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Nonequilibrium phase transition of contact processes with the Kauffman N K model
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We consider a multistate contact process (CP) in which new particles are created with probabilities that depend
on the fitness of the parent particle and with mutations that occur at the time of creation. The fitness is determined
by the Kauffman NK model. Using Monte Carlo simulations, we show that such an evolutional CP exhibits
critical behaviors that differ from the basic CP. In addition, we present numerical results suggesting that the
fitness averaged over surviving particles exhibits a maximum value at the critical point.
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I. INTRODUCTION

The contact process (CP), which was originally introduced
as a prototype model for the spread of epidemics [1], is one
of the best known nonequilibrium many-particle systems that
exhibit a dynamical phase transition [1–4]. In a CP, a particle
either creates a new particle with probability p at a randomly
chosen nearest-neighbor site or annihilates with probability
1 − p, independent of other particles. The purpose of this
paper is to study the CP of particles having multistates, in
which the creation probability of a new particle depends on
the fitness that is a function of the multistate. In particular, we
examine the CP whose fitness is described by the Kauffman
NK model [5].

The Kauffman NK model has been used to study evolution
in many branches of science [6–11]. Thus, we may obtain an
evolutional CP (ECP) by combining a CP with the Kauffman
NK model. In the NK model and its variants, the emphasis
is on changes in internal states of particles. A particle
represents features of a species in biological applications [8],
or it represents decisions in an organization in management
applications [12]. Internal states of particles change over
time: species evolve, or organizations learn and change their
decisions accordingly. In the NK model, the dynamics is
explicitly defined to change the internal states of particles
to achieve greater fitness (particles “search” for fitter states in
the vicinity of their current states), with fitness defined as a
function of the set of all possible particle states. Depending
on the values of the model parameters N and K , the fitness
function ranges from smooth to rugged, with a large number
of local maximums; therefore, these model parameters control
the difficulty of searching for higher levels of fitness.

In the ECP model that we introduce in this paper, the
state of each particle remains constant over its lifetime, and
the dynamics is achieved by forming new particles through
imperfectly copying existing particles. The probability of a
particle to be copied is higher if it is fitter; the definition
of fitness in our proposed model is the same as in the NK

model. In addition to creating new particles via copying,
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particles can disappear, with less fit particles being more likely
to disappear than fitter particles. In terms of management
applications, our model can be viewed as an extreme case of
imitation and exploitation. New organizations are formed by
imperfectly copying existing organizations (giving preference
to more successful organizations); organizations do not search
(explore) for better sets of decisions, but they exploit the
sets of decisions that were adopted when they were created,
leading to a discussion of exploration versus exploitation
in organizational behavior [13]. Even though there is no
search, there is a trend toward greater fitness, because fitter
organizations are more likely to be copied and less likely to
disappear (to fail).

Although extensions of the NK model involving imperfect
imitation have been previously considered [14–18], we intro-
duce a model in which imitation at an organization’s inception
is the only force driving the system to achieve overall better
fitness. Because the ECP model is close to the basic CP, there
is hope that the approaches developed to analyze the dynamics
of the CP and other interacting particle systems are applicable
to our model.

Similar to the CP model, in the ECP model, parameter
p controls the ratio of the rate at which new particles are
created via imitation to the rate at which particles disappear. By
analogy with the basic CP, a question arises whether in an ECP,
at a certain value of parameter p, there is a phase transition
between an extinction state in which all particles eventually
disappear and a survival state in which the dynamics continues
indefinitely. A related question is how the average fitness
of surviving particles depends on the value of p. In terms
of management applications, p can be viewed as a level of
subsidy provided to an organization by some central authority.
Then, these questions can be restated as determining the level
of subsidy that is sufficient for organizational activities to
survive, and understanding the effect of this level of subsidy
on organizations’ ability to function effectively and efficiently.
We focus on two main problems for this ECP: (1) whether a
dynamical phase transition occurs, and, if it occurs, whether it
is the same as that for the CP, and (2) how the averaged fitness
depends on the creation probability.

In the ECP, the particle labeled by an integer i with a
fitness φ(i) (0 � φ(i) � 1) creates a new particle at a randomly
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chosen nearest-neighbor site with probability pB ≡ φ(i)p or
annihilates with probability 1 − pB. Accordingly, particles
with high fitness can create more particles in comparison to
those with low fitness. In addition to these two actions, we add
mutations into the evolution rule. Fitness is characterized by
two numbers, N and K . Each state of the particle is given
by a point in the N -dimensional Boolean hypercube, and
the parameter K determines how richly interconnected are
the parts of the system. We show that particles in an ECP
extinguish for small p and survive for large p, similar to the
behavior in a CP. However, the critical behavior in an ECP is
significantly different from that in a CP.

The structure of the paper is as follows. In Sec. II, we
specify the rule of an ECP and show the survival probability
obtained by a series expansion method and a Monte Carlo
simulation for N = 1 and K = 0. In Sec. III, we use a
time-dependent simulation method to determine the critical
point and the dynamical exponent for different combinations
of N and K . In this section, we show that an ECP does
not belong to the directed percolation (DP) universality class
[19–23]. In Sec. IV, we show that the fitness averaged over
surviving particles takes a maximum value near the critical
point after a sufficiently long duration. In Sec. V, we present
our conclusions and discuss the possibility for optimizing the
NK model using an ECP.

II. SPECIFICATIONS OF THE MODEL

We consider an ECP on a one-dimensional lattice {k : k ∈
Z1}. Each site is either empty or occupied by a particle. The
state of the occupied site labeled by k is described by N bit
digits μk ≡ {σ0,σ1, . . . ,σN−1}, where σj ∈ {0,1}. A particle
at the site k creates a new particle at a vacant site at k + 1 or
k − 1 with probability pB ≡ φ(μk)p in a unit time interval,
where φ(μk) is the fitness of the particle at site k. The fitness
φ(μk) is defined by a summation of the local fitness. The local
fitness, which is a map from a (K + 1)-dimensional Boolean
hypercube to non-negative real numbers is given as

fK : �K ≡ {(b0,b1, . . . ,bK ) : bi ∈ {0,1}}
→ {x0,x1 . . . ,xj , . . . ,x2K : xj ∈ [0,1]}, (1)

where j ≡ ∑K
i=0 2ibi . Then, the fitness at the site k is defined

as

φ(μk) = 1

N

N−1∑
i=0

fK (σi mod N,σi+1 mod N, . . . ,σi+K mod N), (2)

where σj denotes the j th component of μk . In this paper,
we assume that fK is assigned by selecting from a uniform
probability distribution between 0 and 1. Since the fitness takes
a value between 0 and 1, the value of p is restricted between 0
and 1.

To evolve the fitness, we add mutations that always occur
by flipping a randomly chosen bit in one state when a new
particle is created. Accordingly, the state of the new particle
is different from that of the parent particle at a single bit.
As stated previously, a particle annihilates with probability
1 − pB in a unit time interval. We assume that only one site is
occupied by a particle at its origin at the initial time t = 0, and
the local fitness fK does not change over the sequence of the
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FIG. 1. Evolution rule of ECP for N = 3. A particle whose state
is {0,0,1} initially occupies the origin and creates a new particle on
the vacant site at k = 1. The bit reverse occurs at j = 0 and the new
particle is in the state {1,0,1}. An annihilation occurs at n = 2 and
the particle at k = 0 is removed.

time step, i.e., at one trial. The dynamics in an ECP with N = 3
are illustrated in Fig. 1. Here, the total number of annihilation
and creation events is denoted by n. If the interaction distance
K = 1, the fitness at t = 0 is given by φ({0,0,1}) = (f1(0,0) +
f1(0,1) + f1(1,0))/3 = (x0 + x1 + x2)/3, where x0, x1, and
x2 are random numbers selected between 0 and 1.

Next, we consider the probability of finding at least one
particle at continuous time t of the ECP averaged over possible
fitness functions. We define the survival probability PN,K (t)
as

PN,K (t,p) ≡ 1

2N

∑
σ0={0,1}

∑
σ1={0,1}

· · ·
∑

σN−1={0,1}

×
∫ 1

0
dx0

∫ 1

0
dx1 · · ·

∫ 1

0
dx2K P (t,fK ), (3)

where P (t,fK ) is the survival probability of the ECP with
fitness fK defined in Eq. (1). Similarly, we define the survival
probability under the condition that the total number of events
is n as PN,K (n,p).

We exactly calculate P1,0(n,p) for small n. Since the state
of a particle is either “0” or “1”, the local function is completely
described by f0(0) = x0 and f0(1) = x1, where x0 and x1 are
randomly chosen numbers between 0 and 1. If the initial state
of the particle is 0 and a new particle is created at the site k = 1,
then the configuration of particles at t = 1 can be described
as {σ0,σ1} = {0,1}, because the mutation will always occur
at the time of the creation of a particle. If a new particle is
created at the site k = −1, then the configuration at t = 1
is described as {σ−1,σ0} = {1,0}. The probabilities of these
events are the same and are given by x0p/2. Conversely, if the
initial state of the particle is 1, then the configuration at t = 1
is expressed by {σ0,σ1} = {1,0} and {σ−1,σ0} = {0,1} with
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probability x1p/2. Since the probability of the initial state is
randomly chosen to be 1/2, we find the sequence of the states
{0,1} with probability x0p/4 + x1p/4, and the configuration
{1,0} with the same probability. Accordingly, we obtain the
survival probability as

P1,0(1,p) = 1

2

∑
σ0={0,1}

∑
σ1={0,1}

∫ 1

0
dx0

∫ 1

0
dx1

(
x0

p

4
+ x1

p

4

)
,

(4)

= p

2
. (5)

Similarly, we calculate the survival probability as a series of
p for n � 5:

P1,0(2,p) = p

2
, (6)

P1,0(3,p) = 7p2

12
− p3

6
, (7)

P1,0(4,p) = 7p2

16
+ p3

48
− 17p4

288
, (8)

P1,0(5,p) = 151p3

192
− 757p4

1440
+ 33p5

320
. (9)

Figure 2 shows the exact survival probabilities (solid line)
up to n = 15 and values at n = 105 obtained by a Monte
Carlo simulation, which is averaged over 106 trials, i.e., 106

combinations of initial states and local fitness functions. We
find that the survival probability is zero for small p and
it becomes positive for p near 0.8 for large t . Thus, we
conjecture that the phase transits from an extinction state to
a survival state near the critical point. The critical point is
very close to that of the basic CP, pCP = 0.7673. However,
the critical behavior is significantly different from that of a
CP. The survival probability of a CP near the critical point can
be expressed by PCP(p) ∝ (p − pCP)0.277. Thus, the survival
probability increases rapidly above the critical point, and the
derivative coefficient of the survival probability with respect
to p is discontinuous. If we use an analogy to phase transitions
in equilibrium systems, the type of the phase transition in the
ECP for the survival probability is classified as a second-order
phase transition. In contrast to a CP, the survival probability
of the ECP increases more smoothly. Below, we show that
the critical exponent of the survival probability is greater than
1. Thus, the phase transition of the ECP is a higher-order
transition than that of the CP, which undergoes a second-order
phase transition.

III. TIME-DEPENDENT SIMULATION

To discuss the critical behavior, it is important to first
determine the critical point of the ECP defined by

pc(N,K) ≡ inf{p > 0 : lim
t→∞ PN,K (p,t) > 0}. (10)

Although we estimated that the critical point pc(1,0) exists
near p = 0.8, it is difficult to determine the critical point
precisely from the survival probability at fixed t , because a
smooth change in the survival probability is observed for a CP
with a small t . Thus, we determine the critical point using a
time-dependent simulation [24–26]. According to the scaling
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p
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0
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p
FIG. 2. (Color online) Plots of the survival probabilities for N =

1 and K = 0 as functions of p. Solid lines are the exact survival
probabilities from n = 1 to n = 15. Solid circles denote the survival
probabilities at n = 105 obtained by Monte Carlo simulations.

hypothesis [24], the survival probability at the critical point
obeys the power law for large t given by

PN,K (t,pc(N,K)) ≈ t−δ, t → ∞. (11)

Figure 3 shows the survival probability for N = 1 and K = 0,
which was obtained by the Monte Carlo simulation over
107 realizations, on a log-log scale near the critical point
of the basic CP, pCP = 0.7673 [25]. In this simulation, time
is advanced by 1/N (n), where N (n) is the total number of
particles at the nth trial. The power-law decay is clearly
observed for the ECP near pCP similar to that observed for the
CP, but the slope is very different from the values of the CP,
δCP = 0.160 [25]. The critical behavior of the ECP is clearly
different from that of a CP; however, it is difficult to accurately
estimate the critical exponent due to the large stochastic error,
because the degree of freedom of the ECP is much larger
than that of a CP and the survival probability decreases more
rapidly in an ECP than in a CP. If we assume that the critical
point of the ECP for N = 1 and K = 0 coincides with pCP,
the dynamical exponent δ is estimated to be δ = 1.4. We show
the ratio between P1,0(t,p) and t1.4 in the inset of Fig. 3. The
local slope in the inset for large t is nearly zero at the critical
point. Below pc, the local slope for large t is negative, and it
becomes positive above pc.

We consider the survival probability in the limit t →
∞, PN,K (p) ≡ limt→∞ PN,K (t,p), and estimate the critical
exponent β assuming that pc(1,0) = pCP and the power-law
behavior PN,K (p) ≈ (p − pc(N,K))β near the critical point.
Figure 4 shows the survival probability as a function of
p − pc(1,0) on a log-log scale. We find a good linear fit
with slope β = 2.1. Since the critical exponent of survival
probability of the interacting particle system belonging to
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FIG. 3. (Color online) Plots of the survival probabilities for N =
1 and K = 0 as functions of t at p = 0.7563, 0.7673, and 0.7773. The
slope corresponding to the dynamical exponent −δ is very different
from the value of DP universality class. Inset: Survival probability
normalized by t1.4.

the DP universality class is estimated as β = 0.277, the ECP
certainly does not belong to the DP universality class.

We now consider the dependence of the critical behavior
on N for fixed K = 0. Using the same method as described
above, we estimate critical points for N = 2, 3, 4, and 5 from
simulations over 108 realizations. The obtained critical point
is the same as the critical point of the basic CP for all N , within
the numerical errors. Figure 5 shows the survival probability
as a function of t at the critical point on a log-log scale for N =
1–5. Although the values for large t are slightly scattered, the
slope (which is the dynamical exponent δ) is hardly dependent
on N . We could not prove that the critical point of the ECP

Slope 0.277 DP
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FIG. 4. (Color online) Plot of the survival probability for N = 1
and K = 0 as functions of p − pc(1,0). The slope corresponding to
the critical exponent β is very different from the value of the DP
universality class.
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FIG. 5. (Color online) Plots of the survival probabilities obtained

by fixing K to 0 and changing N from 1 to 5 at the corresponding
critical points. Survival probabilities at critical points are accumulated
on a single line.

with K = 0 is equal to that of the CP independently of N .
However, we briefly consider this problem for a special case.
We assume that the fitness f (σ ) is an independent constant
ζ of the state σ . Then, the survival probability P̃N,0(p,ζ ) is
given by PCP(ζp). Because the survival probability of a CP
near the critical point can be expressed as C(p − pCP)β with
a constant C above the critical point, the survival probability
of the above-mentioned ECP is given by

P̃N,0(p,ζ ) =
{

C(pc − ζp)β ζp > pc,

0 ζp � pc.
(12)

If ζ is assigned by selecting from a uniform probability
distribution between 0 and 1, the survival averaged probability
over ζ is given by

P̃N,0(p) ≡
∫ 1

0
P̃N,0(p,ζ )dζ, (13)

=
{

C
(pc−p)1+β

(1+β)p p > pc,

0 p � pc.
(14)

Accordingly, the critical point in this case is equal to that
of the CP, and the critical exponent is given by 1 + β. This
result suggests that the survival probability of the ECP may
be expressed by a multiple integral of power functions with
different zero points.

To examine the time dependence of the survival probability
on the value of K , we fixed N to 5 and changed K from 0 to
4. Figure 6 shows the survival probabilities as a function of t

at critical points pc(5,0) = 0.765, pc(5,1) = 0.77, pc(5,2) =
0.81, pc(5,3) = 0.88, and pc(5,4) = 0.93 on a log-log scale.
The dynamical exponent δ depends on K , and its values are
estimated to be 1.4, 2.6, 3.1, 3.2, and 3.3 for K = 0,1, . . . ,4,
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FIG. 6. (Color online) Plot of the survival probability by fixing N

to 5 and changing K from 0 to 4 at the critical points. Slopes depend
on K .

respectively. Interestingly, the survival probability decreases
most rapidly at the middle value, i.e., for K = 2.

IV. CRITICAL BEHAVIOR OF FITNESS

The most significant feature of the ECP is that particles
have fitness functions. We define a mean value of fitness per
particle under the condition that the total number of events is
n:

FN,K (n,p) ≡ 1

2N

∑
σ0={0,1}

∑
σ1={0,1}

· · ·
∑

σN−1={0,1}

×
∫ 1

0
dx0

∫ 1

0
dx1 · · ·

∫ 1

0
dx2K fKP(n,fK ). (15)

For N = 1 and K = 0, the mean fitness values are given by

F (1,p) = 7p

12
, (16)

F (2,p) = 7p

24
+ 7p2

24
, (17)

F (3,p) = 187p2

288
− 29p3

576
, (18)

F (4,p) = 5p2

18
+ 12827p3

25920
− 323p4

1920
, (19)

F (5,p) = 22127p3

25920
− 37109p4

172800
− 257737p5

9676800
. (20)

Figure 7 shows the mean fitness (solid line) values calculated
exactly up to n = 15 and the values obtained by the Monte
Carlo simulation at n = 105, averaged over 106 trials. We
find that the fitness exhibits a similar phase transition to the
survival probability. Here, we focus on the average fitness
over survival events F sv

N,K (n,p) for large n. Figure 8 shows
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n 105
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FIG. 7. (Color online) Plot of the fitness for N = 1 and K = 0
as functions of p. Solid lines are survival probabilities from n = 1
to n = 15. Solid circles denote the survival probabilities at n = 105

obtained by Monte Carlo simulations.

F sv
N,K (n,p) at n = 104 for three different combinations of N

and K: (N,K) = (1,0), (3,0), (5,2). The fitness of surviving
particles reaches maximum values near the critical point
for all combinations; this feature is also observed for other
combinations, and the value of p at which the fitness of survival
particles is maximized approaches the critical point as the

N 1, K 0 pc 1,0 0.7673

N 3, K 0 pc 3,0 0.765

N 5, K 2 pc 5,2 0.805
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0

1
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4
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F
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,K
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p

FIG. 8. (Color online) Fitness per particle averaged over the
condition that the particle survives at n = 104 for three combinations
(N,K) = (1,0), (3,0), and (5,2). Conditional fitness values reach a
maximum near the critical point for all combinations.
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time increases. Thus, we presume that the fitness of survival
particles reaches a maximum value at the critical point in the
limit of n → ∞.

The best way to increase the fitness is to increase the number
of particles with large fitness. The creation rate of the particle
is increased by increasing the value of p, and this serves to
increase the number of particles with large fitness. However,
this does not always increase the number of mutations, because
mutations occur only when a new particle is created in our
model. Creating a new particle requires a vacant site. For large
p, the particles are crowded, and the opportunity for creating
a new particle decreases. Accordingly, the particles with low
fitness continue to exist for a long duration. On the other
hand, for small p, the particles become extinct. Thus, the
number of mutations probably maximizes at the critical point.
It is well known that the shape of the cluster of DP is fractal
at the critical point. If the cluster shape, which consists of
particles in space-time, is fractal at the critical point even in an
ECP, we would expect the length of the cluster surface, where
new particles are created, to reach its maximum value at the
critical point. Thus, it is very natural that the fitness of survival
particles also reaches its maximum value at the critical point.

V. CONCLUSIONS

We have shown that an ECP exhibits rich nonequilibrium
phase transitions. In comparison with a basic CP, our model is
characterized by two additional parameters, N and K . The
critical point depends on N and K . However, for K = 0,
the critical point is very close to that of a basic CP. In the
case when K = 0, the local fitness is determined only by a
single bit of the state. We speculate that this particular property
is the reason for the critical point to be the same as that of a
basic CP within numerical errors, but we could not prove it.

The estimated exponents of an ECP are clearly different
from those of the basic CP. We attempted to estimate the
dynamical exponent of the number of particles, but we could
not obtain accurate values owing to the very slow convergence
of the local slope. However, we conjecture that it is also
different from the value of the DP universality class.

By introducing the concept of fitness into the CP, we can
apply the CP to wider variety of fields. In particular, since the
fitness of the surviving particle reaches a maximum value at
the critical point, we may apply the ECP to optimize the NK

model. The NK model has been often used in the study of
social sciences. In particular, the impact of the copy operation
of optimizing a social system such as a corporation using
the NK model was discussed [15–18]. The copying of the
methods of agents who are highly adapted to an environment
is very effective, and this process is regarded as the creation of
a particle in an ECP. However, the fitness cannot be improved
only by copying. The modification of the method is essential
to improve the fitness and it is introduced as a mutation in an
ECP. The fitness is quickly improved by increasing the number
of agents because many different methods can be examined in
parallel. However, the number of agents is limited in a real
social system. Therefore, we must choose one strategy, either
copy or mutation, during one step. The best choice depends
on the initial condition and on time. We cannot claim that an
ECP at the critical point realizes the best choice; however, the
ECP may provide us with a simple way to optimize the social
system using copy and trial methods.
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