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Critical behavior of a three-dimensional hardcore-cylinder composite system
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In this work the critical indices β, γ , and ν for a three-dimensional (3D) hardcore cylinder composite system
with short-range interaction have been obtained. In contrast to the 2D stick system and the 3D hardcore cylinder
system, the determined critical exponents do not belong to the same universality class as the lattice percolation,
although they obey the common hyperscaling relation for a 3D system. It is observed that the value of the
correlation length exponent is compatible with the predictions of the mean field theory. It is also shown that, by
using the Alexander-Orbach conjuncture, the relation between the conductivity and the correlation length critical
exponents has a typical value for a 3D lattice system.
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I. INTRODUCTION

The percolation problem of two-dimensional (2D) random
sticks was first addressed by Pike and Seager [1], with
the authors focusing on the determination of the point of
emergence of the giant component that spans the system, i.e.,
the percolation threshold [2,3]. Later, Balberg et al. [4] derived
the percolation critical exponents for the 2D random sticks
problem, demonstrating that the 2D continuum percolation
problem belongs to the same universality class as the lattice
percolation; i.e., the continuum and the lattice percolation
problems share the same critical exponents. The latter is
in agreement with the expected universality of the critical
exponents, as they depend just on the system dimension, the
symmetry of the order parameter, and the range of interactions
[5]. It was also established that the percolation threshold is
proportional to the inverse of the expected excluded volume
(3D) or area (2D) of the stick, i.e., the volume (area) around
a object into which the center of another similar object is
not allowed to enter [6–8]. With carbon nanotubes [9] and
their wide application range [10], the percolation problem of
2D and 3D random rods becomes an essential framework to
study the experimental results of the growing field of carbon
nanotube and polymer composites. One of the first works
comparing experimental results on polymers reinforced with
carbon fibers with the theoretical predictions from the excluded
volume theory and determining the bounds for the percolation
threshold of high-aspect ratio rods was presented by Clelzard
et al. [11]. This work was followed by studies related to
the determination of the percolation threshold of 2D or 3D
rod systems [12–19]. The relevance of these works for the
material science field was recently summarized in a review
article [20]. Remarkably, while for the 2D softcore problem
the determination of the critical exponents has been reported
[4], few studies [21–23] are focused on the determination of
the critical exponents for 3D hardcore caped cylinders with
an isotropic distribution. In fact, in the works of Dani and
Ogale [22,23] and Ogale and Wang [21] the system has some
degree of anisotropy in order to better model the composite
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processing conditions and the hardcore fillers have a low aspect
ratio. In this way, Dani and Ogale [22,23] calculated the
γ , σ , τ , and ν critical exponents and the fractal dimension
of the 3D continuum short-fiber composite. It was found
that the values of the critical exponents are in agreement
with the values for the 2D and 3D lattice systems and 2D
continuum systems reported in the literature. The correlation
length critical exponent was also calculated [21] and it was
found that it is in agreement with the values for 3D lattice
systems. A recent experimental study for carbon nanofiber and
polyimide composites [24] determined the critical geometrical
exponent, β, reporting that it belongs to the same universality
class of a Bethe lattice, i.e, β = 1. This experimental result
has been theoretically explained [25] through the application
of the network theory to carbon nanofiber nanocomposites, by
mapping fillers to vertices and edges to the gap between fillers.

In this work, the critical behavior for composites filled with
high-aspect ratio cylinders interacting with each other by a
short-range potential is analyzed. The critical exponents β, γ ,
and ν are calculated using a finite size scaling analysis [2] with
the objective of clarifying previous studies on the dimension
of the clusters criticality for an isotropic system with hardcore
fillers with a high-aspect ratio.

II. SIMULATION PROCEDURE

The microstructure for the isotropic materials is generated
by a derivation of a sequential packing algorithm [26] to
place randomly oriented cylinders in 3D space and using
periodic boundary conditions; i.e, when part of a cylinder
crosses the domain boundary it is cut and the segment that
crosses the boundary is translated to the opposite domain
boundary (i.e., symmetrically translated). After creating the
virtual composite, the graph theory framework is used to study
the composite’s percolation threshold. Within this framework,
the cylinders are mapped to vertices and the edges to the
minimum distance between the cylinders, which corresponds
to the maximum electric field between the two fillers [27].
A maximum value for the minimum separation distance δmax

is defined [27] and an undirected graph is constructed from
the generated microstructure. The edges (junction between
cylinders) of the graph are assigned if the minimum separation
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distance is less than δmax. The generated microstructure
corresponds to a cube with side L and five different cube
side lengths were simulated, L = 300, 400, 500, 600, and
700. Cubes were filled with cylinders with aspect ratios of
100 and δmax = 1 and the generated volume fractions ranged
from 10−4 to 4.1 × 10−3, corresponding to a number of
cylinders from a few hundred to ∼104. It is stressed that by
increasing the δmax value the number of connected cylinders
is increased, shifting the percolation threshold to lower
values.

For each data point (set of material parameters) of the results
shown, ∼104 different microstructures were simulated and all
the respective graph properties were averaged. More precisely,
using a breadth-first search algorithm [28] the size of the largest
component, giant component S, was calculated by monitoring
the size distribution, P (s), of finite clusters, excluding the size
of the largest cluster, to which a random node belongs, P (s) =
sn(s)/sav. Here, s is the number of vertices, n(s) is the cluster
size distribution, and sav is the ratio of the number of vertices
to the total number of clusters. By knowing P (s), the size of
the giant component can be calculated, S = 1 − ∑

s P (s), as
well as the mean size of a finite cluster to which a random
vertex belongs, 〈s〉 = ∑

s sP (s).

III. RESULTS AND DISCUSSION

In Fig. 1(a) the evolution of the size of the giant component,
S, as a function of the volume fraction for different domains
sizes is presented. Figure 1(b) shows the mean size of the
finite clusters, 〈s〉, as a function of the cylinder volume
fraction. Also in Fig. 1(b) it is observed that the maximum
value of 〈s〉 increases with increasing system size and it is
possible to extrapolate that, when L → ∞, 〈s〉 → ∞ at the
percolation threshold. In the system under study the size of
the giant component, S, takes the role of the order parameter
and the mean size of the finite clusters, 〈s〉, takes the role
of the susceptibility [29]. It is observed in Fig. 1 that the
order parameter changes continuously and the susceptibility
diverges at the percolation threshold. The order parameter
takes the value of zero in the most symmetric phase and
nonzero in the least symmetric phase; e.g., there is a symmetry
break or change at the phase transition. If the order parameter
changes continuously at the percolation threshold and there
is a divergence in the susceptibility, the transition is termed

(a) (b)

FIG. 1. (Color online) (a) Size of the giant component as a
function of the volume fraction. (b) Size of the finite cluster, excluding
the giant component, as a function of the volume fraction. Results
have been averaged over ∼104 samples. Error bars are smaller than
the data points.

FIG. 2. (Color online) Width of the transition versus system
dimension in a log-log plot. The lines are linear fits to the data.

second-order (Fig. 1). It is known [2] that for a second-order
phase transition the width of the transition, �, should scale
with the system size as � ∼ L− 1

ν , where ν is related with
the correlation length, ξ . The width of the transition can be
naturally calculated by fitting 〈s〉 to a Gaussian and using the
full width at half maximum (FWHM) of the Gaussian as the
value for �. Another approximation [2] is using a Gaussian to
fit dS

dφ
as a function of φ and taking the value of the Gaussian

FWHM as the value for �. The two methods, previously
described, were employed in the determination of � and the
results are summarized in Fig. 2. In Fig. 2, one can observe
that in a log-log scale there is a linear relationship between the
width of the transition, �, and the length of the domain, L. As
can be observed in Fig. 2 the two methods give similar results.
More precisely, the calculated correlation length critical
exponents are ν = 0.502 ± 0.022 for the method based on the
order parameter and ν = 0.514 ± 0.016 for the method based
on the susceptibility. The latter values lead to the conclusion
that ν is compatible with the mean field value, i.e., ν = 1/2.
Once the value for the correlation length exponent is obtained,
it is possible to determine other critical exponents using a
finite size scaling analysis (FSS) [2]. It should be pointed out
that FSS analyses have already been successfully applied to
networks [30]. In this work we use the volume fraction, φ, as
the control parameter instead of the number of vertices due to
the fact that the former can be easily related to experimental
works. As the two parameters are related by a linear relation it
is expect that the obtained critical exponents will be the same.
Close to the critical volume fraction, the correlation length, ξ ,
is comparable to the system size and therefore the size of the
giant cluster, S, should scale as

S = L− β

ν F
[
L

1
ν (φ − φc)

]
, (1)

where F is a suitable scaling function. The FSS also predicts
that 〈s〉 should scale with the system size, L, as

〈s〉 = L
γ

ν F1
[
L

1
ν (φ − φc)

]
, (2)

where the scaling function, F1, in Eq. (2) is different from
the one in Eq. (1). The latter equations are expected to scale
at φ = φc as power laws. Using the φc and the height of the
Gaussian fits to 〈s〉, presented in Fig. 1(b), it is possible to use
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(a) (b)

FIG. 3. (Color online) (a) Double logarithm plot of the size of the
giant component, at φc, for the different domain sizes, L. (b) Double
logarithm plot of the height of the fitted Gaussian for the different
domain sizes, L.

the latter scaling relations to obtain the critical exponents. For
the determination of β

ν
, the size of the giant component at φc

for the different domain sizes was used, as presented in
Fig. 3(a) in a double logarithm scale. To establish the value of
γ

ν
, the height of the fitted Gaussian for the different domains

sizes was plotted in a double logarithm scale as shown in
Fig. 3(b). The linear relations that are obtained in Fig. 3, R2 ∼
0.99 for the two fits, demonstrate that the two scaling laws,
Eqs. (1) and (2), are obeyed. The FSS theory also predicts that
near φc the curves for the different domain sizes should col-
lapse in one curve. It is possible to observe this fact in Fig. 4(a)
for the order parameter and in Fig. 4(b) for the susceptibility.
Using the obtained values for ν it is possible to determine β

and γ . So, β = 0.305 ± 0.022 using ν = 0.502 ± 0.022 and
β = 0.312 ± 0.020 using ν = 0.514 ± 0.016. The obtained
values for γ are γ = 0.918 ± 0.043 using ν = 0.502 ± 0.022
and γ = 0.940 ± 0.033 using ν = 0.514 ± 0.016, which are
close to the mean field value, γ = 1.0. Interestingly, it is known
that the hyperscaling relation [2,3]

d = 2
β

ν
+ γ

ν
(3)

should be obeyed up to the critical dimension, dc � 6.
Using Eq. (3) with the critical exponents calculated from
the data presented in Fig. 3, then d = 3.041 ± 0.075, which
is in accordance with the 3D system. The reported critical
exponents do not agree with the critical exponents for the 3D
lattice universality class [2,3], i.e, β3D = 0.4, γ3D = 1.8, and
ν3D = 0.9. As the latter exponents are not exact values we
round them to the first decimal place. On the other hand, our
calculated values for β and ν have been found in experimental
work [31] related to the critical behavior of a phase transition
in the near surface region. Interestingly, another model that

(a)

(b)

FIG. 4. (Color online) (a) SL
β
ν vs (� − �c)L

1
ν . (b) 〈s〉L− γ

ν vs
(� − �c)L

1
ν .

exhibits a tricritical point and shares the same critical exponent,
β = 0.3, was recently proposed by Cellai et al. [32] in
the context of the k-core percolation. The values of the
obtained critical exponents can be used to calculate the
conductivity critical exponent which is known to follow a
power law: σ ∼ (φ − φc)t , where σ is the system conductivity.
For a 3D system and using the previous critical exponents
[2]:

t

ν
∼ 2.2. (4)

The obtained value of Eq. (4) can be also deduced by the
determined critical exponents using the Alexander-Orbach
conjuncture [33]. The Alexander-Orbach conjuncture is based
on the diffusion on fractals and predicts that the dimensionality
of the quantized vibrational states on a fractal is close to 4

3 for
d � 2, independent of the system dimensionality. The latter
implies that

t

ν
= 1

2
(3d − 4) − β

2ν
. (5)

Solving Eq. (5) for a 3D system and with the calculated
β

ν
from Fig. 3 results in t

ν
= 2.197 ± 0.018, which is in

accordance with Eq. (4), within the determined error, for a
3D system. In particular the t has a value of 1.103 ± 0.049
using ν = 0.502 ± 0.022 and of 1.129 ± 0.036 using ν =
0.514 ± 0.016. The latter values are close to the one, 1.0,
obtained by the effective medium theory [34].

IV. CONCLUSION

In conclusion, the critical exponents for a hardcore 3D
cylinder system with short-range interactions has been ob-
tained, making use of the network theory, and these are
related through the common hyperscaling for a 3D system. In
contrast to the 2D stick system and the 3D hardcore cylinder
system, the determined critical exponents do not belong to
the same universality class as the lattice percolation. Instead,
the correlation length critical exponent has a typical mean
field value, the γ critical exponent has a value that is close
to the mean field one, and β = 0.3. Interestingly, using the
Alexander-Orbach conjuncture, it is found that the relation
between the conductivity and the correlation length critical
exponents for a 3D system is obeyed.
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