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Dynamical systems driven by a general Lévy stable noise are considered. The inertia is included and the noise,
represented by a generalized Ornstein-Uhlenbeck process, has a finite relaxation time. A general linear problem
(the additive noise) is solved: the resulting distribution converges with time to the distribution for the white-noise,
massless case. Moreover, a multiplicative noise is discussed. It can make the distribution steeper and the variance,
which is finite, depends sublinearly on time (subdiffusion). For a small mass, a white-noise limit corresponds to
the Stratonovich interpretation. On the other hand, the distribution tails agree with the Itô interpretation if the
inertia is very large. An escape time from the potential well is calculated.
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I. INTRODUCTION

A prominent feature of the stable Lévy processes is the
existence of algebraic, long tails of the probability distributions
of the form |x|−α−1, where 0 < α < 2 is a stability index. As
a consequence, the moments, in particular the variance, are
divergent. The diffusion process in such systems is called an
“accelerated diffusion” and the relative transport rate may be
described by a time dependence of the fractional moments
instead of the variance. However, there are indications that in
some physical problems the distribution tails fall faster than for
the pure Lévy flight. In the field of the economic research, the
indexes 2.5–4 were observed in financial data [1]; it has been
suggested that such values of the index arise when the trading
behavior is performed in an optimal way [2]. The probability
distributions of the hydraulic conductivity in the porous media
seem to obey the power law with the index 3.5, while the
atmospheric turbulence studies yield even larger index for the
wind field [3]. Such slowly falling algebraic tails are predicted
by the Langevin equation with the Lévy stable noise—in
a sense of the stationary solution—when one introduces an
appropriate deterministic potential. It has been demonstrated
by Chechkin et al. [4] that the stationary distribution tails
of the form x−α−2m−1 result from the potential ∼ x2m+2.
Also temporal characteristics of the system may influence
the asymptotic shape of the distribution. This happens if,
for a jumping process, long jumps are penalized by a short
waiting time. The finite variance is observed for such jumping
processes as the Lévy walk [5] and the kangaroo process with
a Lévy distributed jumping size [6].

The Lévy stable processes are often connected with
complex phenomena for which the power-law shape of the
distribution tails [7] is typical, as well as a complicated
structure of the medium. It is the case for the porous media,
plasmas, and fractal (multifractal) structures [3,8]. Therefore,
a nonhomogeneity must often be taken into account in a
dynamical description, both as a deterministic potential and
as a multiplicative noise. Descriptions of the diffusion on
fractals involve the variable, power-law diffusion coefficient
[9,10]. Also, the other topologically complicated systems
with long jumps, the folded polymers, require a variable
diffusion coefficient to describe the transport [11]. Moreover,

formalisms with the multiplicative Lévy noise can describe
the second-order phase transitions [12] and the dynamics of
two competing species [13]. A nonlinearity of the Langevin
equation makes the stochastic process different from the pure
Lévy motion. In particular, variance may be finite for a system
driven by the multiplicative Lévy noise [14]. Generally, the
variance rises not only linearly with time but also faster
or slower than that, i.e., the diffusion may be anomalous.
In the case of Ref. [14], motion is subdiffusive. The above
approach includes the white noise. However, a Markovian
description of a realistic system is an idealization, valid only
if the time scale of fast variables is short compared to the
time scale of the process variable. A procedure of the fast
variables elimination produces correlations: they are present
even if the original system is Markovian [15]. It has been
demonstrated for the Gaussian noise that characteristic time
scales of the fast variables are important even if the variables
themselves are eliminated [16]; this finding suggests using
a colored noise in a stochastic description rather than the
white noise. Effects related to the correlations are important,
for example, for such problems as fluctuations of a dye laser
light [17] and a narrowing of the magnetic resonance lines [18].
Importance of the finite correlation time for noise-induced
phase transitions was emphasized in Ref. [19]; an increase
of that time favors disorder and prevents the formation of an
ordered state. Introducing the white noise as a limit of the finite
correlation time means that the stochastic integral should be
interpreted in a Stratonovich sense [20]. On the other hand,
effects of the finite inertia should be taken into account. If the
relaxation time associated with the inertia is large compared to
the correlation time, the Itô interpretation comes into play [21].
That effect of the inertia, opposite to the correlations, was
demonstrated in Ref. [22]: it modifies the front propagation by
suppressing the external multiplicative, white-noise influence
on the velocity of fronts.

The Itô-Stratonovich dilemma becomes especially inter-
esting for α < 2 since then—when we consider the white
Lévy noise and neglect the inertia—the very existence of
the variance depends on the particular interpretation of
the stochastic integral. This problem is important for the
diffusion since the infinite variance, which means the infinite
propagation speed, is unphysical in most cases. How do the
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finite noise relaxation time and the inertia modify slope of
the distribution? We address this question in the present paper
and discuss consequences for the diffusion. In Sec. II, a linear
problem involving the additive noise is considered. Section III
is devoted to the multiplicative noise; both limiting, analyt-
ically solvable cases and numerical solutions are discussed.
Moreover, the escape time from a potential well is calculated.
Results are summarized in Sec. IV.

II. ADDITIVE NOISE

We consider a linear problem, which is defined by the
following system of the Langevin equations for x, v, and ξ :

mv̇(t) = f0 − βv(t) − λx + γ ξ (t), ẋ(t) = v(t),
(1)

dξ (t) = −γ ξ (t)dt + dL(t),

where β is a damping coefficient. The stochastic force, dL(t),
is the symmetric and stable Lévy process, characterized by
the stability index α ∈ (0,2]. Special cases of the system (1)
were considered by several authors. The velocity distribution
for the white noise without a potential was obtained in Ref.
[23], the linear force case was discussed in Ref. [24], and
the white-noise case with the inertia for α = 1 in Ref. [25].
Moreover, the asymmetric Lévy distribution was introduced
in Ref. [26]. On the other hand, stochastic collision models
may lead to the Lévy statistics. The Fokker-Planck equation
with the additive noise predicts, in the limit of small mass,
an equilibrium in the form of the Lévy distribution [27]. The
case α = 2 corresponds to the normal distribution. Then the
third equation (1) describes the standard Ornstein-Uhlenbeck
process with the covariance

〈ξ (t)ξ (0)〉 = 〈ξ 2(0)〉e−γ t , (2)

therefore, γ determines a correlation time, 1/γ . A general-
ization of the Ornstein-Uhlenbeck process for α < 2 implies
an infinite covariance for any time. However, the parameter γ

can still estimate the noise relaxation time. One can modify the
covariance definition [28,29] to get a convergent quantity that
behaves with time similar to Eq. (2). On the other hand, the
covariance becomes finite when one introduces a truncation
of the Lévy distribution [30]. Properties of such a dynamical
system are similar to the system without the truncation for
an arbitrarily large time [31] and the parameter γ measures
the correlation time. Values of the process dL(t) are given
by the characteristic function p̃(k) = exp(−Kα|k|α)(K > 0).
The fractional Fokker-Planck equation

∂

∂t
p = −v

∂

∂x
p − 1

m
(f0 − βv − λx + γ ξ )

∂

∂v
p

+ γ
∂

∂ξ
(ξp) + β

m
p + Kα ∂α

∂|ξ |α p (3)

determines the probability density distribution
p(x,v,ξ ; t |x0,v0,ξ0; 0) and the fractional Weyl derivative is
defined by its Fourier transform, F[ ∂α

∂|x|α f (x)] = −|k|αf̃ (k).
We will evaluate the density of x, p(x,t), directly from
the stochastic equation (1). We restrict our analysis to the
case of a relatively weak potential; more precisely, let
β2/m2 − 4λ/m ≡ �2 > 0. First, we need to evaluate the

stochastic trajectory x(t). The solution of Eq. (1) produces the
result
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(6)

Two simple special cases are distinguished. In the absence of
inertia (m = 0), we have an adiabatic problem of the particle
subjected to the linear force and the colored Lévy noise. Then
Eq. (1) yields

f2(t ′) = γ

λ − βγ
(eλt/β−γ (t−t ′) − eλt ′/β). (7)

Secondly, for the case of a free particle (λ = 0), we obtain

f2(t ′) = 1

β
+

(
1

γ − β/m
− 1

β

)
e−γ (t−t ′)

− 1

γ − β/m
e−β(t−t ′)/m. (8)

The characteristic function of p(x,t) directly follows from
Eq. (6) [23,32]:

p̃(k,t) = 〈eikx(t)〉 = eikf1

〈
exp

(
ik

∫ t

0
f2(t ′)dt ′

)〉
= eikf1 exp

(
−Kα|k|α

∫ t

0
|f2(t ′)|αdt ′

)
. (9)

Equation (9) implies the Lévy distribution with the same stabil-
ity index as the driving noise L and a translation parameter that
coincides with f1 and for large time equals either f0/λ (λ �= 0)
or f0(t − m/β) (λ = 0). Since the dependence of the density
distribution on f0 is trivial, we assume in the following f0 = 0
and v0 = 0. Then the distribution is symmetric for any time.
The inverse Fourier transform can be conveniently expressed
in a form of the Fox function [33,34]:

p(x,t) = Nf (t)H 1,1
2,2

⎡⎣f (t)|x|
∣∣∣∣∣∣
(1 − 1/α,1/α),(1/2,1/2)

(0,1),(1/2,1/2)

⎤⎦ ,

(10)

where f (t) = Kα
∫ t

0 |f2(t ′)|αdt ′. By introducing a new vari-

able τ = t − t ′, we have f (t) = Kα(
∫ T

0 + ∫ t

T
) and the expo-

nentials in the second integral can be dropped for any T 	 1.
Therefore, f (t) = t/β + const for large times. Since p(x,t) ∼
|x|−1−α for |x| → ∞, variance and all higher moments of
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the distribution (10) are divergent, as well as the average if
α � 1. A relative expansion rate can be quantified by the
fractional moments of the order δ < α, 〈|x|δ〉(t); they are given
by the Mellin transform from the Fox function [5]. The final
expression reads

〈|x|δ〉 = 2

α
f (t)δ/α

�(−δ/α)�(1 + δ)

�(−δ/2)�(1 + δ/2)
. (11)

Consequently, in the limit of large t the fractional moments
decrease with the damping coefficient β and the expansion rate
is large for small α.

As an example, let us consider the case α = 1 for which
results take the transparent form. This particular value of the
stability parameter corresponds to the well-known Cauchy
distribution; it was considered in Ref. [25] for the white
noise. For γ > β/m, a straightforward calculation yields the
expression for the apparent width of the distribution p(x,t):

f (t) = t

β
− 1 + m

γβ
− 1

γ

(
1

γ − β/m
− 1

β

)
e−γ t

+m

β

1

γ − β/m
e−βt/m. (12)

In the limit of the large time, inertia and noise relaxation time
are responsible for a time shift that is negative and rises with
m and 1/γ .

III. MULTIPLICATIVE NOISE

By introducing a multiplicative noise, we take into account
that the influence of the random component of the dynamics
depends on the dynamics itself. The one-dimensional case is
given by the Langevin equation,

mv̇(t) = −∂V (x)/∂x − βv(t) + γG(x)ξ (t),

ẋ(t) = v(t), (13)

dξ (t) = −γ ξ (t)dt + dL(t).

In the following, we assume the noise intensity in the algebraic
form, G(x) = |x|−θ/α (α + θ > 0).

The simplest problem involves the white noise (γ → ∞)
and neglects the inertia. The latter condition means that
mass is small compared to the damping parameter β and the
strength of the noise. The case of the normal distribution,
α = 2, is well known [35–37]. A stochastic integral in the
Langevin equation is not completely determined for the
uncorrelated noise, since it is not clear whether the dynamical
variable in the function G(x) should be evaluated at the
time before the noise acts, after that, or somewhere in
between. Two interpretations are of particular importance. In
the Itô interpretation, the i’s component of the discretized
stochastic integral is G[x (ti−1)][ξ (ti) − ξ (ti−1)], whereas the
Stratonovich interpretation includes both the beginning and the
end of each interval: G{[x (ti−1) + x(ti)]/2}[ξ (ti) − ξ (ti−1)].
Both assumptions result in a different Fokker-Planck equation
but a difference resolves itself solely to a drift term (the
spurious drift), which can be eliminated by an appropriate
modification of the deterministic potential. For this reason, a
physical relevance of the Itô-Stratonovich dilemma is disputed
[36]. Nevertheless, physical implications of both interpreta-
tions may be different. For example, phase transitions due to

instabilities of the disordered phase in the framework of the
Ginzburg-Landau model take place only for the Stratonovich
interpretation [38]. Rules of the ordinary calculus are valid in
the Stratonovich formalism, in contrast to the Itô interpretation.

The meaning of both interpretations becomes more trans-
parent when we take into account the finite correlations and
inertia. First of all, the memory effects favor the Stratonovich
interpretation since it constitutes the white-noise limit of
the correlated processes [20]. Inertia acts in the opposite
direction. It was demonstrated [21]—by the estimation of
the velocity moments and using the Itô formula—that if the
inertia relaxation time goes to zero faster than the noise
correlation time, the Stratonovich interpretation is valid. The
opposite limit produces the Itô result. If both time scales
are comparable, neither of the above interpretations is valid.
We will demonstrate that similar conclusions can be drawn
for the general Lévy stable processes. However, for α < 2,
methods of Ref. [21] cannot be applied since the moments are
divergent and the Itô formula is unknown.

We take into account only Itô and Stratonovich interpreta-
tions of the stochastic integral. The Itô interpretation applies,
beside the systems with large mass, to discrete problems; it is
commonly used in the perturbation theory [39]. However, there
are indications that other interpretations are also important.
For example, it was recently experimentally demonstrated
that description of the Brownian motion in the presence
of gravitational and electrostatic forces requires a backward
integral (anti-Itô interpretation) [40].

A. White-noise case without the inertia

To study a diffusion process, we consider a free particle,
V (x) = 0. In the limit m → 0 and γ → ∞, Eq. (13) becomes
a single Langevin equation of the first order:

dx(t) = |x(t)|−θ/αdL(t), (14)

where, for simplicity, we assumed β = 1. In the Itô interpre-
tation, it corresponds to the Fokker-Planck equation [3]

∂

∂t
pI (x,t) = Kα ∂α

∂|x|α [|x|−θpI (x,t)], (15)

which differs from the equation for the additive noise by an
algebraic term under the fractional derivative. This particular
form of the multiplicative factor suggests simple scaling
properties and a possible similarity of the solution to Eq. (10).
Indeed, an asymptotic solution of Eq. (15) can be found in
the form a(t)H 1,1

2,2 [a(t)x]. The procedure is the following [41].
First, we insert the above expression to the Langevin equation
and take the Fourier transform, which also has a form of the
Fox function, but of a higher order. Expansion of the Fox
functions in powers of k and neglecting the terms of the order
|k|2α+θ and higher yields a simple differential equation for the
function a(t) and allows us to determine some Fox function
coefficients. Finally, we obtain the solution

pI (x,t) = Na(t)H 1,1
2,2

⎡⎣a(t)|x|
∣∣∣∣∣∣
(
1 − 1−θ

α+θ
, 1
α+θ

)
,(a2,A2)

(b1,B1),
(
1 − 1−θ

2+θ
, 1

2+θ

)
⎤⎦ ,

(16)
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where a(t) ∼ t−1/(α+θ) and the coefficients (a2,A2) and (b1,B1)
are arbitrary. The asymptotic form of the solution is the same
as for the driving noise,

pI (x,t) ∼ |x|−1−α. (17)

Therefore, for the Itô interpretation, the variance is always
divergent, which implies accelerated diffusion. Fractional
moments can be evaluated similarly to the additive noise case;
a straightforward calculation yields

〈|x|δ〉 ∼ t δ/(α+θ). (18)

The multiplicative noise parameter θ can both strengthen
(θ < 0) and weaken (θ > 0) the time dependence of 〈|x|δ〉,
compared to the case of the additive noise. The undetermined
coefficients do not influence the functional dependences. The
same method of solution can be applied in the presence of the
linear deterministic force F (x) = −λx [14].

Results for the Stratonovich interpretation are qualitatively
different since the decline of the noise intensity with x

may compensate the effect of the long jumps. The technical
advantage of this interpretation, for one-dimensional systems,
consists in a possibility of applying rules of the ordinary
calculus. This property is strict for α = 2 [39]. In the general
case, the noise distribution must be truncated, a requirement
that is obvious for the linear systems [42]. However, it was
numerically demonstrated that in practice cases with the
distribution without any cutoff also comply with rules of the
ordinary calculus if the system is nonlinear [14,42]. Then we
may define a new variable,

y(x) = α

K(α + θ )
|x|1+θ/αsgn (x) , (19)

which transforms Eq. (14) to the equation with the additive
noise. The asymptotic form of the solution [14]

pS(x,t) ∼ tα/(α+θ)|x|−1−α−θ (|x| → ∞) (20)

implies that variance may be convergent. It takes the form
〈x2〉 ∼ t2/(α+θ) on the condition α + θ > 2. Therefore, diffu-
sion is either anomalously weak—if the above condition is
satisfied—or accelerated [43].

B. General case

First let us consider the overdamped limit (the adiabatic
approximation) by putting m = 0 in Eq. (13). Equations take
the form

ẋ(t) = γ

β
|x|−θ/αξ (t), dξ (t) = −γ ξ (t)dt + dL(t). (21)

After transformation of the process variable according to
Eq. (19), we obtain a linear equation with the additive noise.
Its solution reads y(t) = ∫ t

0 f2(t ′)L(t ′)dt ′, where f2(t ′) =
(1 − e−γ (t−t ′))/β, and the density distribution of y has the
Lévy form, Eq. (10). Transformation to the variable x yields
the final result:

p(x,t)= α+θ

α2|x|H
1,1
2,2

⎡⎣ |x|1+θ/α

K(1 + θ/α)f (t)1/α

∣∣∣∣∣∣
(1,1/α),(1,1/2)

(1,1),(1,1/2)

⎤⎦ ,

(22)

where f (t) = Kα
∫ t

0 |f2(t ′)|αdt ′. The expansion of Eq. (22) in
the fractional powers of |x|−1 yields an approximation of the
solution for large |x| and the first term is of the form

p(x,t) ∼ f (t)α/(α+θ)|x|−1−α−θ . (23)

If α + θ > 2, the variance is convergent and it can be
exactly evaluated by using properties of the Fox functions,
in particular, an expression for the Mellin transform. A
straightforward calculation yields

〈x2〉 = − 2

πα

[
K

(
θ

α
+ 1

)]2α/(α+θ)

�

(
− 2

α + θ

)
×�

(
1 + 2α

α + θ

)
sin

(
πα

α + θ

)
f (t)2/(α+θ). (24)

Equation (22) converges to the white-noise solution in the
Stratonovich interpretation for any noise relaxation parameter
γ if time is large or, for any time, if γ → ∞.

Distributions for arbitrary γ and m have been obtained
by a numerical integration of the stochastic equations (13).
For that purpose, a second-order difference approximation,
called a Störmer method [44], was applied to the first two
equations. Since the resulting difference equations are implicit,
the parabolic interpolation scheme was applied at each step
[45]. The third equation was integrated by an Euler method
and the noise term in the i step was represented by τ 1/αLi ,
where τ was a time step [46]. We will demonstrate how the
asymptotic shape of the distribution, for a given time, depends
on m and γ . Another quantity of interest is a time dependence
of the variance.

Figure 1 presents the probability density distributions as a
function of the particle mass in the limit of the white noise at
t = 1. The distributions widen with m up to m = 1, but then
the trend goes into reverse. For the large mass, the distributions
have a form of the delta function accompanied by a little tail.

FIG. 1. (Color online) Probability density distributions at t = 1
for α = 1.5, θ = 2, γ = 100, and β = 1. The curves correspond to
the following values of m (from left to right): 5 × 105, 5 × 104, 104,
103, 0.01, 0.1, 10, and 1. The red dashed line marks the dependence
x−4.5 and the green dashed line (at the left side) the dependence x−2.5.
Each curve was obtained by averaging over 108 trajectories.
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FIG. 2. (Color online) Same as Fig. 1, but for γ = 1. The
following values of m are presented (from left to right): 5 × 105,
5 × 104, 104, 103, 102, 0.01, 0.1, and 1.

The tails are algebraic, ∼ |x|−μ, and the slope μ diminishes
with the mass. Two limiting values, μS = α + θ + 1 and
μI = α + 1, correspond to the Stratonovich, Eq. (20), and Itô,
Eq. (17), interpretations, respectively. The distributions for the
case of the finite noise relaxation time (γ = 1) are presented
in Fig. 2. They are similar to those for the white noise but
the limiting slopes are not yet reached at t = 1. Slopes for all
cases are put together in Fig. 3. The dependence μ(m) is flat
for γ = 1, whereas for the white-noise case large values of μ

dominate and there is a rapid transition to μI . Variance is finite
(μ > 3) except for the very large m. This case is separately
presented in Fig. 3: μ rises with the noise relaxation time from
the Itô value for the white noise, μ = 2.5, to μ = 3, where it
saturates.

FIG. 3. (Color online) Slopes of the tails, |x|−μ, of p(x,t) at
t = 1 for α = 1.5, θ = 2, and β = 1, as a function of m. Two cases
are presented: γ = 100 (points) and γ = 1 (squares). The limiting
values, μS and μI , are marked by the horizontal lines. Inset: μ as a
function of γ for m = 5 × 105.

FIG. 4. (Color online) Variance as a function of time for α = 1.5,
θ = 2, γ = 100, and β = 1. The curves correspond to the following
values of m (from bottom to top): 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, and
1. The red dashed lines mark the dependence t0.57 (lower) and t0.68

(upper).

Diffusion properties of the system are determined by a
long-time behavior of the variance. The case corresponding
to the short noise relaxation time is presented in Fig. 4. If m

is very small, the variance assumes the form 〈x2〉 ∼ t2/(α+θ)

for the large time. The slope becomes slightly larger if m is
not infinitesimal; it equals 0.68 for all m � 0.1. Therefore, all
cases indicate a sublinear time dependence for the large time:
the diffusion process is anomalously weak (subdiffusion). On
the other hand, if time is not very large, 〈x2〉(t) exhibits a
plateau that widens with m. Moreover, the curves reveal a
stepwise pattern that can be attributed to a competition between
the expansion and the attraction to the origin. Such a behavior
of the curves in Fig. 4 is a clear consequence of the lack
of memory. For γ = 1, the dependence 〈x2〉(t)—presented in
Fig. 5— is smooth; it assumes the asymptotic shape t0.68 for

FIG. 5. (Color online) Same as Fig. 4, but for γ = 1. The curves
correspond to the following values of m (from bottom to top on the
right side): 0.01, 0.1, 1, 2, 5, 10, 15, and 20.
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FIG. 6. (Color online) MFPT as a function of θ for finite m and γ .
The black solid lines correspond to the following values of m (from
bottom to top): 0.001, 0.01, 0.1, 1, 10, and γ = 100. Dependence on γ

for m = 0 is marked by green dotted lines: γ = 1000, 10, 1, 0.5, and
0.2 (from bottom to top). Other parameters: α = 1.5, β = 1, A = 1,
and B = 0.1. Result for the Stratonovich interpretation is marked by
the red solid line without symbols.

large m, similar to the previous case. If m is close to zero,
variance is given by Eq. (24).

Also, properties of more complicated systems are modified
when we take into account the finite relaxation time and inertia.
Let us consider the following potential:

V (x) = A

4
x4 − B

2
x2, (25)

which has the double-well shape. The mean first passage time
(MFPT) is a quantity of particular importance [47]; it was
studied in the context of the Lévy stable processes in Refs.
[48,49]. The case of the multiplicative noise was discussed
in Ref. [42]; it was demonstrated that MFPT decreases with
θ but the rate depends on the particular interpretation of the
stochastic integral. In this paper, we calculate MFPT for finite
m and γ by integration of Eq. (13) with the absorbing barriers
at x(0) = −√

B/A and x = 0. The latter boundary condition
is nonlocal due to the jumps [49]. The resulting MFPT, as a
function of θ , is presented in Fig. 6. All the curves fall since the
effective depth of the potential decreases with θ . MFPT rises
with m, because of the increasing attraction to the origin, and
becomes flat. A similar effect is observed for the decreasing γ

(stronger memory), since then the intensity of the driving noise
is smaller. In the white-noise limit, γ → ∞, the Stratonovich
result is recovered.

IV. SUMMARY AND CONCLUSIONS

We have studied a one-dimensional dynamics of a massive
particle subjected to the general Lévy stable noise, both addi-
tive and multiplicative. The driving noise has been represented
by the generalized Ornstein-Uhlenbeck process and then the
finite noise relaxation time has been taken into account. In the
linear case, the dynamical variable x is governed by the Lévy

distribution and the parameter α is the same as for the driving
noise. Therefore, diffusion is always accelerated. Distribution
converges with time to the white-noise and massless case.
Fractional moments rise with time; the rate decreases with the
stability index α and the damping coefficient β. Inertia and
noise relaxation time influence the rate of convergence to the
asymptotic distribution.

The x dependence of the multiplicative noise modifies the
distribution. Slopes of the tail depend on the multiplicative
factor G(x), which was assumed in the algebraic form, and
variance is finite if G(x) falls sufficiently fast. Variance rises
sublinearly with time for t 	 1, which indicates the subdif-
fusion. Those conclusions are valid for any noise relaxation
parameter γ . The limit γ → ∞ is of particular importance;
the distribution in this limit coincides with Eq. (20). Therefore,
the limit of the Langevin equation driven by the generalized
Ornstein-Uhlenbeck process produces the same result as the
formal variable change in the Langevin equation for the
white-noise case. The influence of inertia is more subtle. It
favors an expansion of the distribution if m is small, but for
large m distribution shrinks to the delta function. However,
even in the limit m → ∞, a little tail remains and it makes
the variance divergent. In the white-noise limit, that tail agrees
with the distribution in the Itô interpretation. On the other
hand, the Stratonovich interpretation is valid for the small
mass. Those conclusions are similar to the case of the normal
distribution [21]. Since slowly falling tails have been encoun-
tered only for the extremely large masses, convergent variance
is by no means exceptional for the Lévy stable processes:
it emerges if intensity of the multiplicative noise diminishes
sufficiently fast. The finite noise relaxation time and inertia
affect the barrier penetration: the calculated MFPT rises with
both the memory parameter 1/γ and the particle mass. In
the white-noise limit, MFPT converges to the Stratonovich
result.

The above analysis demonstrates that the Langevin for-
malism with the multiplicative Lévy noise predicts heavy,
algebraic tails of the probability density distribution and the
index μ can assume arbitrarily large values. As a consequence,
moments of an arbitrarily high order may be convergent.
μ depends not only on α and θ , as is the case for the
massless particle, but also on the inertia. Those conclusions
suggest that the presented formalism may be well suited to
describe processes characterized by a variety of the algebraic
slopes of the distribution [1–3]. In the field of finance, a
traditional Black-Scholes model of option pricing, which
includes the additive Gaussian noise, can be generalized by
introducing the Lévy flights. Need of such a generalization
is obvious [50] but, since variance of the additive Lévy
process is infinite, a truncation of the distribution becomes
necessary. On the other hand, the first-order equation, like
the Black-Scholes equation, with the multiplicative noise
predicts sufficiently steep distribution slopes to ensure the
finite variance also without any truncation, if the stochas-
tic integral is understood in the Stratonovich sense. The
present paper justifies this interpretation for the first-order
stochastic equations: it demonstrates that distribution slopes
are robust in respect to the noise relaxation time—which is
always finite for realistic problems—and the white-noise limit
exists.
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