METHODS

The numerical evolution of Eq. (10) was performed by
means of the Euler algorithm with time step dt = 10−3 (some
higher-order algorithms [45] were tested, but did not lead to
substantial improvements). A set of trajectories is generated by
randomly choosing (q0,p0), α(t), and κ(t). For each trajectory,
we computed the norm |η(t)| =

√
q2 + p2 as a function of

1The equations of motion of the random harmonic oscillator being
linear, phase space and tangent space can be identified. Accordingly,
the Lyapunov exponent equals one half the average rate of energy
growth.

time. The Lyapunov exponent is then approximated by the
average of finite-time exponents:

λ ≈ 〈λ(t ; ζ0)〉 =
〈

1

t
ln |η(t ; ζ0)|

〉
. (16)

The operation 〈· · ·〉 means averaging over a certain number
of realizations of the pseudorandom variables (compactly
denoted by ζ0) that determine the trajectories. Time t must
be large enough to assure the convergence of the average to
the desired precision.

In principle, we could use the same scheme as before for
estimating generalized exponents, i.e.,

λQ ≈ 1

Qt
ln〈|η(t ; ζ0)|Q〉 = 1

Qt
ln〈eQtλ(t ;ζ0)〉, (17)

the last equality following from (16). However such a simple
averaging tends to underestimate rare events. Hence, spurious
results are expected whenever the distribution P (λt ) does not
decay fast enough [29,41,46]. A somewhat better alternative
is, instead of straightforward averaging, to estimate the
generalized exponent from the first terms of the series:

λQ ≈
∑
n�1

(Qt)n−1

n!
κn(t), (18)

where κn are the nth-order cumulants of P (λt ) [47] [not to
be confused with the operator cumulants of Eq. (14)!]. In
principle, these cumulants could be estimated numerically.
However, for the samples we considered, third and higher
cumulants are typically rather unstable [46]. So, it is practically
impossible to assess the convergence of the expansion (18). For
this reason, cumulants κn, with n � 3, will not be included in
our calculations. Thus one arrives at [47–49]

λQ ≈ λ + 1
2Qtκ2(t). (19)

[If P (λt ) is Gaussian, this expression is exact.] We call the
procedure leading to Eq. (19) simple Gaussian averaging.
From Eq. (19), one can derive approximate expressions for
the standard Lyapunov exponent, the simplest one being

λ ≈ 2λ2 − λ4. (20)

Conversely, when λ,λ2,λ4 are known, the deviation from
equality in the formula above provides a measure of the
non-Gaussianity of P (λt ).

When the tail of P (λt ) is essential for the determination of
λQ and it is not Gaussian, the approximations (17) and (19) are
bound to fail. In this case, one must resort to numerical methods
capable of sampling the relevant part of the distribution P (λt ).
The importance-sampling Monte Carlo algorithm recently
proposed by Vanneste is especially suited for our needs.
The algorithm, both efficient and easy to implement, uses
a simple random resampling step: those trajectories which
contribute the most (least) to the average are cloned (pruned)
with a large probability [29]. Namely, at resampling times, a
given trajectory is substituted by trajectory j with probability
|ηj |Q/

∑
k |ηk|Q, so that the total number of samples N is

conserved (see Ref. [29] for a detailed pseudocode). Having
presented the theory and the numerical methods, we are ready
to proceed with the comparisons.

021124-3
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IV. GAUSSIAN WHITE NOISE

Only when the matrix stochastic process B1 is Gaussian
and delta-correlated does the cumulant expansion stop at the
second order, i.e., Eq. (14) without the ellipsis becomes exact
[18]. This is the case we consider now. (Stochastic differential
equations with multiplicative white noise will always be taken
in the Stratonovich sense.)

A. Random frequency

Let us first study the situation where the damping α is a
constant and

κ(t) = κ0 + ξ (t), (21)

where ξ (t) is a zero-mean Gaussian white noise with correla-
tion function

〈ξ (t)ξ (t ′)〉 = �δ(t − t ′). (22)

With these definitions one has

B =
⎛
⎝ 0 0 2

0 −2α −2κ0

−κ0 1 −α

⎞
⎠ + ξ (t)

⎛
⎝ 0 0 0

0 0 2
1 0 0

⎞
⎠ . (23)

After substitution into Eq. (14) we readily obtain

K =
⎛
⎝ 0 0 2

� −2α −2κ0

−κ0 1 −α

⎞
⎠ . (24)

The generalized exponent λ2 can now be calculated from
Eq. (15). A closed expression for the standard Lyapunov
exponent was derived by Mallick and Peyneau [42]. As an
example, we display in Fig. 1 analytical and numerical results
for both exponents. Given that the theoretical expressions
are exact, this comparison constitutes a rigorous test for the
numerical methods. We see that, even for relatively small
samples, the importance-sampling calculation agrees perfectly
with the theory. The Gaussian sampling, though not perfect,
provides a reasonably good approximation.

Clearly both exponents, λ2 and λ, do not coincide. This
is to be expected whenever fluctuations in the frequency and
damping are large as compared to their average values [37,47].

The higher-order exponents λ2J , with J = 2,3, . . ., are
obtained by diagonalizing matrices of size 2J − 1. Such
matrices describe the evolution of the moments 〈qnpm〉, with
m + n = 2J , and have simple analytical expressions [37,47].
An example involving a higher-order exponent will be shown
in Sec. VI.

B. Random damping

Now we consider a harmonic oscillator with constant
frequency but in an environment with a fluctuating damping
coefficient

α(t) = α0 + ξ (t), (25)

Δ
0 10 20 30 40 50

0

1

2 α = 0 
α = 1

λ

λ2

FIG. 1. Lyapunov exponents versus noise strength for the har-
monic oscillator with random frequency. Symbols correspond to
numerical results for λ (small circles) and λ2 (large circles:
importance-sampling; triangles: simple Gaussian sampling). Two
values of the damping constant were used: α = 0 (hollow symbols)
and α = 1 (filled symbols). In both cases, κ0 = 1. In all cases, we
averaged over 103 trajectories. Resampling time was set to tres = 1.0.
Lines correspond to exact theoretical expressions.

where ξ (t) is again zero-mean Gaussian white noise, with a
correlation given by Eq. (22). Now the matrix B is decomposed
as

B =
⎛
⎝ 0 0 2

0 −2α0 −2κ

−κ 1 −α0

⎞
⎠ + ξ (t)

⎛
⎝ 0 0 0

0 2 0
0 0 1

⎞
⎠ . (26)

Hence, substitution into Eq. (14) yields

K =
⎛
⎝ 0 0 2

� −2α0 + 2� −2κ

−κ 1 −α0 + �/2

⎞
⎠ . (27)

Upon diagonalizing K, we obtain λ2. Figure 2 presents the
comparison of numerical and analytical results for λ and λ2

as the noise intensity is varied (exact theoretical results for λ

were extracted from Ref. [43]).
Concerning the numerical calculation of λ2, besides noting

the excellent agreement with the theory, it must be said that
the importance-sampling method behaved in a very robust way
both for random frequency and random damping. Changing
sample size, simulation time, and resampling time tres [29]
within reasonable limits did not appreciably affect the result
for λ2. However, if one increases tres beyond certain bounds,
then the method becomes inefficient, as very large samples are
necessary to guarantee convergence to the correct results.

V. CORRELATED NOISE

For white noise fluctuations, either in the frequency or in
the damping, we have verified in the previous section that the
theory for λ2 is in agreement with numerical results, provided
the latter are obtained using importance sampling. Now we
shall analyze the effect of introducing noise correlations. We
consider the case of a random frequency, as in Eq. (21), but
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α0 = 1

0.0

1.0

2.0

3.0

4.0

λ

λ2

α0 = 4

Δ
0 1 2 3 4 5

-0.5

0.0

0.5

1.0

λ

λ2

FIG. 2. Lyapunov exponents vs noise strength for the harmonic
oscillator with random damping. Lines represent exact theoretical
results. Symbols correspond to numerical calculations for λ2 (large
circles) and λ (small circles). Importance-sampling Monte Carlo was
used in the case of λ2. We chose two values for the average damping
coefficient: α0 = 1 (top panel), α0 = 4 (bottom panel). In both cases,
κ = 1. In all cases, we averaged over 103 trajectories. Resampling
time was set to tres = 0.2.

now the noise is a zero-mean Ornstein-Ulhenbeck process, i.e.,
with correlation function

〈ξ (t)ξ (t ′)〉 = �

2τ
exp(−|t − t ′|/τ ) ≡ σ 2 exp(−|t − t ′|/τ ).

(28)

For simplicity, we set α = 0 and κ0 = 0. By inserting (23) into
(14), the second-cumulant matrix becomes

K(2) =
⎛
⎝ 0 0 2

� −2�τ 2 0
�τ 1 −2�τ 2

⎞
⎠ . (29)

Notice that in the limit τ → 0, the white-noise case is
recovered.

In the presence of correlations, the second-order truncation
of the cumulant expansion (14) is not exact. In order to improve
the theory, one must calculate higher cumulants. For the
present case, the third cumulant is null. Explicit expressions for
the fourth cumulant were given by Fox [18], Breuer et al. [50],
and Tessieri [36]. A somewhat lengthy calculation (sketched in
Appendix A) leads to the following result for the fourth-order
approximation to K:

K(4) = K(2) + 1

2
�2τ 3

⎛
⎝ 0 0 0

13 74τ 2 −57τ

17τ 173τ 3 −99τ 2

⎞
⎠ . (30)

Δ
0.001 0.01 0.1 1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

λ

λ2

FIG. 3. (Color online) Harmonic oscillator with correlated ran-
dom frequency. Symbols indicate numerical results for λ2 (full
circles) and λ (hollow circles) as a function of the noise amplitude �

(averages over 104 trajectories). Parameters are α = 0, κ0 = 0, and
τ = 1. Resampling time was set to tres = 20. Solid lines correspond
to theoretical results. For λ2 we used the cumulant expansion blue
(middle solid line): truncation at the second cumulant; dark blue (top
solid line): including the fourth cumulant. An approximate analytical
expression for λ (red) is also shown.

The comparison between numerical and theoretical results for
λ2 is presented in Fig. 3. For completeness, we also show
numerical calculations of the standard Lyapunov exponent,
together with an approximate theoretical expression obtained
along the lines of Ref. [42] (see Appendix B).

We see in Fig. 3 that the inclusion of the fourth cumulant
contribution noticeably extends the domain of validity of the
theory into the region of larger noise amplitudes (with respect
to the second-order approximation). Higher cumulants can
also be calculated, but the required effort quickly becomes
unbearable. For instance, the sixth cumulant demands the
calculation of more than 100 terms (see Appendix A). Anyway,
the theory being perturbative, by increasing the amplitude of
the noise and/or the correlation time, one eventually arrives at
a point were the cumulant expansion completely breaks down.

The perturbation parameter controlling the convergence
of the cumulant expansion is the so-called Kubo number
ε. General considerations led van Kampen [14] to conclude
that the Kubo number is the product of the amplitude of the
fluctuations and the correlation time, that is στ . However,
in the present case it is clear that such a combination is not
adimensional. The correct Kubo number is instead

ε = στ 2 =
√

�τ 3

2
. (31)

This can be checked explicitly from the second and fourth
cumulants above. Consider, for instance, the element K21,
which dominates the Lyapunov exponent for small correlation
times:

K21 = � + 13
2 �2τ 3 + · · · = �

(
1 + 13

2 �τ 3 + · · · ). (32)

In the white-noise limit, i.e., τ → 0 with � fixed, the Kubo
number tends to zero—as it should be.

On the numerical side, we comment that for large noise
amplitudes the convergence to the limiting values is much
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slower than in the white-noise cases. The points in Fig. 3
were obtained by a double limiting procedure. For a fixed
resampling time tres, we increased the number of samples
until convergence was reached. Then we iterated the scheme
for increasing values of tres until a stable value for λ2 was
obtained. The larger the resampling time, the larger the number
of samples to keep the error within the chosen bounds.

VI. POISSON SHOT NOISE

In a dilute gas with short-range interactions, phase-space
coordinates evolve trivially in between collisions. During colli-
sions, positions remain essentially unchanged while momenta
experience sudden jumps. The same description applies to
tangent-space coordinates. Thus, in a mean-field setting, the
tangent dynamics of a representative (effective) particle is
described by Eq. (8), the stochastic frequency corresponding
to Poisson shot noise [51–58]:

κ(t) =
∑

i

Aiδ(t − ti). (33)

Neglecting correlations among collisions, the amplitudes Ai

will be modeled by independent stochastic variables (iden-
tically distributed). Accordingly, the succession of collision
times {ti} constitutes a Poisson process.

The random oscillator (8) with Poisson frequency (33) was
solved by van Kampen [56] (including damping and additive
noise). He derived an exact integro-differential equation for the
probability distribution P (q,p,t) from where the evolution of
the moments 〈qnpm〉 can be systematically obtained [56]. For
the second moments, one gets

d

dt

⎛
⎝ 〈q2〉

〈p2〉
〈qp〉

⎞
⎠ =

⎛
⎝ 0 0 2

ρ〈A2〉 0 −2ρ〈A〉
−ρ〈A〉 1 0

⎞
⎠

⎛
⎝ 〈q2〉

〈p2〉
〈qp〉

⎞
⎠ , (34)

where ρ is the collision frequency.
Remarkably, the expression above can be shown to coin-

cide with the result of the second-order cumulant approach
(13),(14). However, the higher-order cumulants of κ(t) are
not null, rather, they are delta-correlated [54–56], but they
do not affect the asymptotic growth of the second moments.
The equations for the fourth moments 〈q4〉, 〈p4〉, 〈q2p2〉,
〈q3p〉, 〈qp3〉 can also be calculated without much effort. The
corresponding matrix reads⎛

⎜⎜⎜⎝
0 0 0 4 0

ρ〈A4〉 0 6ρ〈A2〉 −4ρ〈A3〉 −4ρ〈A〉
ρ〈A2〉 0 0 −2ρ〈A〉 2
−ρ〈A〉 0 3 0 0
−ρ〈A3〉 1 −3ρ〈A〉 3ρ〈A2〉 0

⎞
⎟⎟⎟⎠ , (35)

from which one extracts the fourth-order generalized exponent
λ4.

Figure 4 shows that, when importance sampling is used, the
agreement between theory and numerics is excellent. On the
other side, simple sampling (plus a Gaussian approximation)
leads to deviations from the theory, which become stronger
as collision frequency (“density”) is lowered. Of course, this
disagreement is a consequence of the non-Gaussianity of the
distribution of finite-time Lyapunov exponents, and can also be

ρ
10-2 10-1 100 101

10-2

10-1

100

λ
λ2 (I.S.)

λ2 (Gauss)

λ4 (I.S.)

λ4 (Gauss)

λ2 (theo.)

λ4 (theo.)

2λ2−λ4

FIG. 4. (Color online) Harmonic oscillator with Poisson-shot-
noise frequency. We show the Lyapunov exponents λ, λ2, and λ4

as a function of collision frequency ρ. Red (top solid line) and
blue (middle solid line) indicate theoretical estimates for λ4 and
λ2, respectively, and the corresponding symbols stand for numerical
calculations using either simple-Gaussian sampling (open symbols)
or importance sampling (full symbols). Also shown is the theoretical
result for 2λ2 − λ4 (black line), which is an estimate of the standard
Lyapunov exponent λ (circles, numerical).

observed when comparing λ vs 2λ2 − λ4 (this can be thought
of as a failure of the replica trick [16,59] in its crudest version).

The full characterization of the non-Gaussianity of P (λt )
requires, in principle, the knowledge of all cumulants κn(t),
with n � 3. However, when the cumulant series is rapidly
converging, non-Gaussianity can be characterized by the
usual indicators: skewness (κ3/κ

3/2
2 ) and kurtosis (κ4/κ

2
2 )

(see [46,47] for examples). We conclude this section by noting
that the numerical method worked satisfactorily, the relation
between parameter values and efficiency being similar to the
white-noise cases analyzed in Sec. IV.

VII. FINAL REMARKS

The random harmonic oscillator serves as a model for a
variety of important physical problems: from the broadening of
resonance lines and relaxation, studied by Kubo in the 1950’s
(see e.g., Ref. [60]), to Anderson localization in one dimension.
In the present paper, we viewed the random oscillator as a
model for studying the sensitivity to perturbations of many-
particle systems (in a mean-field approach). In spite of its rela-
tive simplicity, this model already exhibits some of the essen-
tial features and characteristics of high-dimensional systems.

Specifically, we were able to assess the performance of the
importance-sampling approach for the numerical calculation
of generalized Lyapunov exponents. In all the considered
cases—some of which were unaccessible by standard sam-
pling methods—we confirmed that the method works satis-
factorily, and developed some intuition about the appropriate
values of the parameters (i.e., resampling time and number of
samples) that result in a faster convergence.

On the theoretical side, we carried out several tests of the
cumulant approach in nontrivial cases, i.e., for frequencies
corresponding to Ornstein-Uhlenbeck and Poisson processes.
In particular, we identified the correct perturbative parameter
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(Kubo number) and, not unsurprisingly, verified that the
second-order truncation of the cumulant series gives the exact
second-order generalized exponent λ2 for the case of Poisson
shot noise.

Concerning the application of the cumulant approach to
dilute gases, we note that in this case the tangent dynamics
can be thought to be driven by multivariate Poisson noise.
Accordingly the second-order truncation could indeed produce
the exact λ2 as in the one-dimensional problem. However, the
verification of this expectation would require the numerical
calculation of λ2 for a Hamiltonian, i.e., nonstochastic, system.
In order to implement an importance-sampling algorithm
for this case, one should somehow introduce noise in the
dynamics, then calculate λ2 as a function of the noise intensity,
and extrapolate the results to zero noise [31,32,61]. Several
ideas for constructing an efficient algorithm are currently under
investigation.
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APPENDIX A: FOURTH CUMULANT

Here we briefly describe the calculation of the fourth-
cumulant contribution to the generalized Lyapunov exponent
of the Ornstein-Uhlenbeck oscillator, i.e., the rightmost term
in Eq. (30). In general, this contribution reads [18,36,50]:

K4(t) ≡ K(4) − K(2) = eB0tQ4(t)e−B0t , (A1)

where

Q4(t) =
∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3(〈B̃1(t)B̃1(t1)B̃1(t2)B̃1(t3)〉

− 〈B̃1(t)B̃1(t1)〉〈B̃1(t2)B̃1(t3)〉
− 〈B̃1(t)B̃1(t2)〉〈B̃1(t1)B̃1(t3)〉
− 〈B̃1(t)B̃1(t3)〉〈B̃1(t1)B̃1(t2)〉), (A2)

with

B̃1(t) = e−B0tB1(t)eB0t . (A3)

For the large times we are interested in, i.e., t 
 τ , K4(t)
becomes time independent. Next we note that matrices B̃1 are
proportional to the scalar Ornstein-Ulhenbeck process ξ (t). So,
one must only calculate two- and four-time correlators of ξ (t).
By virtue of the Gaussian property [62], the four-time correla-
tor is expressible as a sum of products of two-time functions
(28). Finally, one calculates the triple integrals and takes the
limit t → ∞ (with the help of an appropriate software, e.g.,
Mathematica [63]), arriving thus at the desired result (30).

APPENDIX B: LYAPUNOV EXPONENT

Here we sketch the steps leading to the approximate ex-
pression for the Lyapunov exponent (of the random-frequency
Ornstein-Ulhenbeck oscillator) that is plotted in Fig. 3. We
have simply adapted the calculations of Mallick and Peyneau
[42] to the case κ0 = 0.

In the absence of damping, the Lyapunov exponent can be
obtained as [42]

λ = lim
t→∞

1

2t
〈ln(q2 + q̇2)〉 (B1)

= lim
t→∞

1

2

d

dt
〈ln(q2 + q̇2)〉 (B2)

= lim
t→∞

(
〈y〉 + 1

2

d

dt
〈ln(y2 + 1)〉

)
(B3)

= lim
t→∞〈y〉, (B4)

where y = q̇/q. From Eq. (8) one sees that y obeys the
following nonlinear equation

ẏ = −y2 + η(t). (B5)

We will first find the exact expression for λ when the noise is
white (intensity �). In this case, the associated Fokker-Planck
equation for P (y,t), i.e.,

∂tP = ∂y(y2P ) + �

2
∂yyP, (B6)

has the following steady-state solution:

Pss(y) = Ne−2y3/(3�)
∫ y

−∞
e2x3/(3�)dx, (B7)

where N is a normalization constant. By averaging over the
steady state, we obtain

λw(�) =
∫ ∞

−∞
dyyPss(y) =

√
π

�
(

1
6

) (
3�

4

) 1
3

� 0.2893�1/3.

(B8)

In the case of an arbitrary correlation time τ , by using a
mean-field approximation (“decoupling ansatz” [42]), one can
derive the following equation for λ:

λ(�,τ ) � λw

(
�

1 + 2τλ(�,τ )

)
. (B9)

So the final result comes in the form of an implicit equation:

λ(�,τ ) � 0.289

(
�

1 + 2τλ(�,τ )

) 1
3

. (B10)

This approximate relation slightly underestimates the numer-
ical results of Fig. 3.
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