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Continuous universality in nonequilibrium relaxational dynamics of O(2) symmetric systems
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We elucidate a nonconserved relaxational nonequilibrium dynamics of a O(2) symmetric model. We drive
the system out of equilibrium by introducing a nonzero noise cross correlation of amplitude D× in a stochastic
Langevin description of the system, while maintaining the O(2) symmetry of the order parameter space. By
performing dynamic renormalization group calculations in a field-theoretic set up, we analyze the ensuing
nonequilibrium steady states and evaluate the scaling exponents near the critical point, which now depend
explicitly on D×. Since the latter remains unrenormalized, we obtain universality classes varying continuously
with D×. More interestingly, by changing D× continuously from zero, we can make our system move away from
its equilibrium behavior (i.e., when D× = 0) continuously and incrementally.

DOI: 10.1103/PhysRevE.85.021113 PACS number(s): 64.60.De, 64.60.ae, 05.10.Cc

I. INTRODUCTION

The concept of universality near critical points in equi-
librium systems has a long history and is theoretically well
developed [1]. When equilibrium systems undergo second
order phase transition at a critical point, they display uni-
versal scaling properties for thermodynamic quantities and
correlation functions. These are characterized by a set of
scaling exponents, which are universal in the sense that they
depend only on the spatial dimension d and the symmetry
of the order parameter (e.g., Ising, XY , etc.) [1], but not on
the parameters that specify the (bare) Hamiltonian. Notable
exceptions are the 2d XY model and the related models,
where the renormalization group flow is characterized by
a fixed line and consequently the scaling exponents exhibit
a continuous dependence on the value of the bare stiffness
parameter that appears in the model Hamiltonian. The idea of
universality may be readily extended to equilibrium dynamics
close to critical points, where the systems exhibit universality
through the dynamic scaling exponents, which characterize
the time-dependent unequal-time correlation functions. Their
universality classes depend upon the presence or absence of
conservation laws and the nondissipative (reactive) terms in
the underlying dynamical equations [2]. For driven dissipative
out of equilibrium systems with nonequilibrium steady states
(NESSs), the general picture about universality is still wide
open. In the recent past, attempts with significant success
have been made in classifying the physics of nonequilibrium
systems at long time and large length scales into univer-
sality classes. For example, the robustness of the standard
universality classes in critical dynamics to detailed-balance
violating perturbations are shown in Ref. [3]. In addition,
only models having conserved order parameters and spa-
tially anisotropic noise correlations exhibit novel features. In
contrast, recent works demonstrate that truly nonequilibrium
dynamic phenomena, whose steady states cannot be described
in terms of Gibbsian distributions, are rather sensitive to all
kinds of perturbations. Well-known examples include driven
diffusive models [4], and fluid- and magnetohydrodynamic
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turbulence [5–7]. Overall, in contrast to equilibrium systems,
how one may classify the universality classes for systems
out of equilibrium remains an unresolved issue to date. It
is well known that for models driven out of equilibrium,
not only dynamical properties but even the static properties
(e.g., the static correlation functions) depend crucially on the
distributions of noises which appear in a Langevin description
of the model. In light of this a useful strategy to investigate
nonequilibrium universality classes is to construct simple
models with nonthermal noises, whose dynamics will reveal
this sensitive dependence of universal properties on noise
distributions in a systematic manner.

In this paper we examine the particular issue of universality
in nonequilibrium for a simple relaxational dynamics (model
A in the terminology of Ref. [2]) of an O(2)-symmetric system
(equivalently, the classical XY model) in dimension d = dc − ε

where the upper critical dimension of the model dc = 4. The
O(2) symmetric model is a special case with N = 2 for the
more general O(N ) model. The equilibrium critical dynamics
of these models are discussed in detail in Ref. [2]. The
model is forced out of equilibrium by specific choices of the
variances of the additive noises in the Langevin equations for
the dynamical variables (see below). Phase transitions and
associated universal properties at the critical point in systems
with relaxational (model-A type in the language of Ref. [2])
dynamics have been shown to be remarkably robust against
the introduction of various competing dynamics which are
local and do not conserve the order parameter [8], including
those which break the discrete symmetry of the system [9].
We show that its NESS depend sensitively on the parameters
of the model. We use field-theoretic renormalization group
calculation [10–14] using dimensional regularization [14]
based on an ε-expansion [11] scheme.

Our principal results are as follows: (i) As a temperaturelike
variable in the model (see below) is lowered, our model
undergoes a phase transition from a high temperature param-
agnetic disordered phase to a low temperature ferromagnetic
ordered phase undergoing a second order phase transition at a
nonequilibrium critical point. (ii) Universal scaling behavior
near the critical point determined by a set of standard scaling
exponents characterizing the correlation and the response
functions that depend explicitly on the magnitude of the
noise cross correlations; in effect we obtain a continuous
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universality parametrized by the noise cross correlations, the
latter being a marginal operator in the model. The remainder
of the paper is organized as follows: In Sec. II we set
up our continuum O(2) symmetric dynamical model for a
nonconserved order parameter to study its universal properties
near the critical point. We introduce noises which break the
fluctuation-dissipation-theorem (FDT) [15], and thus drive the
system out of equilibrium, but keep the rotational invariance in
the order parameter space unbroken. In the next section, Sec.
III, we set up the field-theoretic formulation for our model in
terms of a path integral description. We use a diagrammatic
perturbation theory and calculate fluctuation corrections to
different vertex functions up to the two-loop order. We then
use a minimal subtraction scheme to calculate different critical
exponents within an ε expansion. In Sec. IV we summarize
and discuss the implications of our results.

II. MODEL EQUATIONS

In this section we set up our model equations to describe
a simple nonequilibrium generalization of the relaxational
(model A) dynamics in the overdamped limit of a non-
conserved O(2) symmetric order parameter. The equilibrium
characteristics of this dynamical model have been extensively
discussed in the literature; see, e.g., Ref. [2]. We consider
a second order phase transition described by a vector order
parameter φi, i = 1, 2. As we furthermore assume isotropy
in order parameter space, the static critical properties are
described by an O(2)-symmetric φ4-type Landau-Ginzburg-
Wilson free energy functional in d space dimensions,

F [φi] =
∫

ddx

[
τ

2

(
φ1

2 + φ2
2
) + 1

2
{(∇φ1)2 + (∇φ2)2}

+ u

4!

(
φ1

2 + φ2
2
)2

]
, (1)

where τ = (T − Tc)/Tc is the bare relative distance from
the mean-field critical temperature Tc and u > 0 is a (bare)
coupling constant. The free energy functional F is manifestly
rotation invariant in the order parameter space. This F

determines the equilibrium probability distribution for φi .
Free energy functional F allows us to compute any of the
two (independent) critical exponents, e.g., the anomalous
dimension η and the correlation length exponent ν, by means
of renormalization group procedure, based on diagrammatic
perturbation theory with respect to the static nonlinear cou-
pling u within a systematic expansion in terms of ε = 4 − d

about the static upper critical dimension dc = 4. These expo-
nents have well-defined physical meaning. For example, the
exponent η characterizes how the order parameter correlation
function at criticality decays in a spatial power-law fashion,
〈φi(r)φj (r′)〉 ∝ 1/|r − r′|d−2+ηδij , or equivalently of the static
susceptibility χ (q) ∝ 1/q2−η where q is a wave vector, and the
exponent ν describes how the correlation length ξ diverges as
the renormalized critical temperature Tc is approached, ξ ∝
|T − Tc|−ν . Further, the fluctuation-corrected true transition
temperature Tc is smaller as compared to the mean-field critical
temperature T0c, i.e., τ0c = Tc − T0c < 0.

In contrast to equilibrium systems, for systems out of
equilibrium, there is no detailed balance and even the static

quantities must be calculated from the underlying dynam-
ics directly. Dynamics of descriptions of such systems in
terms of continuum degrees of freedom are often based
on stochastically driven Langevin equations of motion for
the relevant dynamical degrees of freedom. For Langevin
equations describing processes relaxing toward a thermal
equilibrium state the correlation functions of a given degree
of freedom and the corresponding susceptibility are connected
through the FDT, which in turn fixes specific relations between
the variances of the noises and the diffusivities. For example,
the nonconserved relaxational (model A) dynamics for a vector
order parameter φi is given by

∂φi

∂t
= −�

δF

δφi

+ gi, (2)

where i = 1,2; F is given by Eq. (1), � is a kinetic
coefficient, and gi are temporally δ-correlated zero-mean
Gaussian stochastic noises with specified variances. Assuming
spatial translational invariance we can write generally

〈gi(q,t)gj (−q,0)〉 = 2Dij (q)δ(t). (3)

If we now set Dij (k,t) = 2KBT �δij , where KB is the
Boltzmann constant and T is the temperature, then the FDT is
obeyed and the corresponding Fokker-Planck equation admits
a steady-state equilibrium solution Peq ∼ exp[−F/KBT ]. In
contrast, in nonequilibrium situations there are no general
relations linking the noise variance and the kinetic coefficients
and the FDT is broken. Since noises in a Langevin description
describe the effects of the environment (e.g., thermal baths),
such nonequilibrium noises reflect external drives. What are
the simplest choices of the noise variances which explicitly
break the FDT, without having to break the O(2) symmetry?
One possible way to do that is to introduce two different noise
strengths in the noise correlation matrix and break the FDT.
This can be realized by the choice

〈g1(q,t)g1(−q,0)〉 = 2�D1δ(t),

〈g2(q,t)g2(−q,0)〉 = 2�D2δ(t), (4)

〈g1(q,t)g2(−q,0)〉 = 0.

Such a choice as above will certainly break the FDT but
unfortunately will break the O(2) symmetry of the ensuing
dynamics as well. Reference [16] investigated nonequilibrium
critical properties of O(n)-symmetric models with reversible
mode-coupling terms. Specifically, a variant of the model of
Sasvári, Schwabl, and Szépfalusy (SSS) is studied, where
violation of detailed balance is incorporated by allowing the
order parameter and the dynamically coupled conserved quan-
tities to be governed by heat baths of different temperatures.
They, however, find that upon approaching the critical point
detailed balance is restored, and the equilibrium static and
dynamic critical properties are recovered. Yet another option
is to couple the system with the corresponding conserved
angular momentum and introduce dynamical anisotropy in
the noise for the conserved quantities, i.e., by constraining
their diffusive dynamics to be at different temperatures T‖
and T⊥ in d‖- and d⊥-dimensional subspaces, respectively;
see Ref. [17] for detailed calculation for the SSS model for
planar ferro- and isotropic antiferromagnets. Reference [17]
showed the equilibrium fixed point (with isotropic noise) to
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be stable with respect to these nonequilibrium perturbations,
and the familiar equilibrium exponents therefore describe the
asymptotic static and dynamic critical behavior. Novel critical
features are only found in extreme limits, where the ratio of the
effective noise temperatures T‖/T⊥ is either zero or infinite. In
a similar study, Ref. [18] discussed nonequlibrium dynamics
in a liquid-gas model with reversible mode couplings. The
model is driven out of equilibrium by introducing different
temperatures for different dynamical variables, or, by having
anisotropic noises. However, no new genuine nonequilibrium
stable fixed point is found (within one-loop calculations).
Similar approaches to nonequilibrium critical dynamics of the
relaxational models C and D (in the language of Ref. [2]) are
discussed in Ref. [19] and involve coupling a nonconserved
and conserved order parameter, respectively, with a conserved
density, where the order parameter and density fields are in
contact with heat baths at different temperatures. Within a
one-loop calculation it finds, in certain cases, continuously
varying static and dynamic critical exponents, as a function of
a dimensionless nonequilibrium parameter in the model. An
alternative route to violation of detailed balance in the simple
model A-type relaxational dynamics for the order parameter
φi is to introduce nonzero noise cross correlations which will
make the noise matrix off-diagonal. This will break the FDT
as the noise matrix is then not proportional to the kinetic
coefficient matrix (which is proportional to the unit matrix in
the present case). We take cross noise strengths as D̂(q). We
write

〈g1(q,t)g1(−q,0)〉 = 〈g2(q,t)g2(−q,0)〉 = 2D�δ(t),
(5)

〈g1(q,t)g2(−q,0)〉 = 2D̂(q)�δ(t).

In general the function D̂(q) is a complex function of wave
vector q.

The form of the function D̂(q) may be restricted by
demanding rotational invariance of the noise variance matrix
[equivalently by demanding O(2) symmetry of the dynamics].
Under a rotation by an arbitrary angle θ in the order parameter
space the noise variance matrix transforms to

N ′ = �

(
cos θ sin θ

− sin θ cos θ

) (
D D̂

D̂∗ D

)(
cos θ − sin θ

sin θ cos θ

)
,

(6)

where the noise variance matrix before rotation is

N = �

(
D D̂

D̂∗ D

)
. (7)

Now we demand N = N ′ due to rotational invariance.
This after a simple algebra then yields that the noise
cross correlation amplitude should be fully imaginary or
D̂(q) = −D̂∗(q). Since in the real space D̂(r) must be a real
function, we find D̂(q) must be an odd function of q. In
order for the noise cross correlation to have the same naı̈ve
dimension as D [so that both D and D̂ are equally relevant in
a renormalization group (RG) sense], we set D̂(q)D̂(q) = D2

×
where D2

× is a constant (and has the same dimension as D2).
We henceforth replace D̂(q) by iD̂(q) where D̂(q) is now
completely real. This reflects the fully imaginary nature of

the cross correlation explicitly. Thus the explicit forms of the
two equations of motion for φ1 and φ2 are

1

�

∂φ1

∂t
= −τφ1 + c∇2φ1 − u

3!
φ3

1 − u

3!
φ1φ

2
2 + g1

�
,

(8)
1

�

∂φ2

∂t
= −τφ2 + c∇2φ2 − u

3!
φ3

2 − u

3!
φ2φ

2
1 + g2

�
,

complemented by the noise variances as below:

〈g1(q,t)g1(−q,0)〉 = 〈g2(q,t)g2(−q,0)〉 = 2D�δ(t),
(9)

〈g1(q,t)g2(−q,0)〉 = 2iD̂(q)�δ(t).

One may in addition consider including a conserved angular
momentum as a slow variable in the problem (see, e.g., model
E in Ref. [2]). We do not do that here for simplicity. Model
equations (8) suffice for our purposes of exploring nonuniver-
sal features in a simple setting. Are there limits on the value of
D× in this model? To obtain that we demand the noise variance
matrix to have eigenvalues which are real positive or zero. The
eigenvalues concerned are D ± D×. Thus |D×| � D, or in
terms of a dimensionless number N× = (D×/D)2, N× � 1.
In the subsequent calculations we will find that N× enters into
the expressions of different scaling exponents explicitly.

Equations of motion (8) are written in an O(2) invariant
representation. Using the equivalence between O(2) and U(1)
representations, one may write an equivalent U(1) representa-
tion of the dynamics. The free energy in the U(1) representation
takes the form

FU [ψψ∗] =
∫

ddx

[
τψψ∗ + (∇ψ)(∇ψ∗) + u

3!
(ψψ∗)2

]
,

(10)

where complex fields ψ = 1√
2
(φ1 + iφ2); ψ∗ is the complex

conjugate of ψ . The corresponding Langevin equations of
motion in the overdamped limit are given by

∂ψ

∂t
= −�

δFU

δψ∗ + ξ, (11)

where zero-mean Gaussian distributed complex noise ξ has
the following correlations in the Fourier space:

〈ξ (q,t)ξ (−q,0)〉 = 0 = 〈ξ ∗(q,t)ξ ∗(−q,0)〉,
(12)

〈ξ (q,t)ξ ∗(−q,0)〉 = 2D�δ(t) + 2iD̂(q)�δ(t).

Thus introduction of noise cross correlations in the O(2)
description is equivalent to adding an imaginary and odd
function of q in the variance 〈ξξ ∗〉. Before we embark
upon detailed calculation let us consider possible physical
(microscopic) realizations of our continuum model in terms
of stochastic lattice-gas models. However, what we discuss
below does not fully and precisely define a microscopic
model, but rather outlines broad features that an eventual
appropriate microscopic lattice-gas type realization should
possess. Consider a system of XY [O(2) spins] either on
a (hypercubic) lattice or a continuum in d dimensions,
interacting with an additional mobile species in the system,
which diffuses randomly, undergoing symmetric exclusion
process (SEP) to any of the nearest sites, if vacant. A simple
model of interaction between these two species could be where
each diffusing particle carries an XY spin attached to it, and
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the nearest-neighbor exchange coupling Jij that defines the
XY model is related to the local particle density ni(t) at site
i via Jij being a function of ni(t)nj (t). Next, noting that
the microscopic dynamics of both the spins and particles
are stochastic, characterized by two sets of random numbers
g̃1i(t) and g̃2i(t), respectively, we impose that g̃1i and g̃2i are
cross-correlated, with the cross-correlation function being of
the form (in the continuum limit) Aδ(x1 − x2) + B(x1 − x2),
where x1 and x2 are two points in the lattice, A is a
numerical constant and B(x) is an odd function of position
x having the same dimension as δ(x). The presence of the
odd function B(x1 − x2) in the joint probability ensures a
lack of reflection invariance of the underlying stochastic
microscopic dynamics. Thus the measured quantities (e.g.,
correlation functions of appropriate densities) should reflect
this lack of reflection invariance. At this level, the dynamics
for the additional species is clearly conserving. This implies
there will be no time scale present on which the additional
variables of the mobile species can be treated as fast and
eliminated to yield an effective equation of motion for the
XY spins alone with the effects of the diffusing species
buried in the additive noises in the effective spin equations.
However, if particle nonconservation is introduced, e.g.,
via evaporation-deposition effects, the local particle density
dynamics will be fast and then may be eliminated to produce
an effective spin dynamics. Since the noises in such effective
theories contain information about the already eliminated fast
degrees of freedom (in this case the local diffusing particle
density), there will be nonzero noise cross correlations of
specified structures as above, due to the particular chosen
structure of the underlying reflection invariance breaking
microscopic dynamics. Alternatively, one may introduce the
driving as a temporally δ-correlated fluctuating magnetic field
h(x,t) = (hx,hy) with hx and hy having short ranged spatial
correlations as in Eq. (9). In both cases, noise cross correlations
of appropriate structures will be generated in the effective
Langevin description. With this short background in mind,
let us now investigate the universal scaling properties of the
model described by the Langevin equations (8) together with
the noise variances (9). The presence of nonlinear terms in
Eqs. (8) rules out exact solutions, and we resort to perturbative
calculations that we discuss below.

III. NONEQUILIBRIUM STEADY STATES

Let us first consider the high temperature phase of the
system. At high temperature with τ > 0, the system is in
the paramagnetic phase, i.e., 〈φi(x,t)〉 = 0, where 〈. . .〉 means
averaging over the noise distributions. The correlation length
ξ remains finite for all τ > 0. The only effect of the noise
cross correlations is to make the cross-correlation function
〈φ1(x,t)φ2(0,0)〉 nonzero with a finite correlation length ξ .
Further, as in equilibrium critical dynamics, the paramagnetic
phase is linearly stable and the fluctuations have a finite
lifetime for all wave vectors. Nevertheless, the FDT is violated
for all τ > 0 due to the noise cross correlations.

Near the critical point, the system becomes scale invariant
and the correlation length ξ diverges, leading to the emerging
macroscopic physics near the critical point being vastly differ-
ent from the paramagnetic phase. A quantitative description

of the nature of correlations near the critical point requires
the principles and formalisms of the dynamic renormalization
group (DRG), which we execute here by using a field-theoretic
framework. Detailed discussions of the technical aspect of
field-theoretic DRG calculations are well documented in the
literature; see, e.g., Refs. [10,20]. In order to set up the
background let us examine the linearized version of the model
equations (8) together with the noise correlations (5) at τ = 0
by dropping all the nonlinear terms (u = 0). The system re-
mains O(2) invariant, but the FDT is already broken at this lin-
ear level due to the noise cross correlations. Obviously, the field
correlations from the linearized model equations can be exactly
calculated. This linear theory, in the critical region, defined
by τ = 0, is massless resulting in divergent long wavelength
fluctuations, as can be seen by explicit calculations of the cor-
relation functions Cij = 〈φi(x,t)φj (0,0)〉, i = 1,2, which may
be written down in a scaling form at the critical point τ = 0:

C11(x,t) = C22(x,t) = x2−df (t/xz), (13)

where f is an analytic function of its argument. The
cross-correlation function C12 (and by symmetry C21)
displays the same scaling form, but with a different amplitude,
and it is an odd function of x.

What is the nature of these diverging fluctuations when
the nonlinear terms are present (u > 0)? The presence of
nonlinear terms no longer allows for exact solutions, in
contrast to the linearized theory. However, this question may
be systematically addressed via standard implementation of
DRG procedure, based on a perturbative expansion in the
small coupling u about the linear theory. The perturbative
corrections to the correlation function may be equivalently
viewed as arising from modifications (renormalization) of the
parameters τ, u, �,D and the dynamical fields φ1 and φ2.
Renormalizability of the theory ensures that correlator Cij

will retain scaling forms similar to Eq. (13) with exponents
different from those appearing in Eq. (13) and new scaling
functions at (renormalized) τ = 0:

C11(x,t) = C22(x,t) = x2−d−ηfs(t/x
z), (14)

where η and z are the anomalous dimension and dynamic ex-
ponents, respectively, and fs is a new scaling function [21]. For
the linear theory described above, η = 0 and z = 2. The non-
linear coupling u is expected to change these exponents for the
linear theory. The equilibrium critical dynamics of several non-
linear problems have been described in Ref. [2]. In our subse-
quent analysis below we assume renormalizability and justify
it post facto by a low order (up to two-loop) perturbation theory.

Operationally, the DRG procedure is conveniently per-
formed in terms of a path integral description based on a
dynamic generating functional, which is to be constructed out
of the Langevin equations (8) and the corresponding noise
variances given by Eq. (9) following standard procedures
[13,22]. The dynamic generating functional for the present
model is given by

Z =
∫

Dφ1Dφ2Dφ̂1Dφ̂2 exp

[
− D

�

∫
ddk

(2π )d
φ̂1φ̂1

− D

�

∫
ddk

(2π )d
φ̂2φ̂2 − i

∫
ddk

(2π )d
φ̂1

D̂k

�
φ̂2

]
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× exp

[
i

∫
ddk

(2π )d
φ̂1

{
1

�
∂tφ1 + δF

δφ1

}]

× exp

[
i

∫
ddk

(2π )d
φ̂2

{
1

�
∂tφ2 + δF

δφ2

}]
, (15)

where φ̂1 and φ̂2 are conjugate response fields corresponding
to the order parameter fields φ1 and φ2 used to obtain the
noise-averaged generating functional Z . Clearly, with our
choice of the noise cross correlations, the generating functional
respects the O(2) symmetry of the underlying dynamics, but
explicitly breaks the FDT. It now remains to be seen whether
this breakdown of the FDT remains valid even for the effective,
renormalized version of this theory or it is restored in the long
wavelength limit. In the above we have used the Ito prescription
[23] while writing down the generating functional (15).

The perturbative calculational framework begins with the
construction of the perturbation expansion of one-particle
irreducible Feynman diagrams for all possible correlations
and the corresponding vertex functions constructed out of
the fields φ1, φ̂1, φ2, and φ̂2. Such a perturbation expansion
is meaningful only when the coupling u is small. This is
generally accomplished using the standard DRG procedure,
which involves an order by order expansion about dc − d,
where dc is the upper critical dimension and d is the physical
space dimension. As a result, the renormalized coupling uR

flows to small values, of order ε = dc − d. As for equilibrium
field theories, a straightforward scaling analysis yields that
dc = 4 for this model: We scale x → bxx and t → bt t in
the action, where bx > 1 and bt > 1 are arbitrary parameters,
and find out how the other quantities scale to maintain scale
invariance. It is seen from the bare equation, leaving aside
the nonlinear terms, that we must have bt = b2

x = b2 in order
to have dynamical scaling, where we have taken bx = b. For
the action to remain invariant, the fields φ1 and φ2 pick up
a canonical dimension d/2 − 1 and the coupling constant u

a dimension 4 − d. Hence the critical dimension at which
the coupling constant u becomes dimensionless is dc = 4.
This yields that the perturbation theory will be infrared (IR)

singular for d � 4, and consequently the system will show
nontrivial critical behavior in that regime, while for d � 4
the perturbation theory contains ultraviolet (UV) divergences,
and the (static) mean-field exponents together with dynamic
exponent z = 2 (dynamic exponent of the linearized theory)
will describe the system at the critical point. To make the
field theory UV renormalized it is needed to introduce the
multiplicative renormalization constants in order to render
all the nonvanishing two- and four-point functions finite.
Within the DRG procedure this is achieved by demanding
the renormalized vertex functions in the theory, or their
appropriate momentum and frequency derivatives, to be finite
when the corresponding loop integrals representing fluctuation
corrections are considered as functions of conveniently chosen
frequency and momentum, well outside the IR regime. In
order to compute the associated one- and two-loop momentum
integrals we employ the dimensional regularization scheme
and choose τ = μ2 as our normalization point, where μ

is an intrinsic momentum scale of the renormalized theory.
From the renormalization constants (Z factors) that render
the underlying field theory finite in the ultraviolet (UV),
one may then derive the RG flow equation, which describes
how correlation functions change under scale transformations.
Since the theory becomes scale invariant in the vicinity of
a critical point (or an RG fixed point), one may employ
the information previously gained about the UV behavior to
access the physically interesting power laws governing the
infrared (IR) regime at the critical point (τ ∝ T − Tc → 0) for
long wavelengths (wave vector q → 0) and low frequencies
(ω → 0). The scaling behavior of the correlation or vertex
functions may be extracted by finding their dependence on μ

by using the RG equation.
Ward identities due to the rotational invariance of the model

(in the order parameter space) ensures the following exact
relations between different vertex functions:

�φ̂1φ1
(k,ω) = �φ̂2φ2

(k,ω) = �11(k,ω), (16)

�φ̂1φ̂1
(k,ω) = �φ̂2φ̂2

(k,ω) = �20(k,ω) (17)

and

�φ̂1φ1φ1φ1
(k1,k2,k3, − k1 − k2 − k3,ω1,ω2,ω3, − ω1 − ω2 − ω3)

= �φ̂2φ2φ2φ2
(k1,k2,k3, − k1 − k2 − k3,ω1,ω2,ω3, − ω1 − ω2 − ω3)

= 2�φ̂1φ1φ1φ2
(k1,k2,k3, − k1 − k2 − k3,ω1,ω2,ω3, − ω1 − ω2 − ω3)

= 2�φ̂2φ2φ2φ1
(k1,k2,k3, − k1 − k2 − k3,ω1,ω2,ω3, − ω1 − ω2 − ω3)

= �13(k1,k2,k3, − k1 − k2 − k3,ω1,ω2,ω3, − ω1 − ω2 − ω3). (18)

Thus in the present model, the only UV-divergent
two- and four-point vertex functions which require
multiplicative renormalization are (i) ∂ω�11(k,ω), (ii)
∂k2�11(k,ω), (iii) �11(k,ω), (iv) �20(k,ω), and (v)
�13(k1,k2,k3, − k1 − k2 − k3,ω1,ω2,ω3, − ω1 − ω2 − ω3).
Each of them is to be rendered finite through multiplicative

renormalization by means of introducing a Z factor. Thus
there are five Z factors in total. However, there are four
parameters (�,D, τ, u) and two fields (φ̂i , φi, i = 1 or, 2),
thus six altogether, available for renormalization; thus this
leaves us at liberty to choose one of the renormalization
constants in a convenient manner.
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φ φ

φφ

21

1 1

1 1

φφ φ1 φ2
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φ φ
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φ
1 2

2 1
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FIG. 1. Representative two-loop diagrams coming from nonzero noise cross correlations contributing to �G(k,ω) (left) and �D(k,ω) (right).
A line with a filled circle represents a correlation function, a line without any filled circle represents a propagator. We do not show all the
diagrams here.

The renormalized kinetic coefficient �R , noise strength DR ,
mass τR , and coupling constant uR are defined in terms of the
above vertex functions as

∂ω�11(0,0) ≡ i

�R

, ∂k2�11(0,0) ≡ 1, �11(0,0) ≡ τR,

(19)

�20(0,0) ≡ −2DR

�R

, �13(ki = 0, ωi = 0) ≡ uR.

The above definitions of the renormalized parameters allow
us to calculate different renormalization Z factors in the
problem.

The perturbation theory here is constructed out of the
bare propagator and correlation functions, which are to
be read off from the harmonic part of the action func-
tional. From the generating functional we get the bare
propagators as

〈φ1(k,ω)φ̂1(−k,−ω)〉0 ≡ G0
1(k,ω) = i

− iω
�

+ τ + k2
= 〈φ2(k,ω)φ̂2(−k,−ω)〉 = G0

2(k,ω) (20)

and bare correlators as

〈φ1(k,ω)φ1(−k,−ω)〉0 ≡ C0
1 (k,ω) = 2D

�
[

ω2

�2 + (τ + k2)2
] = 〈φ2(k,ω)φ2(−k,−ω)〉0 ≡ C0

2 (k,ω),

〈φ1(k,ω)φ2(−k, − ω)〉0 ≡ C0
x (k,ω) = 2iD̂(k)

�
[

ω2

�2 + (τ + k2)2
] . (21)

The self-energy �G(k,ω) is formally given by the Dyson equation:

G−1
1 (k,ω) = − iω

�
+ τ + k2 − �G(k,ω) = G−1

2 (k,ω) = �11(k,ω). (22)

In the same way one may define �D(k,ω) through the relation

�20(k,ω) = 2D + �D(k,ω). (23)

We now calculate fluctuation corrections to the relevant vertex functions. One-loop diagrammatic contributions to �13 do not
receive any contribution from D× and are structurally identical to their equilibrium counterparts. Similarly one-loop corrections to
�G(k,ω) are independent of D× and are identical to the corresponding equilibrium contributions. In contrast, there are additional
two-loop D×-dependent diagrammatic corrections to �G(k,ω) and �D(k,ω) whose evaluations require careful consideration (see
Fig. 1).

We separately consider the following contributions ∂ω�G(0,0), ∂k2�G(0,0), and �D(0,0). The cross-correlation contributions
�×

G(k,ω) and �×
D(k,ω) to �G(k,ω) and �D(k,ω), respectively, which do not arise in equilibrium, are all even in D̂(q) (or in D×),

since the model must be invariant under D× ↔ −D×. Such contributions to �G(k,ω) are of the form (up to numerical factor)

�×
G(k,ω) = u2

(
2

6
− 1

9

) ∫
ddq1

(2π )d
ddq2

(2π )d
D̂(q1)(
τ + q2

1

) D̂(q2)(
τ + q2

2

) �[ − iω + �q2
1 + �q2

2 + �{3τ + (k − q1 − q2)2}] , (24)

and

�×
D(k = 0,ω = 0) = u2

(
1

3
− 1

18

)
1

�

∫
ddq1

(2π )d
ddq2

(2π )d
D̂(q1)(
τ + q2

1

) D̂(q2)(
τ + q2

2

) D

τ + (q1 + q2)2

1

3τ + q2
1 + q2

2 + (q1 + q2)2
, (25)
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where k and ω are the external wave vector and frequencies, respectively. We separately need to find out the k0ω and k2ω0 parts
of of the integral (24). We need to calculate ∂

∂a
�×

G(k,ω)|k=0,ω=0 where a = k2, ω. Let us consider a = ω:

∂

∂ω

∫
ddq1

(2π )d
ddq2

(2π )d
D̂(q1)(
τ + q2

1

) D̂
(
q2

)
(
τ + q2

2

) 1

−iω + �
[
3τ + q2

1 + q2
2 + (q1 + q2)2

] . (26)

Since we are using an ε expansion based on a minimal subtraction scheme, we need to extract the diverging parts of Eq. (26), to
be given by poles in ε. It is noteworthy that integral (26) has a structure very similar to and has the same logarithmic divergence
(by simple power counting) as its equilibrium counterpart [i.e., when D̂(q) is replaced by D in Eq. (26)]. Clearly, the dominant
contribution to it comes from p = q1 + q2 ∼ 0, which controls the critical behavior of this integral. We write (retaining only the
small-p contribution), up to constants and numerical factors,

∂

∂ω
�×

G(k,ω)

∣∣∣∣
k=0,ω=0

∼ ∂

∂ω

∫
ddq1

(2π )d
ddq2

(2π )d
D̂(q1)(
τ + q2

1

) D̂(p − q1)(
τ + q2

2

) 1

−iω + �
[
3τ + q2

1 + q2
2 + p2

]

∼ ∂

∂ω

∫
ddq1

(2π )d
ddq2

(2π )d
D̂(q1)(
τ + q2

1

) D̂(q1)(
τ + q2

2

) 1

−iω + �
[
3τ + q2

1 + q2
2 + p2

]

= D2
×

∂

∂ω

∫
ddq1

(2π )d
ddq2

(2π )d
1(

τ + q2
1

) 1(
τ + q2

2

) 1

−iω + �
[
3τ + q2

1 + q2
2 + (q1 + q2)2

]

= −i
1

3�2
D2

×

∫
ddq1

(2π )d
ddq2

(2π )d
1(

τ + q2
1

) 1(
τ + q2

2

) 1

τ + (q1 + q2)2

1

3τ + q2
1 + q2

2 + (q1 + q2)2
, (27)

where we have replaced integral (26) by its dominant contribution coming from p ∼ 0. The last line of Eq. (27) is obtained by
symmetrizing the previous line. The reduced integral (27) may now be evaluated exactly in the same way just as its equilibrium
counterpart (i.e., when D× is replaced by D). In a similar way, the cross-correlation contribution to the anomalous dimension
(again logarithmically divergent on a naı̈ve power counting basis) may be written as (up to constants and numerical factors)

∂

∂k2
�×

G(k,ω)

∣∣∣∣
k=0,ω=0

∼ D2
×

∂

∂k2

∫
ddq1

(2π )d
ddq2

(2π )d
1(

τ + q2
1

) 1(
τ + q2

2

) 1

τ + (k + q1 + q2)2
, (28)

and the cross-correlation contributions to noise strengths (25) become (up to constants and numerical factors)

�×
D(0,0) ∼ DD2

×

∫
ddq1

(2π )d
ddq2

(2π )d
1(

τ + q2
1

) 1(
τ + q2

2

) 1

τ + (q1 + q2)2

1

3τ + q2
1 + q2

2 + (q1 + q2)2
. (29)

In the above, in our evaluations of the cross-correlation contributions ∂
∂a

�×
G(k,ω)k=0,ω=0, a = k2,ω and �×

D(0,0), we have picked
up the dominant contribution given by p = q1 + q2 ∼ 0. Subdominant contributions are neglected and are expected to be small
as we heuristically justify: For example, for p � q1, the integrand in �×

D(0,0) [see Eq. (29) above] is

D̂(q1)(
τ + q2

1

) D̂(q2)(
τ + q2

2

) D

τ + (q1 + q2)2

1

3τ + q2
1 + q2

2 + (q1 + q2)2
∼ D̂(q1)(

τ + q2
1

) D̂(p)

τ + p2

D

τ + p2

1

3τ + 2p2
, (30)

which can be both positive and negative since D̂(q1) and D̂(p) are odd functions of their arguments, and hence contributions
from outside the dominant region p ∼ 0 will be small due to mutual cancellations. Our results, although backed up by heuristic
arguments, nevertheless bring out remarkable features, as we shall see below. Thus after putting every diagrammatic contribution
(up to two-loop order) together we obtain for �G(k,ω)

�G(k,ω) = 2uD

3

∫
ddq

(2π )2

1

τ + q2
+ �u2D2

(
1

2
+ 1

18
+ 1

9

) ∫
d2q1

(2π )d
ddq2

(2π )d
1

τ + q2
1

× 1

τ + q2
2

1

−iω + �{3τ + q2
1 + q2

2 + (k − q1 − q2)2}

+�u2D2
×

(
2

6
− 1

9

) ∫
d2q1

(2π )d
ddq2

(2π )d
1

τ + q2
1

1

τ + q2
2

1

−iω + �{3τ + q2
1 + q2

2 + (k − q1 − q2)2} . (31)

Similarly the two-loop contributions to �D(0,0) come out to be

�D(k = 0,ω = 0) = u2D3

�

(
1

6
+ 1

18

) ∫
d2q1

(2π )d
ddq2

(2π )d
1

τ + q2
1

1

τ + q2
2

1

3τ + q2
1 + q2

2 + (q1 + q2)2

1

τ + (q1 + q2)2

+ u2DD2
×

�

(
1

3
− 1

18

)∫
d2q1

(2π )d
ddq2

(2π )d
1

τ + q2
1

1

τ + q2
2

1

τ + (q1 + q2)2

1

3τ + q2
1 + q2

2 + (q1 + q2)2
.

(32)
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FIG. 2. A representative two-loop diagram contributing to
�×(k,ω). Symbols have meanings as before.

Although formally there exists two-loop diagrammatic correc-
tions (there are no one-loop corrections) to D̂(k), all of these
vanish in the long wavelength limit due to the fact that D̂(k)
is an odd function of wave vector k. In Fig. 2 we consider one
such two-loop diagram:

The corresponding expression �×(k,ω) is (up to constants
and numerical factors)

�×(k,ω) ∼
∫

ddq1

(2π )d
ddq2

(2π )d
D̂(q1)

τ + q2
1

1

τ + q2
2

1

τ + (q1 + q2)2

× 1

3τ + q2
1 + q2

2 + (q1 + q2)2
. (33)

Clearly, the integral in Eq. (33) vanishes. We shall come back
to this issue of nonrenormalization of D×(k) again at the end.

Finally, to complete evaluating diagrammatic corrections
we now evaluate the �13 up to one-loop order at zero external
wave vector and frequency. There are no contributions from
D× to the four point vertex function. We obtain

�(3,1) = u2D
μ−ε

2(4π )d
�(ε/2)

[
1

4
+ 1

36

]
. (34)

After evaluating all the two point and four point vertex
functions we can now renormalize vertex functions �(11)(0,0),
∂

∂ω
�(11)(ω = 0,0), ∂

∂k2 �(11)(0,k = 0), and �(3,1)(0,0). We now
define renormalization Z factors for the present model.
We begin by introducing the renormalized fields φR

i

and φ̂R
i :

φR
i = Z1/2φi, φ̂R

i = Ẑ1/2φ̂i . (35)

This implies that the renormalized vertex functions become

�R

(N,N̂ )
= Z−N/2Ẑ−N̂/2�(N,N̂). (36)

We further define the renormalized parameters as

DR = ZDD , τR = Zττμ−2 ,
(37)

uR = ZuuAdμ
d−4, �R = Z��,

where μ is the scale factor introduced to make the renormal-
ized parameters dimensionless. Here Ad = 1

2d−1πd/2 . Thus we
get

∂

∂ω
�R

(11)(ω = 0,0) = Z−1/2Ẑ−1/2 i

�

[
1 + 2D2u2μ−2ε

3(4π )dε
ln

(
4

3

)
+ 2D2

×u2μ−2ε

9(4π )dε
ln

(
4

3

)]
≡ i

�R
= i

Z��
, (38)

∂

∂k2
�R

(11)(0,k = 0) = iZ−1/2Ẑ−1/2

[
1 + D2u2μ−2ε

9(4π )dε
+ D2

×u2μ−2ε

27(4π )dε

]
= i, (39)

�R
(20)(0,0) = −Ẑ−1 2D

�

[
1 + 2D2u2μ−2ε

3(4π )dε
ln

(
4

3

)
+ 5D2

×u2μ−2ε

6(4π )dε
ln

(
4

3

)]
= −2DR

�R
, (40)

�R
(3,1)(0,0) = Ẑ−1/2Z−3/2 u

6

[
1 − 10

6ε
Duμ−ε

]
, (41)

�R
(11)(0,0) = Z−1/2Ẑ−1/2τ

[
1 − 4uDμ−ε

3(4π )d/2ε
− 2D2u2μ−2ε

3(4π )dε

(
2

ε
+ 1

)
− 2D2

×u2μ−2ε

9(4π )dε

(
2

ε
+ 1

)]
= τR, (42)

from which we can calculate all the Z factors. We use the freedom to choose one of the Z factors freely to set ZD = 1. Henceforth
we set D = 1 for simplicity without any loss of generality. Assuming D2

× = N×D2, where N× is any dimensionless parameter,
the other Z factors are obtained up to two-loop order as follows:

Z� = 1 − 1

36

(uAdμ
−ε)2

ε

(
6 ln

4

3
− 1

)
− 1

108
N×

(uAdμ
−ε)2

ε

(
6 ln

4

3
− 1

)
, (43)

Ẑ = 1 + 1

36

(uAdμ
−ε)2

ε
+ 11

72
N×

(uAdμ
−ε)2

ε
ln

4

3
+ 1

108
N×

(uAdμ
−ε)2

ε
, (44)

Z = 1 + 1

36

(uAdμ
−ε)2

ε
− 11

72
N×

(uAdμ
−ε)2

ε
ln

4

3
+ 1

108
N×

(uAdμ
−ε)2

ε
, (45)

Zτ = 1 − 2

3

(uAdμ
ε)

ε
− 1

18

(
7

2
+ 6

ε

)
(uAdμ

−ε)2

ε
− 1

54
N×

(
7

2
+ 6

ε

)
(uAdμ

−ε)2

ε
. (46)
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Defining the Wilson’s flow functions as

ζφ = μ
∂

∂μ
ln Z , ζφ̂ = μ

∂

∂μ
ln Ẑ, (47)

ζ� = μ
∂

∂μ
ln Z�, (48)

ζD = μ
∂

∂μ
ln ZD, (49)

ζτ = μ
∂

∂μ
ln

τR

τ
= −2 + μ

∂

∂μ
ln Zτ , (50)

and the β function for the nonlinear coupling as

βu = μ
∂

∂μ
uR = u

(
−ε + 10

6
u

)
, (51)

we get a stable nontrivial fixed point at u∗ = 6
10ε and we can

evaluate the critical exponents from these flow functions at the
fixed point. The flow functions at the fixed point pick up values
up to order ε2 as follows:

ζφ = − 1
50ε2 − 1

150N×ε2 + 11
100N×ε2 ln 4

3 , (52)

ζφ̂ = − 1
50ε2 − 1

150N×ε2 − 11
100N×ε2 ln 4

3 , (53)

ζ� = 1
50ε2

(
6 ln 4

3 − 1
) + 1

150N×ε2
(
6 ln 4

3 − 1
)
, (54)

ζτ = −2 + 2
5ε + O(ε2). (55)

The basic renormalization group (RG) equation is derived
on the basis that the unrenormalized correlation and vertex
functions do not depend on the arbitrary scale μ. Hence if we
hold the bare parameters D, τ , and μ fixed, we must have

0 = μ
d

dμ

∣∣∣∣
D,τ,μ

�N,N̂

= μ
d

dμ

[
ẐN̂/2ZN/2�R

N,N̂
(μ,�R,τR,uR)

]
. (56)

As Z factors also depend on μ, the RG equation finally takes
the form

ẐN̂/2ZN/2μ

[
∂

∂μ
+ N̂/2

∂

∂μ
ln Ẑ + N

2

∂

∂μ
ln Z + ∂�R

∂μ

∂

∂�R

+ ∂τR

∂μ

∂

∂τR
+ ∂uR

∂μ

∂

∂uR

]
�R

N,N̂
= 0. (57)

At the critical point we have scale invariance separately
under scaling of space, time, fields, and parameters. These
are determined by the momentum and frequency canonical
dimensions of the fields and parameters. After proper scaling as
described above in this section we have canonical dimensions
of fields and parameters as

dk
φ1,φ2

= d/2 − 1, dω
φ1,φ2

= 0,

dk

φ̂1,φ̂2
= d/2 − 1, dω

φ̂1,φ̂2
= 1,

(58)
dk

� = −2, dω
� = 1,

dk
τ = 0, dω

τ = 0.

Canonical scale invariance at the fixed point (β∗
u = 0) for

the correlation function implies[
μ

∂

∂μ
− x

∂

∂x
− 2�R ∂

∂�R
− dk

C

]
CR(x,t,μ,�R,τR) = 0

and [
�R ∂

∂�R
− t

∂

∂t
− dω

C

]
CR(x,t,μ,�R,τR) = 0, (59)

where dk
C and dω

C are the momentum and frequency dimension
of the correlation function C(x,t), respectively. In this case
dk

C = d − 2 and dω
C = 0. Therefore from Eq. (59) we have

�R ∂

∂�R
CR(bx,b2t,μ,�R,τR) = t

∂

∂t
CR(x,t,μ,�R,τR).

(60)

The RG equation for the correlation function at the fixed point
can be written as

0 = μ
∂

∂μ
C = μ

∂

∂μ
[Z−1CR]

=
[
μ

∂

∂μ
− ζφ + ζ��R ∂

∂�R
+ ζτ τ

R ∂

∂τR

]

×CR(x,t,μ,�R,τR). (61)

Combining the two separate spacial and temporal scale
invariant equations (59) and using Eqs. (60) and (61) we get
at the fixed point[

−x
∂

∂x
− ζτ τ

R ∂

∂τR
− (2 + ζ�)t

∂

∂t
+ 2 − d − η

]

×CR(x,t,�R,τR) = 0, (62)

where we have used η = −ζφ . From Eq. (62) it can be seen
that at the critical point (τ = 0) and equal time (t = 0) the
correlation function should take the form

C(x) ∼ x2−d−η, (63)

which gives the spatial scaling of the equal-time correlation
function at the critical point. In the case of time-dependent
correlation function at the critical point the scale invariant
equation takes the form[

−x
∂

∂x
− (2 + ζ�)t

∂

∂t
+ 2 − d − η

]
CR(x,t,�R) = 0.

(64)

Assuming dynamical scaling, the solution of C(x,t) should be
of the form C(x,t) ∼ x2−d−ηg(x2+ζ� /t), which implies that

2 + ζ� = z (65)

should be the dynamic exponent. At equal time (t = 0), near
the critical point (τR �= 0), the equation for C(x,t) can be
written as[

−x
∂

∂x
− ζτ τ

R ∂

∂τR
+ 2 − d − η

]
CR(x,t,τR) = 0. (66)

This implies that the correlation function should be of the
form C(x,τ ) ∼ x2−d−ηf (xζτ /τ ), and the correlation length
exponent

ν = − 1

ζτ

. (67)
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For the propagator G = 〈φφ̂〉, the scale invariant equations are
given by[

μ
∂

∂μ
− x

∂

∂x
− 2�R ∂

∂�R
− dk

G

]
GR(x,t,μ,�R,τR) = 0

and [
�R ∂

∂�R
− t

∂

∂t
− dω

G

]
GR(x,t,μ,�R,τR) = 0, (68)

where dk
G = d − 2 and dω

G = 1. From the second of Eqs. (68)
it is obvious that

�R ∂

∂�R
GR(x,t,μ,�R,τR) =

[
1 + t

∂

∂t

]
GR(x,t,μ,�R,τR).

(69)

The RG equation for the propagator at the fixed point can be
written as

0 = μ
∂

∂μ
G = μ

∂

∂μ
[Z−1/2Ẑ−1/2GR]

=
[
μ

∂

∂μ
− 1

2
ζφ − 1

2
ζφ̂ + ζ��R ∂

∂�R
+ ζτ τ

R ∂

∂τR

]

×GR(x,t,μ,�R,τR). (70)

Using Eqs. (70) and (69) in Eq. (68) we get[
−x

∂

∂x
− ζτ τ

R ∂

∂τR
− (

2 + ζR
�

){
1 + t

∂

∂t

}

+ 2 − d − 1

2
η − 1

2
η̂

]
GR(x,t,�R,τR) = 0, (71)

where η̂ = −ζφ̂ .
From Eq. (71) the time dependent propagator at the critical

point (τ = 0) can be written as[
−x

∂

∂x
− (2 + ζ�)

{
1 + t

∂

∂t

}
+ 2 − d − 1

2
η − 1

2
η̂

]

×GR(x,t,�R) = 0. (72)

Assuming dynamical scaling G(x,t) should be of the form
G ∼ x2−d−η/2−η̂/2−2−ζ�f ( x2+ζ�

t
). The static susceptibility χ (x)

is proportional to
∫ ∞

0 dtG(x,t), which on integrating over time
gives us

χ (x) ∼ x2−d−η/2−η̂/2. (73)

From Eqs. (65), (63), and (67) and using Eqs. (54), (52), and
(55) we get the dynamic exponent, anamolous dimension and
correlation length exponent of the model to the leading order
in ε:

z = 2 + 1
50ε2

(
6 ln 4

3 −1
)+ 1

150N×ε2
(
6 ln 4

3 − 1
)
, (74)

η = 1
50ε2 + 1

150N×ε2 − 11
100N×ε2 ln 4

3 , (75)

η̂ = 1
50ε2 + 1

150N×ε2 + 11
100N×ε2 ln 4

3 , (76)
1
ν

= 2 − 2
5ε + O(ε2). (77)

If N× = 0 we get back the equilibrium exponents as expected.
Their contribution from the nonequilibrium part depends on
the value of N×. Let us now consider the consequences of
a nonzero N×. First of all, as is evident from the results
presented above, the static susceptibility and the equal-time

correlation function do not display the same spatial scaling,
since η �= η̂. This is an important evidence of breakdown of
the FDT in the renormalized theory. Note that in the linearized
theory breakdown of the FDT is manifested in the existence
of nonzero cross-correlation functions: The correlation matrix
picks up nonzero off-diagonal elements, whereas the dynamic
susceptibility matrix remains diagonal. Nevertheless, all ele-
ments of the correlation and the dynamic susceptibility matrix
exhibit the same scaling properties at the critical point. In
contrast, in the renormalized nonlinear theory, not only is
the correlation matrix off-diagonal whereas the susceptibility
matrix remains diagonal, the elements of the correlation matrix
scale differently from those of the susceptibility matrix. The
latter result is purely a nonlinear effect. Further, the dynamic
exponent for finite N×, z(N×) is larger than z(N× = 0), its
value for equilibrium dynamics. Thus relaxation for finite N×
is slower than for the corresponding equilibrium dynamics.
The correlation length exponent ν has been calculated only
up to O(ε) and is equal to its equilibrium value. However, as
there are N×-dependent corrections to �G(0,0) at the two-loop
order, the value of ν is likely to be different from its equilibrium
value at the two-loop order. Last, the N× dependence of
all the scaling exponents are continuous—all of them vary
continuously with N× and go over to their equilibrium values
when N× is set to zero. Our claim of the scaling exponents
varying continuously with N× rests on the marginality of N×.
We have shown explicitly up to two-loop order that D̂(k)
does not renormalize. Hence N× does not renormalize up
to two-loop order and depends on the bare value of D2

×.
Any nonzero fluctuation corrections to D̂(q) must be an odd
function of the its wave vector argument. In order to have that
one must have an odd number of internal cross-correlation
line. Since all internal wave vectors are integrated over, such a
contribution will vanish in the limit of vanishing external wave
vector and frequency. Thus D̂(q) and remains unrenormalized
and hence N× appears as a dimensionless marginal operator
to any order in perturbation.

IV. SUMMARY

To summarize, we have analyzed the universal scaling
properties of a nonequilibrium version of the O(2)-symmetric
dynamical model near the critical point. We write down a
nonconserved relaxational dynamics for the order param-
eter field. We have introduced cross correlations between
the two additive noises in the Langevin equations, so that
the FDT is immediately broken. We then show that if the
cross correlation is imaginary and odd in wave vector, the
underlying O(2) symmetry is still maintained. We calculate
the scaling exponents of the model in a DRG framework
using an ε-expansion scheme, where ε = 4 − d with 4 being
the upper critical dimension of the model. We show that at
the two-loop order there are diagrammatic corrections to the
various two-point vertex functions in the model arising from
the cross correlations. We have used heuristic arguments to
extract the dominant contributions to the two-loop diagrams
involving cross correlations, which have allowed us to evaluate
the respective cross-correlation contributions in a simple and
controlled manner. We finally argue that the cross-correlation
amplitude appears as a marginal operator in the problem.
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Since this amplitude appears in the expressions of the scaling
exponents we have an example of a continuously varying
universality class. Technically speaking we obtain a fixed line,
parametrized by the value of the parameter N× introduced
above, instead of a single or isolated fixed points. Every
point on the fixed line characterizes a universality class,
parametrized again by N×. The fixed line begins from
N× = 0, which is the equilibrium fixed point. This stands in
contrast to, e.g., Ref. [3], where nonequilibrium noises lead to
additional fixed points, but not a fixed line as here. There are
other dynamical models where cross-correlated noises lead to
universal properties varying continuously with the amplitude
of the noise cross correlations. Notable examples are the
stochastically driven generalized Burgers model (GBM) [24]
and magnetohydrodynamic turbulence (MHD) [25]. However,
the d-dimensional GBM and MHD models are intrinsically
nonequilibrium and do not generally have an equilibrium limit:
Switching off the noise cross correlation does not make these
models equilibrium in general d dimensions. In contrast, the
present model has a well-defined equilibrium limit given by
N× = 0 for any dimension d. Thus not only does our model
here exhibit continuously varying universal properties, it can
be driven away from equilibrium continuously and incremen-
tally by tuning N×. Continuously varying universality has
been found in Ref. [19] as well. However, Ref. [19] required
coupling of the order parameter field with a conserved density.
In contrast in our work we have the order parameter field
only as the relevant dynamical field. Quantitative accuracy
of our results is limited by the heuristic arguments we
resorted to while evaluating the diagrams arising from noise
cross correlations. In order to verify this, direct numerical
simulations of the model Langevin equations, or simulations of
appropriately defined lattice-gas models, should be performed.
In the present paper we have discussed the universal scaling

properties at the critical point only. Numerical simulations of
a driven O(3) model [26] display existence of spatiotemporal
chaotic low-temperature regime below its critical point in the
absence of stochastic noises. This chaos, when controlled, is
replaced by spatially periodic steady helical states, which are
robust against noise. In view of these results in Ref. [26], it
would be interesting to examine the properties of the ordered
phase below Tc, and their dependences on the parameter N×
introduced above. In the above we have confined ourselves in
discussing a usual order-disorder transition and the associated
universality at the critical point. For any model, such a scenario
holds as long as the physical dimension is greater than the
lower critical dimension dL of the model. For equilibrium
models with continuous symmetries, e.g., the O(2)-symmetric
model in equilibrium, the Mermin-Wagner theorem tells us
that dL = 2. For models out of equilibrium, there are no such
general results. It would be interesting to examine the present
model, perhaps through nonperturbative methods, at d = 2, in
particular the role and dynamics of topological defects in the
presence of noise cross correlations. We hope our theoretical
results will inspire more detailed theoretical studies on more
realistic models or experimental work on driven systems with
coupled variables, where the role of noise cross correlations
in determining the universal properties may be explicitly
tested.
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