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Numerous experiments have indicated that the fracture front (in three dimensions) and crack lines (in two
dimensions) in disordered solids and rocklike materials is rough. It has been argued that the roughness exponent
ζ is universal. Using extensive simulations of a two-dimensional model, we provide strong evidence that if
extended correlations and anisotropy—two features that are prevalent in many materials—are incorporated in
the models that are used in the numerical simulation of crack propagation, then ζ will vary considerably with
the extent of the correlations and anisotropy. The results are consistent with recent experiments that also indicate
deviations of ζ from its supposedly universal value, as well as with the data from rock samples.
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I. INTRODUCTION

The fracture of materials is a problem of immense
importance. It is of fundamental scientific interest due to
its complexities, and its understanding and prevention have
been issues of great interest, as fracture is encountered in a
variety of practical situations and has important economic
implications. Therefore, the nucleation and propagation of
fracture in materials have been studied for a long time, both
experimentally and theoretically, as well as by computer
simulations [1,2].

In their original work, Mandelbrot et al. [3] argued that the
fracture surface is rough and self-affine. An interesting and
very intriguing feature of fracture surfaces, seen in experiments
and computed by computer simulations, is the scaling of its
roughness. The scaling is expressed by the power-law relation
between the width W (L) of the fracture surface and the size L

of the window over which W (L) is computed, where the width
is defined by

W (L) =
〈∑

j

[h(rj ) − 〈h〉L]2

〉1/2

, (1)

in which h(rj ) is the height of the fracture surface at point rj ,
and 〈h〉L is its average in a window of size L. For a rough
self-affine fracture surface, one must have

W (L) ∼ Lζ , (2)

with ζ being the roughness exponent. In general, depending on
the material and experiment, one may consider two roughness
exponents. One is ζ3D, which is the out-of-plane roughness
exponent of a fracture front in a three-dimensional (3D)
experiment, whereas the second one, ζ2D, is the roughness
exponent of 2D cracks. Mandelbrot et al. [3] provided
evidence that the roughness exponent may be a measure of
the mechanical strength of materials. Ever since their work,
many groups have estimated the roughness exponent for a
variety of materials.
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Thus, experiments have been carried out with metals [4],
glass [5], and ceramics [6]. Some experiments with large-scale
3D samples indicated a nearly universal exponent, ζ3D � 0.8,
for the out-of-plane roughness. On smaller length scales,
a smaller exponent, ζ3D � 0.4–0.6, was reported. It was
conjectured [7] that ζ3D � 0.8 is valid for large scales and
at higher speeds of fracture propagation, whereas the lower
estimates should be associated with smaller length scales,
although measurements with silica glass [8] did not yield
the small-scale value. Experiments with 2D samples, mostly
papers, yielded [9] ζ2D � 0.6–0.7.

Experiments with rock samples have also yielded con-
flicting results. The original experimental study [10] with
granitic faults yielded ζ3D � 0.85. It has been suggested that
the roughness exponent may take on two distinct values,
depending on the type of rock or rocklike samples. One is
around 0.8 for such materials as glass, cement, granite, and tuff,
and a second, around 0.5, is for sandstones [11], calcite [12]
and sintered glass beads [8], although ζ3D � 0.75–0.8 was
also reported for sandstones [13]. Others [14,15], however,
analyzed extensive data for a variety of rock joints and reported
nonuniversal values of the roughness exponent in the range
0 < ζ3D � 0.85. Computer simulations have also been carried
out. An elastic model yielded [16] a roughness exponent of
about 0.86. Another study [17] used the fuse model [18] (see
below) and claimed the existence of two universal roughness
exponents. One, ∼0.71, is supposedly for local roughness, and
a second one, ∼0.87, is for the global scale. A different elastic
model yielded [19] a roughness exponent of about 0.73.

The problem has also been studied theoretically. Hansen
and Schmittbuhl [20] (see also Schmittbuhl et al. [21]
and Alava and Zapperi [21]) suggested a stress-weighted
percolation model in which a quadratic damage gradient is self-
generated, which is somewhat similar to the scalar percolation
model in a gradient [22]. They related the roughness exponent
ζ to ν, which is the exponent that characterizes that power-law
divergence of the percolation correlation length ξp near the
percolation threshold pc, i.e., ξp ∼ (p − pc)−ν , where p is
the fraction of the unbroken (or conducting) bonds. The
roughness exponent of an in-plane fracture front, slowly
propagating along a heterogeneous interface embedded in
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an elastic body, was predicted [21] to be ζ2D = ν/(1 + ν).
Here, ν was estimated to be about 1.54, which is not the
same as ν = 4/3 for the standard 2D percolation. Hence,
one obtains ζ2D ∼ 0.61. Others [23] reported a variety of
estimates, ranging from 0.395 to 0.48. Dynamic effects have
also been studied [24], leading to a value of 0.5. Thus, despite
a considerable body of work, there is no clear consensus on
whether the roughness exponent is universal and, if it is, what
its numerical value may be.

Most materials on which the experiments have been
carried out, ranging from rock samples to printing paper, are
anisotropic. In rock, the anisotropy manifests itself in the
form of stratification (layering). Long fibers in paper give
rise to an anisotropic microstructure. In addition, most, if
not all, materials contain extended correlations in the spatial
distributions of their local properties, such as the porosity,
conductivity, and elastic constants. With a single exception
[25], however, none of the previous simulations of crack
propagation took into account the effect of such important
morphological features.

In this paper, we provide strong evidence, obtained through
extensive computer simulations of 2D systems, that when
anisotropy and extended correlations are included in models
of fracture propagation in disordered materials, the resulting
roughness exponent will be nonuniversal. The range of the
roughness exponent that we compute covers most of its
reported experimental estimates. As such, our results may go
a long way toward settling the issue of the universality of the
roughness exponent.

The rest of this paper is organized as follows. In the next
section, we describe the details of the model and the numerical
simulations that are used in this study. Section III describes
the methods of estimating the roughness exponent. The results
are presented and discussed in Sec. IV, and are compared with
the experimental data in Sec. V. The paper is summarized in
Sec. VI, where we also discuss future directions in this active
area of research.

II. THE MODELS AND DETAILS
OF NUMERICAL SIMULATIONS

A network of Hookean springs with natural length of zero
can be mapped onto a resistor network [26]. Thus, we use the
fuse model [18], which is a network of resistors that can burn
out and turn into insulators representing microfractures, as a
simple model of fracture in elastic media. One may, of course,
question whether the results obtained with a scalar model
are applicable to fracture in real materials, which represent
a tensorial problem. While the precise values of the roughness
exponents for the scalar and tensorial models might not be
the same, past experience [1], 2] indicates that the qualitative
features of the two classes of models are completely similar.

It is known that lattice anisotropy may affect the estimates
of the roughness exponent [27] and, in fact, Ref. [25] used
a square lattice that is anisotropic when studying vector and
tensorial phenomena, such as fracture propagation. Therefore,
triangular networks of resistors were used in order to ensure
that no artificial lattice anisotropy affects the results. To ensure
that the results do not depend on the method by which the

microfractures are generated, two methods of burning out the
resistors were used in the simulations.

In one model, the resistors were Ohmic, each characterized
by a conductance g selected from a statistical distribution.
There is strong experimental evidence that the fractional
Brownian motion (FBM) provides an accurate description of
the spatial distribution of the porosity, hydraulic conductance
[28], and elastic moduli [29] of many porous materials, both at
laboratory [30] and much larger scales [28,29]. Therefore, we
selected the conductance of the resistors from the FBM, which
is a self-affine fractal distribution that generates extended
correlations. The most convenient representation of a FBM
is by its power spectrum, which in 2D is given by

S(ω) = a(
ω2

x + ω2
y

)H+1 , (3)

where a is a constant, and ω = (ωx,ωy), with ωi being
the Fourier component in the ith direction. Here, H is the
Hurst exponent such that H > 1/2 (< 1/2) implies positive
(negative) correlations among the successive increments of
the values generated by a FBM, while H = 1/2 represents the
usual Brownian (random) case. To generate anisotropy and to
introduce a cutoff length scale for the extent of the correlations,
we rewrite S(ω) as

S(ω) = a(
ω2

c + ηxω2
x + ηyω2

y

)H+1 , (4)

where ηx and ηy are constant, which we refer to as the
anisotropy parameters. Setting ηy = 1 and varying ηx < 1
generates layers (anisotropy) that are essentially parallel to
the x direction, and vice versa. The larger the anisotropy
parameters, the higher the number of the layers and, hence, the
more anisotropic are the media. Here, ωc is a cutoff frequency
that defines a cutoff length scale ξ for the correlations:
for all length scales � such that for � < ξ = 1/ωc, the
resistors’ conductances are correlated, whereas for � > ξ ,
the correlations are lost. References [2,28–30] describe the
methods by which the correlation length in materials and rock
may be estimated.

A voltage difference was then applied to the network in one
direction, a periodic boundary condition was used in the second
direction, and the nodal voltage distribution in the network
was determined using a variation of the conjugate-gradient
method [31]. At each stage of the simulations, the resistor
with the largest voltage drop was burnt out irreversibly. The
voltage distribution was then recomputed, the next fuse was
burnt out, and so on.

In the second model of simulating fracture propagation, a
resistor burns out if the voltage difference across it exceeds
a predefined threshold. In this case, it was the thresholds
that were distributed according to the anisotropic FBM with
a cutoff length scale for the correlations. Our simulations
indicated that the roughness exponents for the two cases are
identical. We used networks of size 300 × 300, and averaged
the results over up to 120 realizations of the network.

III. CALCULATION OF THE ROUGHNESS EXPONENT

We focus on computing ζ2D, but for the sake of brevity, we
use ζ to denote the computed roughness exponent. To ensure
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the accuracy of the results, we used two methods to estimate
ζ . In one, we computed the width of the crack line defined by
Eq. (1) and estimated ζ using Eq. (2). In the second method,
we used the front-front correlation function defined by

C(r) = 〈[h(rj ) − h(rj + r)]2〉, (5)

where the averaging for each value of r is over all values of
rj . For a self-affine rough crack line, one must have

C(r) ∼ r2ζ . (6)

All of the estimates of ζ obtained by the two methods
turned out to be consistent with each other, hence confirming
their accuracy. We also used a third method to estimate the
roughness exponent for a few cases, which will be described
later in this paper.

FIG. 1. Fracture front in the medium in which the overall
direction of the front (from left to right) is parallel to the layers. The
patterns are for the correlation lengths ξ = 9 (top) and 15 (bottom),
and the anisotropy parameters ηx = 0.01 and ηy = 1.

IV. RESULTS AND DISCUSSIONS

Figure 1 presents the cracks lines for the case in which
the direction of the line (from left to right) is aligned with
the layers. The results are for two values of the correlation
length, ξ = 9 and 15 (measured in units of the lattice bonds’
length), and for H = 0.5. Because the crack line is more or
less aligned with the layers, it is not very tortuous. Figure 2
presents the crack line for the same correlation lengths ξ as in
Fig. 1, but for the case in which the direction of the crack line
(from left to right) is perpendicular to the layers. In this case,
the contrast between the layers gives rise to a very tortuous
crack line. Increasing the correlation length also increases the
length of the crack line that spans from one side of the lattice
to the opposite side. Figures 1 and 2 already indicate the strong
effect of anisotropy and extended correlations on the shape of
the crack line.

FIG. 2. Fracture front in the medium in which the overall
direction of the front is perpendicular to the layers. The patterns are
for correlation lengths ξ = 9 (top) and 15 (bottom), and the anisotropy
parameters ηx = 1.0 and ηy = 0.01.
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FIG. 3. (Color online) The dependence of the roughness exponent
ζ on the extent of the correlations ξ . The medium is isotropic.

It has been claimed that the roughness exponent of the
fracture front in 3D is universal. Although the experimental
measurement of ζ2D is more difficult, it has been claimed,
based on computer simulations [17,27], that ζ2D = ζ is also
universal. This claim is now checked against the results of
our computer simulations. To estimate ζ , we first studied
the isotropic case, but with a variety of correlation length
ξ . Figure 3 presents the results. The roughness exponent does
depend on the correlation length, hence providing a clue to its
possible nonuniversality. Table I compiles all of the results for
ζ , computed by the two methods described earlier, together
with their estimated errors. The estimates of the roughness
exponents, computed by the two methods, are close to one

TABLE I. Roughness exponent ζ for fracture in isotropic media,
computed for various correlation lengths using the window method
(WM), namely, scaling of the width of the fracture front with window
size, and the correlation function (CF) methods.

ξ WM CF

1 0.686 ± 0.003 0.679 ± 0.003
3 0.692 ± 0.003 0.706 ± 0.004
6 0.736 ± 0.004 0.713 ± 0.005
9 0.71 ± 0.005 0.69 ± 0.007
15 0.72 ± 0.006 0.69 ± 0.005
21 0.72 ± 0.006 0.68 ± 0.006

another. Bakke and Hansen [32] studied various methods of
estimating the roughness exponent, and showed that they do
not necessarily yield the same estimates, although they are
usually very close to one another.

We then studied crack lines in anisotropic media with a
cutoff correlation length. In effect, the extended but finite
correlations divide the medium into two parts: the correlated
part with an extent ξ around every bond of the lattice, and the
random part outside of this region. In the correlated region
with H > 0.5, the breaking thresholds, or the conductances,
are positively correlated, and the tip of the growing crack sees
its local neighborhood as more or less homogeneous. As the
extent of the correlations increases, it becomes increasingly
difficult for the crack tip to “see” the bonds outside of the
correlated domain. It is then the anisotropy that plays the
more important role. But, when H < 0.5, both the negative
correlations and the anisotropy play equally important roles in
the precise estimate of ζ .

Figure 4 presents the results for the width W (L) of the crack
line versus the length of the window L over which W (L) was
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FIG. 4. (Color online) Left panel: Scaling of the width W (L) of the fracture front with the window size L. Right panel: The same as the
left panel, except that the window size L has been rescaled with the correlation length ξ . The lines represent the best fit of the data.
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FIG. 5. (Color online) Same as in Fig. 4, but for the case in which ηx = 1 and ηy is varied.

computed, for the case in which ηy = 1 and ηx was varied.
The correlation length is ξ = 9. The power law (4) is followed
over nearly two orders of magnitude variations in L. If we
rescale L with the correlation length ξ , then the same type of
scaling is obtained, which is also shown in Fig. 4. Hence, the
correlation length is relevant and its effect does not cancel if
L is normalized with respect to it.

Figure 5 presents the results for the case in which ηx = 1
and ηy was varied, with the correlation length ξ being 9 again.
Once again, the power law (4) is followed by the results
over nearly two orders of magnitude variations in L. The
normalization of L with respect to ξ neither changes the scaling
of W (L) with L, nor restores the presumed universality of
roughness exponent ζ .

Figure 6 presents the computed roughness exponents for a
range of the correlation length and the anisotropy parameters.
For the case in which ηy = 1 and the direction of the crack
line is more or less aligned with the layers, as shown in Fig. 4,
decreasing ηx toward 0 decreases the roughness exponent from
a high of about 0.7 toward 0.55. On the other hand, when
ηx = 1 and the crack line is perpendicular to the layers, as
shown in Fig. 5, ζ begins with a value close to 0.85 and
decreases toward 0.7 with increasing ηy . Thus, taken together,
one has 0.55 � ζ � 0.85, implying that ζ is nonuniversal.
Table II compares the estimates of the roughness exponents ζ ,
computed by the two aforementioned methods.

If one defines the height difference �h by

�h(L) ≡ h(rj + L) − h(rj ) − 〈h(rj + L) − h(rj )〉j , (7)

for a window of size L, then Bouchbinder et al. [33] (see
also Santucci et al. [34]) suggested that one should study
the probability density function (PDF) P (�h) by plotting
ln[P (�h)σ ] versus �h/σ , where σ is the standard deviation
of the distribution. If the fracture front (in 3D) or the crack
line (in 2D) is self-affine, then the PDF will be Gaussian

and, therefore, the semilogarithmic plot of the PDF will be
a parabola. However, if the fronts or crack line are multiaffine,
then the tail of the PDF should deviate from a parabola. Such
deviations have been reported in the experimental data for
paper [33–35] and sandblasted Plexiglas (PMMA) [34], as
well as in models of fracture in isotropic materials [17]. In
addition, one may construct a structure function Sn(L), defined
by

Sn(L) ≡ 〈|h(rj + L) − h(rj )|n〉j , (8)

which follows the scaling law

Sn(λL) ∼ λζnSn(L), (9)
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FIG. 6. (Color online) The estimated roughness exponent ζ and
its dependence on the anisotropy parameters and extent of the
correlations, ξ .
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TABLE II. Roughness exponent ζ computed for the cutoff length ξ = 9 using the scaling of the width of the fracture surface (WM) and
the correlation function (CF) methods.

WM CF
η (x or y) x y x y

0.4 0.697 ± 0.005 0.788 ± 0.005 0.669 ± 0.005 0.764 ± 0.005
0.2 0.64 ± 0.005 0.792 ± 0.004 0.61 ± 0.006 0.780 ± 0.005
0.1 0.64 ± 0.007 0.809 ± 0.003 0.610 ± 0.005 0.810 ± 0.003
0.05 0.628 ± 0.005 0.829 ± 0.002 0.605 ± 0.004 0.834 ± 0.003
0.01 0.633 ± 0.005 0.829 ± 0.002 0.612 ± 0.003 0.835 ± 0.002
0.005 0.619 ± 0.004 0.840 ± 0.002 0.598 ± 0.004 0.847 ± 0.002

such that ζ2/2 = ζ , with ζ being the roughness exponent that
we have computed. For a multiaffine structure, ζn �= nζ2/2,
so that for each n the structure function is characterized by a
distinct exponent ζn(n).

Thus, we constructed the PDFs for four cases, namely,
the random and isotropic, correlated and isotropic, and the
two correlated and anisotropic cases studied earlier, each for
three window sizes, i.e., L = 32, 64, and 96. The results are
presented in Fig. 7. The parabolas shown are the result of fitting
the data for L = 64. As Fig. 7 indicates, the largest deviations
from the parabola are obtained for the correlated systems, for
both the isotropic and anisotropic cases. Note that to obtain a

single-valued function, one must remove the dangling bonds
at the end of the simulations, but doing so generates jumps in
the crack line profile and destroys [17] its multiaffinity, giving
rise to a Gaussian PDF.

Clearly, the structure function Sn can be computed for a
variety of n, from which the exponent ζn(n) can be estimated.
The results for this are shown in Fig. 8. They may be fitted to
the quadratic form ζn(n) = nζ − n2λ, which are also shown
in Fig. 8, along with a linear plot for small n. Note that
since there is no reason to believe that ζn should depend
on n quadratically, the estimated errors represent only those
for the fitting to this particular quadratic form. The results
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FIG. 7. (Color online) The probability distribution function P (�h) vs �h/σ . (a) Uncorrelated and isotropic. (b) Correlated and isotropic
with a correlation length ξ = 9. (c), (d) Anisotropic and correlated.
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FIG. 8. (Color online) The dependence of the exponent ζn, characterizing the structure function Sn, on n. The four cases are the same as in
Fig. 7.

for the two anisotropic cases were computed for L = 9,
and ηx = 0.01 (ηy = 1), and for ηy = 0.01 (ηx = 0.01).
As indicated in the figure, the two anisotropic cases yield
values of ζ that are consistent with those presented in
Table II.

Is it surprising that anisotropy and correlations affect the
scaling? According to the current understanding of fracture
[12,36], particularly in 3D, it is the failure mechanism, not
a material’s microstructure, that dictates the value of the
roughness exponent, leading to universal ζ : in quasibrittle
fracture that occurs on length scales on the order of the
size of the fracture process zone (FPZ), �FPZ, the roughness
exponent is about 0.8, whereas in brittle fracture that occurs
on length scales larger than �FPZ, one has ζ � 0.5. Our
simulations, on the other hand, indicate that, at least in 2D,
it is the material’s microstructure that dictates the value of
the roughness exponent, and the growth of the crack line
occurs at the tip due to stress concentration, implying that
the FPZ is small and, thus, the failure mechanism is the
same in all cases studied, regardless of the direction of the
anisotropy relative to the crack line. Therefore, at least in
this respect, our results are surprising and against the current
understanding, and give rise to new questions that deserve to be
studied.

One may ask why there is no change in the behavior
on length scales below and above the correlation length
ξ . As mentioned earlier, according to the current theories
[12,36], the roughness exponent for fracture in a 3D material
should be different on length scales smaller and larger than
�FPZ. In the present study, the model material is 2D, and
it is not clear why such a transition from one type of
behavior to another should necessarily exist. Indeed, using 2D
models, Nukala et al. [17] studied systematically the effect
of the FPZ on the roughness exponent, but reported ζ to
be independent of ζFPZ, with no transition from one type of
behavior to another. Moreover, there is no direct link between
the correlation length ξ and the size of the FPZ. In fact, even
if ξ is not too large, one always has ξ � �FPZ and, thus,
the system is almost always on one side of the transition
line.

We note that the roughness exponent ζ is the same as the
Hurst exponent H that characterizes the nature of long-range
correlations in the crack line, such that H > 1/2 (H < 1/2)
implies positive (negative) correlations, whereas H = 1/2
corresponds to the random case with no correlations. As
long as the material is isotropic with a random (uncorrelated)
microstructure, the roughness exponent ζ > 1/2, which im-
plies long-range positive correlations. For uncorrelated and
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isotropic systems, Bouchbinder et al. [37] suggested a mech-
anism that explains why H > 1/2. In their model, quasistatic
fracture happens by void formation and coalescence. There is
a length scale R that determines where voids nucleate. The
entire fracture process then consists of rapid growth steps,
interrupted by the slower void nucleation. As long as R �= 0,
one has positive correlations. If, however, the growth takes
place right at the crack tip [24] (R = 0), then the positive
correlations are lost, and H = ζ = 1/2.

The mechanism suggested by Bouchbinder et al. [37]
should presumably be applicable to the case in which the
system is correlated, but the correlation length ξ is not too
large, hence allowing �FPZ to be non-negligible. But, when the
correlation length ξ is very large, then, regardless of whether or
not the material is isotropic, the proposed mechanism should
no longer be valid because cracking is no longer quasibrittle.
Moreover, when the crack line moves more or less in the
direction of the layers, one must have positive correlations,
but not when it does not move in that direction. Thus, our
work has given rise to important new questions that deserve to
be studied.

V. COMPARISON WITH EXPERIMENTAL DATA

There is experimental evidence that supports the nonuniver-
sality of ζ . One piece of evidence is provided by rock samples
[15], as already mentioned. Further evidence is provided by the
work of Menezes-Sobrinho et al. [38], who studied the rupture
of five types of paper. They subjected the samples to a uniaxial
force and studied fracture of the papers along two orthogo-
nal directions. According to Ref. [39], “The machine-made
paper has a strong directional preference. This anisotropy
is due to uneven fiber orientation and drying conditions.”
Indeed, in the experimental studies [40] of the characteri-
zation of paper by one of us (M.S.), such anisotropy was
reported.

Menezes-Sobrinho et al. [37] reported that for at least three
of the papers, the roughness exponent was dependent upon the
direction with 0.58 � ζ � 0.94, and interpreted their results

based on the alignment of the papers’ fibers, i.e., the anisotropy.
Earlier experiments with various papers [9] had yielded an
average value, ζ � 0.6–0.7. These results are consistent with
our estimates of ζ , if we view the layers in our model as an
approximate representation of a paper’s fibers.

VI. SUMMARY

The results presented in this paper provide strong evidence
that contrary to the widely held belief, the roughness exponent
is, in general, nonuniversal, at least in 2D, as was studied in
this paper. We must also emphasize that without a finite but
extended correlation in the distribution of the conductances or
the breaking thresholds, one would not obtain the nonuniver-
sality that we report here. In other words, both the correlations
and the anisotropy contribute to the nonuniversality and are
relevant.

The present study also indicates that contrary to the
repeated assertions in the past that it is the failure mechanism
that is responsible for the value of the roughness exponent,
we find that at least in 2D, it is the microstructure of a
material, and in particular its anisotropy and the existence of
extended correlations, that control the value of the roughness
exponent.

Finally, the results indicate that simulations similar to ours
but in 3D disordered media must be carried out in order to
estimate the roughness exponent. One may consider a variety
of scenarios for the interplay between anisotropy and extended
correlation in 3D materials. Thus, we suspect that in such a
case, ζ may be nonuniversal even more strongly than in 2D
media, including the possibility of being smaller than 0.5, and
hence covering the entire range of ζ reported for some rock
samples and other materials. But this remains to be seen; the
simulation of a 3D system to study this possibility is currently
in progress.
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T. Engoy, K. J. Måløy, A. Hansen, and S. Roux, Phys. Rev. Lett.
73, 834 (1994); J. Rosti, L. I. Salminen, E. T. Seppälä, M. J.
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Phys. Rev. E 76, 056111 (2007); 78, 046105 (2008).

[18] L. de Arcangelis, S. Redner, and H. J. Herrmann, J. Phys. Lett.
(Paris) 46, 585 (1985).

[19] I. Malakhovsky and M. A. J. Michels, Phys. Rev. B 74, 014206
(2006); 76, 144201 (2007).

[20] A. Hansen and J. Schmittbuhl, Phys. Rev. Lett. 90, 045504
(2003).

[21] J. Schmittbuhl, A. Hansen, and G. G. Batrouni, Phys. Rev. Lett.
90, 045505 (2003); M. J. Alava and S. Zapperi, ibid. 92, 049601
(2004).

[22] B. Sapoval, M. Rosso, and J. F. Gouyet, J. Phys. Lett. (Paris) 46,
149 (1985).

[23] D. Ertas and M. Kardar, Phys. Rev. E 49, 2532 (1994);
J. Schmittbuhl, S. Roux, J.-P. Vilotte, and K. J. Måløy, Phys.
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