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We establish a general theory of feedback control on classical stochastic thermodynamic systems and generalize
nonequilibrium equalities such as the fluctuation theorem and the Jarzynski equality in the presence of feedback
control with multiple measurements. Our results are generalizations of the previous relevant works to the
situations with general measurements and multiple heat baths. The obtained equalities involve additional terms
that characterize the information obtained by measurements or the efficacy of feedback control. A generalized
Szilard engine and a feedback-controlled ratchet are shown to satisfy the derived equalities.
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I. INTRODUCTION

Since the mid-twentieth century, feedback control has
played crucial roles in science and engineering [1,2]. Here
“feedback” means that a control protocol depends on measure-
ment outcomes obtained from the controlled system. Recently
feedback control has become increasingly important in terms
of nonequilibrium physics, due to at least the following two
reasons.

First, stochastic aspects of thermodynamics [3–6] have
become important due to recent theoretical and experimental
developments. Theoretically, a number of nonequilibrium
equalities such as the fluctuation theorem and the Jarzynski
equality [7–41] have recently been found. On the other hand,
experimental techniques have been developed to manipulate
and observe small thermodynamic systems such as macro-
molecules and colloidal particles, and several nonequilibrium
equalities have been experimentally verified [42–52]. More-
over, artificial [53–56] and biological [57] molecular machines
have been investigated. In these contexts, feedback control
is useful to realize intended dynamical properties of small
thermodynamic systems, and it has become a topic of active
research [58–82].

Second, feedback control sheds light on the foundations
of thermodynamics and statistical mechanics concerning
“Maxwell’s demon” [83–88]. In fact, Maxwell’s demon per-
forms measurement and feedback control on thermodynamic
systems. Recently Maxwell’s demon has attracted renewed
interest [89–104] from the standpoints of modern information
theory and statistical mechanics.

A quintessential model of Maxwell’s demon is a single-
particle heat engine proposed by Szilard in 1929 [85]. During
the thermodynamic cycle of the Szilard engine, the demon
obtains 1 bit (= ln 2 nat) of information by a measurement,
performs feedback control, and extracts kBT ln 2 of positive
work from a single heat bath. After numerous arguments on
the consistency between the demon and the second law of
thermodynamics, it is now understood that the work needed
for the demon (or equivalently the feedback controller) during
the measurement and information erasure compensates for the
work that can be extracted by the demon [102]. Therefore, we

cannot extract a net positive work from the total system of the
engine and the demon in an isothermal cycle, and therefore
the presence of the demon does not contradict the second law
of thermodynamics. Nevertheless, kBT ln 2 of work extracted
by the demon can still be useful. By using feedback control,
we can increase the system’s free energy without injecting
any energy (work) to it. We stress that, without feedback
control, we need the direct energy input into the system in
order to increase its free energy due to the second law of
thermodynamics. Feedback control may be regarded as a
powerful tool to control thermodynamic systems. Since the
crucial quantity is the information that is obtained to be used for
feedback control, we may regard the Szilard-type heat engine
as an “information heat engine.” Recently such an information
heat engine was realized experimentally by using a colloidal
particle [82].

In this paper we formulate a general theory of feedback
control on stochastic thermodynamic systems. In particular,
we extend recent theoretical results on the generalizations of
the fluctuation theorem and the Jarzynski equality [67] to the
situations in which the measurement and feedback control are
non-Markovian and there are multiple heat baths. Our results
serve as the fundamental building blocks of information heat
engines.

This paper is organized as follows.
In Sec. II we briefly review the framework of stochastic

thermodynamics in a general setup. We discuss classical
stochastic systems that are in general non-Markovian and
in contact with multiple heat baths. We discuss the concept
of entropy production and the detailed fluctuation theorem
as our starting point. Because they are general properties of
nonequilibrium systems, our formulations and results in the
following sections are not restricted to Langevin systems but
applicable to any classical stochastic systems that satisfy the
detailed fluctuation theorem.

In Sec. III we formulate measurements on thermody-
namic systems. We discuss multiple measurements, including
continuous measurements, and investigate the properties of
the mutual information obtained by the measurements. In
particular, we introduce the mutual information (or the transfer
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entropy) Ic, which will be shown to play key roles in the
discussion of feedback control.

In Sec. IV we discuss feedback control on Markov and non-
Markov processes and investigate feedback control in terms of
probability theory, where the causality of the measurement and
feedback play a crucial role.

In Sec. V we derive the main results of this paper. We
generalize the nonequilibrium equalities to situations in which
the system is subject to feedback control. In particular, we
derive two types of generalizations of the fluctuation theorem
and the Jarzynski equality. One involves a term concerning the
mutual information, and the other involves a term of feedback
efficacy. As corollaries, we derive the generalizations of the
second law of thermodynamics and a fluctuation-dissipation
relation.

In Sec. VI we illustrate our general results by two examples:
a generalized Szilard engine with measurement errors and a
feedback-controlled ratchet [58,61,63]. We discuss the former
analytically and the latter numerically.

In Sec. VII we conclude this paper.
In the Appendix, we discuss the physical meaning of

entropy production to elucidate the physical contents of our
results in two typical situations.

II. REVIEW OF STOCHASTIC THERMODYNAMICS

In this section we briefly review thermodynamics of
classical stochastic systems and introduce notations that will
be used later.

A. Dynamics

We consider a classical stochastic system S that is in contact
with heat baths B1, B2, . . . ,Bn at respective temperatures
T1 = (kBβ1)−1, T2 = (kBβ2)−1, . . . ,Tn = (kBβn)−1. Let x be
the phase-space point of system S and λ be a set of external
parameters such as the volume of a gas or the frequency of
optical tweezers. We control the system from time 0 to τ with
control protocol λ(t). Let x(t) be a trajectory of the system.

To formulate the stochastic dynamics, we discretize the
time interval [0,τ ] by dividing it into N small intervals with
width �t := τ/N . The original continuous-time dynamics is
recovered by taking the limit of N → ∞ or equivalently �t →
0. Let t = n�t and xn := x(n�t). We refer to “time t” as
“time tn := n�t .” Then trajectory {x(t ′)}t ′∈[0,t] corresponds to
Xn := (x0,x1, . . . ,xn).

A control protocol λ(t) can also be discretized. Let λn be
the value of λ between tn = n�t and tn+1 = (n + 1)�t , where
it is assumed to be constant during this time interval (see
Fig. 1). We denote the trajectory of λ from time 0 to tn as
�n := (λ0,λ1, . . . ,λn−1). Let λint be the value of parameter λ

before time 0, which is not necessarily equal to λ0 because
we can switch the value of the parameter at time 0. We also
denote the value of λ after time tN := τ as λfin, which is not
necessarily equal to λN either (see also Fig. 1).

Let Pn[xn] be the probability distribution of x at time
tn. In particular, P0[x0] is the initial distribution of x. The
initial distribution can be chosen as a stationary distribution
under external parameters λint, as Ps[x0|λint], which means
P0[x0] = Ps[x0|λint]. We note that Ps[x0|λint] is not necessarily

t
int

0

1

3

2

1N

fin

0

2N

1t 2t 3t 4t 2Nt − 1Nt −

FIG. 1. Discretization of control protocol λ(t).

a canonical distribution; it can be a nonequilibrium stationary
distribution. Due to the causality, xn+1 is determined by
Xn through the transition probability P [xn+1|Xn,λn], which
depends on the external parameters at time tn (i.e., λn). We note
that P [xn+1|Xn,λn] represents the the probability of realizing
xn+1 at time tn+1 under the condition that the trajectory of x

up to time tn is given by Xn. If the dynamics is Markovian,
P [xn+1|Xn,λn] can be replaced by P [xn+1|xn,λn].

The probability of trajectory Xn is then given by

P [Xn|�n] =
n−1∏
k=0

P [xk+1|Xk,λk]P0[x0] =: P [Xn], (1)

where we write P [Xn|�n] just as P [Xn] for simplicity. We
note that

P [Xn|x0,�n] =
n−1∏
k=0

P [xk+1|Xk,λk] =: P [Xn|x0] (2)

is the probability of trajectory Xn under the condition that the
initial state is x0 and the control protocol is �n.

Let A be an arbitrary physical quantity that can depend on
the trajectory XN and protocol �N . The ensemble average of
this quantity is given by

〈A〉 =
∫

dXNP [XN |�N ]A[XN,�N ], (3)

where dXN := ∏N
n=0 dxn.

B. Backward control

Before proceeding to the nonequilibrium equalities, we
consider the stochastic dynamics with a backward control
protocol. The backward control protocol means the time
reversal of protocol �N , which is formulated as follows. Let
λ∗ be the time reversal of λ; for example, if λ is a magnetic
field, then λ∗ = −λ. The time-reversed protocol of λ(t) is
then given by λ†(t) := λ∗(τ − t). The backward protocol can
be discretized as �

†
n := (λ∗

N−1,λ
∗
N−2, . . . ,λ

∗
N−n−1). We define

λ
†
n := λ∗

N−n−1, λ
†
int := λ∗

fin, and λ
†
fin := λ∗

int.
We consider the probability of realizing trajectory x ′(t) of

the system with a backward control protocol. We define x ′
n :=

x ′(n�t) and X′
n := (x ′

0,x
′
1, . . . ,x

′
N ). We denote as P

†
0 [x ′

0] the
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initial distribution of the backward processes. We stress that
P

†
0 [x ′

0] is not necessarily equal to the final distribution of the
forward experiments. In fact, we can prepare a new state for the
system to perform the backward experiments after the forward
experiments. The probability distribution of trajectory X′

n with
backward protocol is given by

P [X′
N |�†

N ] =
N−1∏
k=0

P [x ′
k|X′

k,λ
†
k]P †

0 [x ′
0] =: P †[X′

N ], (4)

where we write P [X′
N |�†

N ] as P †[X′
N ] for simplicity.

Correspondingly,

P [X′
N |x ′

0,�
†
N ] =

N−1∏
k=0

P [x ′
k|X′

k,λ
†
k] =: P †[X′

N |x ′
0]. (5)

In special cases, the backward trajectory X′
N is equal to the

time reversal of the forward trajectory XN . Let x∗ be the time
reversal of phase-space point x. For example, if x = (r, p) with
r and p being the position and the momentum, respectively,
we have x∗ := (r, − p). The time reversal of trajectory Xn

is then given by X
†
n := (x∗

N,x∗
N−1, . . . ,x

∗
N−n). With notation

x
†
n := x∗

N−n, we write X
†
n = (x†

0,x
†
1, . . . ,x

†
n). By substituting

x ′
n = x

†
n to Eqs. (4) and (5), we obtain the probability of

realizing a backward trajectory under the backward protocol
as

P †[X†
N ] =

N−1∏
k=0

P [x†
k |X†

k,λ
†
k]P †

0 [x0], (6)

where the conditional probability under initial x
†
0 is given by

P †[X†
N |x†

0] =
N−1∏
k=0

P [x†
k |X†

k,λ
†
k]. (7)

We note that dX
†
N = dXN holds, because dxn = dx∗

n .

C. Nonequilibrium equalities

We now discuss nonequilibrium equalities. Let Qi[XN,λN ]
be the heat that is absorbed by the system from the ith
heat bath satisfying Qi[XN,�N ] = −Qi[X

†
N,�

†
N ]. We write

Qi[XN,λN ] simply as Qi[XN ] for simplicity. It has been
established that the following equality is satisfied for stochastic
thermodynamic systems [11,12,16,25]:

P †[X†
N |x∗

0 ]

P [XN |x0]
= exp

(∑
i

βiQi[XN ]

)
, (8)

which is referred to as the detailed fluctuation theorem (or the
transient fluctuation theorem). This is the starting point of our
research. We can rewrite Eq. (8) as

P †[X†
N ]

P [XN ]
= e−σ [XN ], (9)

where

σ [XN ] := − ln P
†
0 [x†

0] + ln P0[x0] −
∑

i

βiQi[XN ], (10)

which is called the entropy production along trajectory XN .

Various proofs of the detailed fluctuation theorem [Eqs. (8)
and (9)] for stochastic systems have been presented, for
example, in Refs. [11,12,25] for the Markovian stochastic
dynamics and in Ref. [29] for non-Markovian Langevin
systems. A proof of Eqs. (8) and (9) has also been given in
Ref. [16] for the situations in which the total system including
heat baths is treated as a Hamiltonian system and the initial
states of the heat baths in the forward and backward processes
are the canonical distributions. This proof can confirm the
physical validity of the detailed fluctuation theorem even for
the non-Markovian dynamics with multiple heat baths, as the
stochastic dynamics can be reproduced as that of a partial
system of the total Hamiltonian system including the heat
baths. We also note that several equalities that are similar
but not equivalent to Eqs. (8) and (9) have been derived
for different situations. For example, the transient fluctuation
theorem has been discussed for dynamical systems in Ref. [20].
The fluctuation theorem for nonequilibrium steady states has
been discussed for stochastic systems [10,13] and dynamical
systems [7,8].

From the detailed fluctuation theorem (9), we can show
Crooks’s fluctuation theorem as follows. We denote as P [σ ]
the probability of finding the entropy production σ in the
forward processes, satisfying

P [σ ] =
∫

δ(σ − σ [XN ])P [XN ]dXN, (11)

where δ(·) is the delta function. On the other hand, let P †[σ ]
be the probability of obtaining σ in the backward processes,
satisfying

P †[σ ] =
∫

δ(σ − σ [X′
N ])P †[X′

N ]dX′
N . (12)

By using the detailed fluctuation theorem (9) and equality
σ [XN ] = −σ [X†

N ], we obtain Crooks’s fluctuation theorem

P †[−σ ]

P [σ ]
= e−σ . (13)

The detailed fluctuation theorem (9) or Crooks’s fluctuation
theorem (13) leads to the integral fluctuation theorem

〈e−σ 〉 = 1, (14)

where the ensemble average 〈· · ·〉 is taken over all trajectories
under forward protocol [see Eq. (3)]. From the concavity of
the exponential function, we obtain

〈σ 〉 � 0, (15)

which is an expression of the second law of thermodynamics:
The ensemble-averaged entropy production is non-negative.
By taking the ensemble average of the logarithm of both sides
of Eq. (9), we have

〈σ 〉 =
∫

dXNP [XN ] ln
P [XN ]

P †[X†
N ]

, (16)

which we will refer to as the Kawai-Parrondo-Broeck (KPB)
equality [30,31]. The right-hand side of Eq. (16) is the
Kullback-Leibler divergence (or the relative entropy) of
P [XN ] and P †[X†

N ], which is always positive. Therefore,
Eq. (16) reproduces inequality (15).

021104-3



TAKAHIRO SAGAWA AND MASAHITO UEDA PHYSICAL REVIEW E 85, 021104 (2012)

If the probability distribution of σ is Gaussian, the cumulant
expansion of Eq. (3) leads to a variant of the fluctuation-
dissipation relation

〈σ 〉 = 1
2 (〈σ 2〉 − 〈σ 〉2), (17)

which indicates that 〈σ 〉 is determined by the fluctuation of
σ . Equality (17) is an expression of the fluctuation-dissipation
theorem of the first kind, which gives a special case of the
Green-Kubo formula [20].

In the case of an isothermal process with a single heat bath,
the entropy production reduces to

σ [XN ] = β(W [XN ] − �F ), (18)

where W [XN ] is the work performed on the system during
the process, and �F is the difference of the free energies for
the initial and final Hamiltonians (see also the Appendix for
details). Under this situation, Eq. (14) leads to

〈e−βW 〉 = e−β�F , (19)

which is the Jarzynski equality [9]. The second law of
thermodynamics then reduces to

〈W 〉 � �F. (20)

III. MEASUREMENT

In this section we formulate and investigate the effect of
measurements on nonequilibrium dynamics.

A. Classical measurement and mutual information

In this subsection we review the general framework of a
measurement on a probabilistic variable, which can be applied
to a broad class of measurements on classical systems.

Let x be an arbitrary probability variable of a measured
system whose distribution is P [x]. We perform a measurement
on it and obtain outcome y, which is also a probability
variable. The error of the measurement can be characterized
by a conditional probability P [y|x], which describes the
probability of obtaining outcome y under the condition that
the true value of the measured system is x. We note that∑

y P [y|x] = 1 for all x, where we note that the sum should
be replaced by the integral if y is a continuous variable. If
the measurement is error free, P [y|x] is given by the delta
function or the Kronecker’s delta. We assume that P [y|x]
is independent of the probability distribution P [x]; in other
words, the error is independent of the state preparation of the
measured system. The joint probability of x and y is given
by P [x,y] = P [y|x]P [x], and the probability of obtaining y

by P [y] = ∑
x P [x,y]. The probability of realizing x under

the condition that the measurement outcome is y, denoted as
P [x|y], is given by Bayes’ theorem:

P [x|y] = P [y|x]P [x]

P [y]
. (21)

We next discuss the information contents related to the
measurement [105–107]. The Shannon information contents
of the probability variables are given by

Hx := −
∑

x

P [x] ln P [x], Hy := −
∑

y

P [y] ln P [y], (22)

which characterize the randomnesses of x and y, respectively.
On the other hand, the mutual information content 〈I 〉 between
x and y is given by

〈I 〉 :=
∑
xy

P [x,y]I [x : y], (23)

where

I [x : y] := ln
P [y|x]

P [y]
. (24)

In this paper we also call I [x : y] the mutual information. We
note that I [x : y] = I [y : x] holds due to Bayes’ theorem (21).

The mutual information 〈I 〉 measures the amount of
information obtained by the measurement. It is known that

0 � 〈I 〉 � Hx, 0 � 〈I 〉 � Hy. (25)

If the measurement is error free, 〈I 〉 = Hx = Hy holds.

B. Measurements on nonequilibrium dynamics

We next formulate multiple measurements on nonequi-
librium dynamics and discuss the properties of the mutual
information obtained by the measurements.

Let yn be the outcome at time tn := n�t . In this section we
assume the following:

(1) The error of the measurement at time tn is characterizes
by P [yn|Xn], where yn can depend on the trajectory of the
system before tn due to the causality. Here we assumed that
the property of the measurement error at time tn does not
explicitly depend on Yn−1 or P [Xn]. This assumption is also
justified in many real experimental situations.

(2) The unconditional probability distribution of Xn, P [Xn],
is not affected by the back-action of the measurement. Since
the system is classical, this assumption is justified for many
real systems such as colloidal particles and macromolecules.

If P [yn|Xn] = P [yn|xn], we call the measurement Marko-
vian, which means that the outcome is determined only by
the system’s state immediately before the measurement. This
condition is satisfied if the measurements can be performed in
a time interval that is sufficiently shorter than the shortest time
scale �t of the system. We note that the Markovness of the
measurement is independent of that of the dynamics.

We assume that the measurements are performed at times
tn1 , tn2 , . . . ,tnM

, where 0 � n1 < n2 < · · · < nM � N . If n1 =
0, n2 = 1, n3 = 2, . . . ,nN+1 = N hold, the measurement
is time continuous in the limit of �t → 0, because the
measurements are performed at all times.

We write as Yn the set of measurement outcomes that are
obtained up to time tn, i.e., Yn := (yn1 ,yn2 , . . . ,y[n]), where [n]
is the maximum nk satisfying nk � n. If the measurement is
continuous, then Yn = (y0,y1, . . . ,yn).
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We define

Pc[Yn|Xn] :=
M ′∏
k=1

P [ynk
|Xnk

], (26)

where M ′ is the maximum integer satisfying nM ′ � n. Without
feedback, Eq. (26) defines the conditional probability of
obtaining outcomes Yn under the condition of Xn, while, with
feedback, this interpretation of Eq. (26) is not necessarily
correct, as shown in the next section. To explicitly demonstrate
this point and to distinguish Pc[Yn|Xn] from the usual
conditional probability, we put the subscript c. Then the joint
distribution of Xn and Yn is given by

P [Xn,Yn] = Pc[Yn|Xn]P [Xn]. (27)

The probability of obtaining outcomes Yn is given by

P [Yn] =
∫

dXnP [Xn,Yn] =
M ′∏
k=1

P [ynk
|Ynk−1], (28)

where the two equalities are just identities known in probability
theory. We also note that

P [yn|Xn,Yn−1] := P [Yn|Xn]

P [Yn−1|Xn]
= P [yn|Xn], (29)

which is, in fact, independent of Yn−1.
We then discuss the mutual information obtained by

multiple measurements on nonequilibrium dynamics. Suppose
that we obtain measurement outcomes Yn−1 until time tn−1.
If we perform another measurement at time tn and obtain
outcome yn, we obtain the mutual information between yn

and Xn under the condition that we have obtained Yn−1:

I [yn : Xn|Yn−1] := ln
P [yn|Xn,Yn−1]

P [yn|Yn−1]

= ln
P [yn|Xn]

P [yn|Yn−1]
, (30)

where we used Eq. (29). We note that, if the mea-
surement is Markovian, I [yn : Xn|Yn−1] reduces to I [yn :
xn|Yn−1]. The mutual information 〈I [yn : Xn|Yn−1]〉 :=∫

dXndYnP [Xn,Yn]I [yn : Xn|Yn−1] is called the transfer en-
tropy, which describes the information flow from the system
to the outcome as discussed in Ref. [107]. We note that the
same quantity has been discussed in Ref. [62].

We denote as Ic the sum of these mutual information
contents obtained by multiple measurements, that is,

Ic[Xn : Yn] :=
M ′∑
k=1

I [ynk
: Xnk

]

= ln
P [Yn|Xn]

P [Yn]
, (31)

where we used Eq. (28). From Eq. (31), we find that Ic[Yn : Xn]
equals the mutual information between trajectories Xn and Yn

defined as I [Yn : Xn] := ln(P [Yn|Xn]/P [Yn]). In the presence
of feedback control, however, this is not true (i.e., Ic 	= I ), as
we will see later.

yx

FIG. 2. Feedback control on nonequilibrium dynamics. The
control parameter is denoted as λ, the point of the phase space of
the system as x, and the outcome of measurement on the system as
y. Parameter λ depends on y through the real-time feedback control.

IV. FEEDBACK CONTROL

In this section we formulate feedback control on nonequi-
librium dynamics.

A. Formulation

Feedback control implies that protocol �N depends on
measurement outcomes YN (see Fig. 2). On the other hand,
without feedback control, control protocols are predetermined
and independent of the measurement outcomes, as is the case
for the setup of the original fluctuation theorem and Jarzynski
equality.

When the system is subject to feedback control, λn can
depend on measurement outcomes that are obtained until
tn, while λn cannot depend on any measurement outcome
that is obtained after time tn due to causality. We intro-
duce the notation λn(Yn), which means that the value of
λ at time tn is determined by Yn. We write �n(Yn−1) :=
[λ0(Y0),λ1(Y1), . . . ,λn−1(Yn−1)].

If λn depends only on yn as λn(yn), the feedback protocol
is called Markovian. We note that the Markovian quality
of feedback is independent of that of the dynamics or
measurements. The Markovian feedback control is realized
when the delay time of feedback is sufficiently smaller than
the smallest time scale �t of the dynamics.

B. Overdamped Langevin system

As a simple illustrative example, we discuss an overdamped
Langevin system, whose equation of motion is given by

η
dx(t)

dt
= −∂V (x,λ)

∂x
+ f (λ) +

√
2ηkBT ξ (t), (32)

where η is the friction constant, V (x,λ) is an external
potential, f (λ) is an external nonconservative force, and ξ (t)
is the Gaussian white noise satisfying 〈ξ (t)ξ (t ′)〉 = δ(t − t ′).
The detailed fluctuation theorem (8) is still satisfied in the pres-
ence of a nonconservative force that violates the detailed bal-
ance, because Eq. (8) can be derived from the local transition
rate of the stochastic dynamics and is independent whether
there is a global potential or not. We assume that the
measurement is time continuous and Markovian:

yn = xn + �Rn

�t
, (33)
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where �Rn is a white Gaussian noise with 〈�Rn�Rn′ 〉 =
Rδnn′�t (R > 0). The conditional probability of obtaining
outcome yn is given by

P [yn|xn] ∝ exp

[
−�t

2R
(yn − xn)2

]
. (34)

The feedback protocol can be written as λn(y0,y1, . . . ,yn)
in general. The work performed on the system is then given by

Wn := V (xn,λn+1) − V (xn,λn)

= ∂V

∂λ
�λn + O(�t), (35)

where

�λn := λn+1(y0,y1, . . . ,yn+1) − λn(y0,y1, . . . ,yn). (36)

In particular, if the feedback is Markovian, λn is given by
λn(yn). Then �λn = λn+1(yn+1) − λn(yn) can be written as

�λn = ∂λ

∂t
�t + ∂λ

∂y
�yn + 1

2

∂2λ

∂y2
�y2

n, (37)

where �yn := yn+1 − yn. The first term on the right-hand side
of Eq. (37) arises from a change in λ by the pre-fixed protocol,
while the second and third terms are induced by the feedback
control.

We next consider the Kalman filter and the optimal control.
As a special case of Eq. (32), we consider a discretized linear
Langevin equation in the Itô form:

η(xn+1 − xn) = −Kxn�t + λn�t +
√

2ηkBT �Wn, (38)

where K is a positive constant and λn is a control parameter.
If the initial distribution of x0 is Gaussian, the distribution of
xn remains Gaussian with Eq. (38). In this case the obtained
mutual information by measurement (33) at time tn is given by

〈Ic[xn : yn]〉 = 1

2
ln

(
1 + Sn

R
�t

)
= Sn

2R
�t + o(�t), (39)

where Sn := 〈x2
n〉 − 〈xn〉2. Therefore, the total mutual infor-

mation

〈Ic〉 = lim
N→∞

N∑
n=0

Sn

2R
�t (40)

can converge, while the measurement is continuous.
We consider the Kalman filter on Eq. (38) with mea-

surement (33). The Kalman filter is a standard method to
construct the optimal estimator of xn, denoted as x̂n, in terms
of the mean-square error. From measurement outcomes Yn,
x̂n is obtained as the solution to the following simultaneous
differential equations [108]:

x̂n+1 − x̂n = −Kx̂n + λn

η
�t + An

R
(yn − x̂n)�t, (41)

An+1 − An =
(−2KAn + 2kBT

η
− An

R

)
�t, (42)

where An is a time-dependent real number and Eq. (42) is
a discretized version of the Riccati equation. By using the
Kalman estimator x̂n, the optimal control protocol [109] is
given by

λn = −Cnx̂n, (43)

where Cn is a predetermined constant depending on the target
of the optimal control. We note that the optimal control is a
non-Markovian control as λn = λn(Yn), because we use all of
Yn = (y0,y1, . . . ,yn) to calculate x̂n. The generalized Jarzynski
equality for this situation has been discussed in Ref. [68].

C. Probability distributions with feedback

We discuss the probability distributions with feedback con-
trol in general. Under the condition that we fix control protocol
�N (YN ) with YN being fixed, the conditional probability of
realizing XN is given by

P [Xn|�n(Yn−1)] = P0[X0]
k−1∏
k=0

P [xk+1|Xk,λk(Yk)], (44)

which corresponds to Eq. (1). We note that, in the expression
in Eq. (44), we do not omit the notation �N (YN−1) because its
YN−1 dependence is crucial. We also write

P [Xn|x0,�n(Yn−1)] :=
k−1∏
k=0

P [xk+1|Xk,λk(Yk)]. (45)

On the other hand, along the trajectory Xn, the conditional
probability of obtaining outcome yn at time tn is written as
P [yn|Xn]. We then define

Pc[Yn|Xn] :=
n−1∏
k=0

P [yk|Xk], (46)

which is to be compared with Eq. (26).
We then obtain the joint probability distribution of Xn and

Yn with feedback control as

P [Xn,Yn] =
n−1∏
k=0

P [yk+1|Xk+1]P [xk+1|Xk,λk(Yk−1)]

= Pc[Yn|Xn]P [Xn|�n(Yn−1)]. (47)

We can check that∫
P [Xn,Yn]dXndYn = 1, (48)

by integrating Xn and Yn in Eq. (47) in the order of yn →
xn → yn−1 → xn−1 → · · · → y1 → x1 → y0 → x0, where
the causality of measurements and feedback play crucial roles.

The marginal distributions are given by

P [Xn]=
∫

P [Xn,Yn]dYn, P [Yn] =
∫

P [Xn,Yn]dXn, (49)

and the conditional distributions by

P [Xn|Yn] = P [Xn,Yn]

P [Yn]
, P [Yn|Xn] = P [Xn,Yn]

P [Xn]
. (50)

We stress that, in the presence of feedback control,

P [Yn|Xn] 	= Pc[Yn|Xn] (51)

in general, because protocol �N depends on YN−1. On the
other hand, without feedback control, P [Yn|Xn] = Pc[Yn|Xn]
holds because P [Xn] is simply given by P [Xn|�n] with �n

being independent of Yn.
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The ensemble average of a probability variable A[Xn,Yn]
is given by

〈A〉 :=
∫

A[Xn,Yn]P [Xn,Yn]dXndYn, (52)

and the conditional average under the condition of Yn is given
by

〈A〉Yn
:=

∫
A[Xn,Yn]P [Xn|Yn]dXn. (53)

Equation (29) still holds in the presence of feedback control:

P [yn|Xn,Yn−1] := P [Xn,Yn]

P [Xn,Yn−1]

= Pc[Yn|Xn]P [Xn|�n(Yn−1)]

Pc[Yn−1|Xn−1]P [Xn|�n(Yn−1)]
= P [yn|Xn]. (54)

We note that Eq. (28) also holds with feedback control.
We then define the mutual information (or the transfer

entropy) in the same way as in the case without feedback
control:

Ic[Yn : Xn] :=
M ′∑
k=1

I [ynk
: Xnk

|Ynk−1]

= ln
Pc[Yn|Xn]

P [Yn]
. (55)

In the presence of feedback control, Ic[Yn : Xn] does not equal
the mutual information between trajectories Xn and Yn defined
as I [Yn : Xn] := ln(P [Yn|Xn]/P [Yn]), because Pc[Yn|Xn] 	=
P [Yn|Xn]. Intuitively speaking, Ic characterizes only the
correlation between Xn and Yn due to the measurements, while
I involves the correlation due to the feedback control. Note
that Ic is a more important quantity than I , because Ic has a
clear information-theoretic significance: Ic is the information
that we obtain by measurements. We also note that, in the case
of a single measurement and feedback, Ic = I always holds.

We also note that an identity similar to the integral
fluctuation theorem holds for Ic:

〈e−Ic〉 = 1, (56)

because

〈e−Ic〉 =
∫

dXNdYN

P [YN ]

Pc[YN |XN ]
P [XN,YN ]

=
∫

dXNdYNP [YN ]P [XN |�N (YN−1)] = 1. (57)

D. Detailed fluctuation theorem for a fixed control protocol

If we fix control protocol �N (YN ) with YN being fixed, then
the detailed fluctuation theorem (8) still holds:

P [X†
N |x∗

0 ,�N (YN−1)†]

P [XN |x0,�N (YN−1)]
= exp

{∑
i

βiQi[XN,�N (YN−1)]

}
,

(58)

where

�N (YN )† := [λN−1(YN−1)∗, . . . ,λ0(Y0)∗]. (59)

The left-hand side of Eq. (58) corresponds to the following
forward and backward experiments. We first perform forward
experiments many times with feedback control and choose the
subensemble in which the measurement outcomes are given
by YN−1. Within this subensemble, the ratio of trajectory
XN is given by P [XN |x0,�N (YN−1)] under the condition
of initial x0. We next perform backward experiments with
protocol �N (YN−1)†, where YN−1 was chosen in the forward
experiments. We stress that we do not perform any feedback in
the backward experiments: �N (YN−1)† is just the time reversal
of �N (YN−1). We then obtain P [X†

N |x∗
0 ,�N (YN−1)†] as the

ratio of trajectory X
†
N , under the condition of initial x

†
0 in

the backward experiments. The original detailed fluctuation
theorem (8) can straightforwardly be applied to this subensem-
ble corresponding to YN−1 because we have a unique control
protocol in the subensemble, and therefore we obtain Eq. (58).

Let the initial distribution of the backward experiments
be P

†
0 [x†

0|YN ], which in general depends on the measurement
outcomes in the forward experiments. A natural choice of
P

†
0 [x†

0|YN ] is a stationary state Ps[x
†
0|λ(YN )∗]. Then we have

P [X†
N |�N (YN )†]

P [XN |�N (YN )]
= exp {−σ [XN,�N (YN )]} , (60)

where

σ [XN,�N (YN )] := − ln P
†
0 [x†

0|YN ] + ln P0[x0]

−
∑

i

βiQi[XN,�N (YN−1)]. (61)

If there is a single heat bath and the initial distributions of the
forward and backward experiments are given by the canonical
distributions, then the entropy production reduces to

σ [XN,�N (YN )] = β{W [XN,�N (YN )] − �F [YN ]}, (62)

where the free-energy difference can depend on the measure-
ment outcomes as �F [YN ] := F [λfin(YN )] − F (λint).

V. NONEQUILIBRIUM EQUALITIES
WITH FEEDBACK CONTROL

We now discuss the main results of this paper. We derive
the two types of the generalized nonequilibrium equalities
with feedback control in Secs. V A and V B, respectively. The
former generalization involves the mutual information, while
the latter involves the efficacy of feedback control.

A. Generalized fluctuation theorem with mutual information

To derive a generalized detailed fluctuation theorem,
we first formulate the relevant backward probabilities. We
consider the following type of “backward probability distri-
bution”:

P †[X†
N,YN ] := P [X†

N |�N (YN−1)†]P [YN ], (63)

which satisfies ∫
P †[X†

N,YN ]dX
†
NdY

†
N = 1. (64)

Definition (63) has a clear operational meaning. Suppose that
we perform a forward experiment with feedback and obtain
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outcome YN . We then perform a backward experiment with
protocol �N (YN−1)†. We repeat this set of the forward and
backward experiments many times, and calculate the fractions
of (XN,YN ) and (X†

N,YN ), which, respectively, give P [XN,YN ]
and P †[X†

N,YN ].
Noting Eq. (47) and the definition of the mutual information

(55), we obtain a generalized detailed fluctuation theorem with
feedback control:

P †[X†
N,YN ]

P [XN,YN ]
= exp (−σ [XN,�N (YN )] − Ic[XN : YN ]) ,

(65)

where the effect of feedback control is involved by the term
of the mutual information that is obtained in the forward
experiments. We stress that, to obtain Eq. (65), we do not
perform feedback control in the backward experiments. We
just reverse forward protocol as Eq. (59) in the backward
experiments. The same result for a special case was obtained
in Ref. [71]. The investigation of the detailed fluctuation
theorem in the situations in which feedback control is also
performed in the backward processes [70] is an interesting
future challenge. Such situations would be relevant to, for
example, autonomous systems consisting of the controlled
system and the controller, in which feedback control should
also be needed for the backward processes. We can expect that
the backward processes with feedback control can be used to
characterize the reversibility of the autonomous systems.

From the generalized detailed fluctuation theorem (65), we
obtain a generalized integral fluctuation theorem [67]:

〈e−σ−Ic〉 = 1. (66)

Due to the concavity of the exponential function, we obtain
a generalized second law of thermodynamics [67,100]:

〈σ 〉 � −〈Ic〉, (67)

which means that the entropy production can be negative due to
the effect of feedback control (or due to the action of Maxwell’s
demon), and that the lower bound of the entropy production is
bounded by the mutual information 〈Ic〉.

The reason why the entropy production can be negative
is that one can rectify the thermal fluctuations by feedback
control. This negative entropy production is compensated for
by the excess entropy production in the demon or the feedback
controller [102], and therefore the entropy production in the
total system consisting of the demon and the information heat
engine is consistent with the second law of thermodynamics.
The key feature of feedback control is that it enables us
to control the entropy production of a partial system by
utilizing the mutual information beyond the limitation of
the conventional thermodynamics. Inequality (67) identifies
the lower bound of the entropy production with feedback
control, which plays a role parallel to the conventional second
law of thermodynamics that gives the lower bound of zero
in the absence of feedback control. Therefore, inequality
(67) is regarded as a generalization of the second law of
thermodynamics that can be applied to feedback-controlled
processes.

We also obtain, by taking the ensemble average of the
logarithm of the both sides of Eq. (65), that

〈σ 〉 + 〈Ic〉 =
∫

dXNdYNP [XN,YN ] ln
P [XN,YN ]

P †[X†
N,YN ]

, (68)

which is a generalization of the KPB equality (16). We note
that the right-hand side of Eq. (68) is positive because it
is the Kullback-Leibler divergence between two probability
distributions P [XN,YN ] and P †[X†

N,YN ]; thus, inequality (67)
is reproduced. We note that equality in Eq. (67) is achieved if
and only if σ + Ic does not fluctuate, or equivalently, if

P [XN,YN ] = P †[X†
N,YN ] (69)

holds, which implies the reversibility with feedback control
[75]. The more the probability distribution of the forward
processes with feedback is different from that of the back-
ward processes without feedback, the more 〈σ 〉 is different
from −〈Ic〉.

If the joint distribution of σ and Ic is Gaussian, we have
a generalized fluctuation-dissipation theorem from the second
cumulant of Eq. (66):

〈σ + Ic〉 = 1
2 [〈(σ + Ic)2〉 − 〈σ + Ic〉2], (70)

which suggests that there is a tradeoff relation between the
entropy production and the mutual information.

For the case in which σ = β(W − �F ), Eq. (65) leads to
a generalized Jarzynski equality:

〈e−β(W−�F )−Ic〉 = 1, (71)

and inequality (67) leads to

〈W 〉 � �F − kBT 〈Ic〉. (72)

We note that Eq. (71) and inequality (72) are the general-
izations of the results obtained in Refs. [67,71]. By defining
Wext := −W and setting �F = 0, we can rewrite inequality
(72) as

〈Wext〉 � kBT 〈Ic〉, (73)

which implies that we can extract a positive work up to the
term that is equal to the mutual information multiplied by
kBT , from a thermodynamic cycle with a single heat bath
with the assistance of feedback control or Maxwell’s demon.
The mutual information can be used as a “resource” of the
work or the free energy. In the case of the Szilard engine,
〈Ic〉 = 〈I 〉 = ln 2 and 〈Wext〉 = kBT ln 2 hold, and therefore
the equality in Eq. (73) is achieved. In fact, in the Szilard
engine, σ + I = β(W − �F ) + I does not fluctuate, but is
zero for both outcomes “left” and “right.”

We note that, to obtain Eq. (66) or (71) experimentally
or numerically, the condition of Pc[YN |XN ] 	= 0 needs to be
satisfied for all (XN,YN ). To explicitly see this, we write
Pc[YN |XN ] =: ε > 0. We then obtain

P [XN,YN ]e−σ−Ic = εP [XN ]
1

ε
e−σ+ln P [YN ], (74)

which does not converge to zero with the limit of ε → 0. On
the other hand, in real experiments or numerical simulations,
the events with P [XN,YN ] = 0 never occur. Therefore, if
Pc[YN |XN ] = 0 holds for some (XN,YN ), the terms associated
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with zero-probability events make nonzero contributions to
Eq. (66) and (71); in such cases, we cannot obtain Eq. (66) or
(71) experimentally or numerically. On the contrary,

P [XN,YN ]I n
c = εP [XN ]

(
ln

ε

P [YN ]

)n

(75)

converges to zero for all n = 1,2, . . . , in the limit of ε → 0.
Therefore, we can find 〈I n

c 〉 experimentally and numerically
even if Pc[YN |XN ] = 0 for some (XN,YN ), and also obtain
Eqs. (68) and (70) and inequalities (67), (72), and (73).

B. Generalized fluctuation theorem with efficacy parameter

We next derive a different type of nonequilibrium equal-
ity. In this subsection we assume that the measurements
are Markovian (i.e., P [yn|Xn] = P [yn|xn] holds). We per-
form forward experiments with measurements at times
tn1 ,tn2 , . . . ,tnM

with feedback control, and perform backward
experiments without feedback but only with measurements at
times tN−nM

,tN−nM−1 , . . . ,tN−n1 .
Let Y ′

N := (y ′
N−nM

,y ′
N−nM−1

, . . . ,y ′
N−n1

) be the measure-
ment outcomes in the backward measurements. Then the
probability of obtaining Y ′

N under the condition of X
†
N is given

by

Pc[Y ′
N |X†

N ] :=
M∏

k=1

P [y ′
N−nk

|x†
N−nk

]. (76)

Therefore, the probability of obtaining Y ′
N under protocol

�(YN )† is

P [Y ′
N |�N (YN−1)†]=

∫
Pc[Y ′

N |X†
N ]P [X†

N |�N (YN−1)†]dX
†
N,

(77)

which is normalized as∫
P [Y ′

N |�N (YN−1)†]dY ′
N = 1, (78)

where the probability variable Y ′
N is independent of YN .

We then consider the time-reversed sequence of YN .
Let y∗

n be the time reversal of yn; for example, if we
measure the momentum, then y∗

n = −yn. We write Y
†
N :=

(y∗
N−nM

,y∗
N−nM−1

, . . . ,y∗
N−n1

). The probability of Y ′
N = Y

†
N in

the backward experiments is given by

P [Y †
N |�N (YN−1)†]=

∫
Pc[Y †

N |X†
N ]P [X†

N |�N (YN−1)†]dX
†
N,

(79)

which is the probability of obtaining the time-reversed
outcomes by time-reversed measurements during the time-
reversed protocol. We stress that∫

P [Y †
N |�N (YN−1)†]dY

†
N 	= 1 (80)

in general because Y
†
N is no longer independent of YN−1.

In the following, we assume that the measurements have
the time-reversed symmetry

P [y∗
n |x∗

n] = P [yn|xn] (81)

for all n, which leads to

Pc[Y †
n |X†

n] = Pc[Yn|Xn]. (82)

We then have the “renormalized” (or “coarse-grained”) de-
tailed fluctuation theorem [30,67]

P [Y †
N |�(YN )†]

P [YN ]
= e−σ ′[YN ], (83)

where σ ′[YN ] is the “renormalized” (or “coarse-grained”)
entropy production defined as

σ ′[YN ] := − ln〈e−σ 〉YN

= − ln
∫

dXNe−σ [XN ,�N (YN−1)]P [XN |YN ]. (84)

Equality (83) implies that the detailed fluctuation theorem
retains its form under the coarse graining, if we introduce
the appropriate coarse-grained entropy production. From the
concavity of the exponential function, we obtain σ ′[YN ] �
〈σ 〉YN

and 〈σ ′〉 � 〈σ 〉. The same result for a different setup
has been obtained in Refs. [30,31].

The proof of Eq. (83) goes as follows. From the definition
of σ ′[YN ] and the detailed fluctuation theorem (58), we have

e−σ ′[YN ] =
∫

dXN

P [X†
N |�N (YN−1)†]

P [XN |�N (YN−1)]
P [XN |YN ]

=
∫

dXN

P [X†
N |�N (YN−1)†]

P [XN |�N (YN−1)]

P [XN,YN ]

P [YN ]

= 1

P [YN ]

∫
dXNP [X†

N |�N (YN−1)†]Pc[YN |XN ]

= 1

P [YN ]

∫
dXNP [X†

N |�N (YN−1)†]Pc[Y †
N |X†

N ].

(85)

In the last line, we used the time-reversal symmetry (82) of the
measurements. By noting Eq. (79), we obtain Eq. (83).

We note that Eq. (83) holds regardless of the presence of
feedback control. Without feedback control, Eq. (83) reduces
to

P †[Y †
N ]

P [YN ]
= e−σ ′[YN ]. (86)

By taking the ensemble average of both sides of Eq. (83)
and noting that 〈e−σ ′ 〉 = 〈e−σ 〉 holds, we obtain the second
generalization of the integral fluctuation theorem [67]

〈e−σ 〉 = γ, (87)

where γ is the efficacy parameter of feedback control defined
as

γ :=
∫

P [Y †
N |�N (YN−1)†]dY

†
N, (88)

which is the sum of probabilities of obtaining the time-reversed
outcomes by the time-reversed measurements during the time-
reversed protocols (see Fig. 3). If σ = β(W − �F ) holds,
Eq. (87) leads to the second generalization of the Jarzynski
equality [67]:

〈e−β(W−�F )〉 = γ. (89)
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FIG. 3. (a) Forward outcomes YN with forward protocol �N (YN ).
(b) Backward outcomes Y

†
N with backward protocol [�N (YN )†].

If the feedback control in the forward processes is “perfect,”
the particle is expected to return to its initial state with unit
probability in the backward processes. In such a case, γ

takes the maximum value that equals the number of possible
outcomes of YN . In fact, for the case of the Szilard engine,
γ = 2 holds corresponding to W = −kBT ln 2 and �F = 0
[67]. In contrast, without feedback control, γ reduces to 1 as

γ :=
∫

P [Y †
N ]dY

†
N = 1, (90)

which vindicates the original integral fluctuation theorem.
Therefore, the measurements in the backward processes are
used to characterized to the efficacy of feedback control in the
forward processes.

We stress that σ and γ can be measured independently,
because σ is obtained from the forward experiments with
feedback, and γ is obtained from the backward experiments
without feedback. Therefore, Eqs. (87) and (89) can be directly
verified in experiments. In fact, Eq. (89) has been verified in a
real experiment by using a feedback-controlled ratchet with a
Brownian particle [82].

From Eq. (65), we have the second generalization of the
second law of thermodynamics

〈σ 〉 � − ln γ. (91)

The equality in inequality (91) is achieved if σ does not
fluctuate. We note that, if the distribution of σ is Gaussian,
we have a generalized fluctuation-dissipation theorem

〈σ 〉 + ln γ = 1
2 (〈σ 2〉 − 〈σ 〉2). (92)

While the first generalization (66) involves only the term
of the obtained information, the second generalization (87)
involves the term of feedback efficacy. To understand the
relationship between the mutual information Ic and the
feedback efficacy γ , we introduce the notation

C[A] := − ln〈e−A〉 (93)

for any probability variable A. We note that, if A can be written
as A = tA′ with t being a real number and A′ being another
probability variable, then C[A] is the cumulant generation
function of A′. By using this notation, we have

C[σ ] + C[Ic] − C[σ + Ic] = − ln γ, (94)

because C[σ ] = − ln γ in Eq. (87), C[Ic] = 0 holds as in
Eq. (56), and C[σ + Ic] = 0 holds as in Eq. (66). Equality (94)
implies that − ln γ is a measure of the correlation between
σ and Ic. This can be more clearly seen by the cumulant

expansion of Eq. (94) if the joint distribution of σ and Ic is
Gaussian:

〈σIc〉 − 〈σ 〉〈Ic〉 = − ln γ. (95)

Therefore, γ characterizes how efficiently we use the obtained
information to decrease the entropy production by feedback
control: If γ is large, the more Ic we obtain, the less σ is.

We can also derive another nonequilibrium equality, which
also gives us the information about the feedback efficacy. By
taking logarithm of the both sides of Eq. (65), we obtain

〈σ ′〉 =
∫

dYNP [YN ] ln
P [YN ]

P [Y †
N |�N (YN−1)†]

, (96)

which is a generalization of Eq. (16). The same result under
a different situation has also been obtained in Refs. [30,31].
Equality (96) implies that the renormalized entropy production
equals the Kullback-Leibler divergence-like quantity between
the forward probability P [YN ] and the backward probability
P [Y †

N |�N (YN−1)†]. In fact, without feedback control, the
right-hand side of Eq. (96) reduces to the Kullback-Leibler
divergence between P [YN ] and P †[Y †

N ], and therefore the
both sides of Eq. (96) are positive, which is consistent with
the second law of thermodynamics. On the contrary, in the
presence of feedback control, the right-hand side is no longer
the Kullback-Leibler divergence, because P [Y †

N |�N (YN−1)†]
is not a normalized probability distribution in terms of Y

†
N .

Therefore the both sides of (96) can be negative. Since
〈σ ′〉 � 〈σ 〉, the entropy production 〈σ 〉 is bounded from below
by the right-hand side of Eq. (96):

〈σ 〉 �
∫

dYNP [YN ] ln
P [YN ]

P [Y †
N |�N (YN−1)†]

. (97)

Without feedback control, the right-hand side of (97) gives
a positive bound, while, with feedback control, the right-
hand side can give a negative bound. We note that, for a
quantum generalization of the Szilard engine with multi-
particles, essentially the same result as Eq. (96) has been
obtained [104].

We note that special cases of our results in this section were
obtained elsewhere. We have derived two types of the general-
ized Jarzynski equality for the cases with a single measurement
in the presence of a single heat bath in Ref. [67]. In Ref. [71]
the detailed fluctuation theorem and the Jarzynski equality
were obtained for the cases with multiple measurements and
feedback in the presence of a single heat bath. In Ref. [68]
a generalized Jarzynski equality was also obtained for the
Kalman filter and the optimal control. The results in this paper
include all of the above results and generalize them to the cases
of multiple heat baths and non-Markovian measurements.

We also note that the generalized Jarzynski equality (89)
with a single measurement was experimentally verified by
using a feedback-controlled ratchet with a colloidal particle
[82]. Moreover, Eq. (89) has been generalized to quantum
systems [72].

VI. EXAMPLES

We now discuss two examples that illustrate the essential
features of our general results. We analytically discuss a gener-
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FIG. 4. Generalized Szilard engine with measurement error rate
ε, where x denotes the states of the system, and y denote the
measurement outcomes. The control protocol is determined by y.

alized Szilard engine with measurement errors in Sec. VI A and
numerically discuss a feedback-controlled ratchet in Sec. VI B.

A. Szilard engine with measurement errors

As an example with a classical measurement, we discuss
a generalized Szilard engine with measurement errors, which
will be shown to achieve the upper bound of inequality (72)
or (73) for an arbitrary error rate. The control protocol of the
generalized Szilard engine is given by the following steps,
which are described in Fig. 4.

Step 1. Initial state. A single-particle classical gas is in a
box. The initial state of the gas is in thermal equilibrium with
a single heat bath at temperature T = (kBβ)−1.

Step 2. Insertion of the barrier. We insert a barrier in the
middle of the box and divide it into two boxes with the same
volume. Here we do not know in which box the particle is. For
simplicity of notations, we write “left” as “0” and “right” as
“1.” In other words, the position x of the particle is given by
x = 0 or x = 1. We do not need any work during this process,
as proved in Ref. [104].

Step 3. Measurement. We measure the position of the
particle. We assume that the measurement is equivalent to
the binary symmetric channel with error rate ε [106]; the
measurement outcome takes y = 0 or 1, and the measurement
error is characterized by conditional probabilities P [0|0] =
P [1|1] − 1 = ε and P [0|1] = P [1|0] = ε with 0 � ε � 1.
We note that x = y holds for the original Szilard engine
without error (ε = 0).

Step 4. Feedback. We next move the position of the barrier
quasistatically and isothermally. The protocol of moving
the barrier depends on measurement outcome y. Let v0

(0 � v0 � 1) and v1 (0 � v0 � 1) be real numbers. We assume
that, after we move the barrier, the ratio of the volumes of the
boxes is assumed to be v0 : 1 − v0 for y = 0, or 1 − v1 : v1

for y = 1. We note that, in the case of the original Szilard
engine, v0 = v1 = 1 holds. In this process, we extract the
work from the engine. The amounts of the work are given by
kBT ln 2v0 if (x,y) = (0,0), kBT ln 2(1 − v0) if (x,y) = (0,1),
kBT ln 2(1 − v1) if (x,y) = (1,0), and kBT ln 2v1 if (x,y) =
(1,1). The feedback protocol is characterized by v0 and v1.

Step 5. Removal of the barrier. We remove the barrier
without any work. The engine then returns to the initial state.

From the total process, we extract the average work

〈Wext〉 = kBT

[
ln 2 + 1 − ε

2
ln v0 + ε

2
ln(1 − v0)

+ε

2
ln(1 − v1) + 1 − ε

2
ln v1

]
. (98)

We note that �F S = 0 holds. We then maximize 〈Wext〉 under
a given measurement error ε by changing v0 and v1. The
maximum value of 〈Wext〉 is achieved when

v0 = v1 = 1 − ε, (99)

for which the maximum work is given by

〈Wext〉 = kBT [ln 2 + ε ln ε + (1 − ε) ln(1 − ε)]. (100)

On the other hand, the mutual information of the binary
symmetric channel is given by

〈I 〉 = ln 2 + ε ln ε + (1 − ε) ln(1 − ε). (101)

Therefore, we obtain

〈Wext〉 = kBT 〈I 〉, (102)

which means that the generalized Szilard engine achieves the
upper bound of the extractable work (72) or (73) for any
amount of the mutual information.

We also check the generalized Jarzynski equalities in this
model for arbitrary v0, v1, and ε. We first note that I [x : y] is
given by ln 2(1 − ε) when (x,y) = (0,0), ln 2ε when (x,y) =
(0,1), ln 2ε when (x,y) = (1,0), and ln 2(1 − ε) when (x,y) =
(1,1). Therefore we obtain

〈e−βW−I 〉 = v0 + (1 − v0) + (1 − v1) + v1

2
= 1, (103)

which confirms Eq. (71).
We next consider the second generalization (89) of the

Jarzynski equality. Corresponding to two measurement out-
comes y = 0,1, we have two backward control protocols as
follows (see also Fig. 5).

Step 1. Initial state. The initial state of the backward control
is in the thermal equilibrium.

Step 2. Insertion of the barrier. Corresponding to Step 5 of
the forward process, we insert the barrier and divide the box
into two boxes, because the time reversal of the barrier removal
is the barrier insertion. Corresponding to y = 0 or y = 1 in the
forward process, we divide the box with the ratio v0 : 1 − v0

or 1 − v1 : v1, respectively.
Step 3. Moving the barrier. We next move the barrier to the

middle of the box quasistatically and isothermally. This is the
time reversal of the feedback control in Step 4 of the forward
process.

Step 4. Measurement. We perform the measurement to find
in which box the particle is in. Corresponding to the backward
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FIG. 5. Backward processes of the generalized Szilard engine.
Corresponding to y that denotes the measurement outcomes in the
forward process, we have two control protocols in the backward
process, where y ′ denotes the measurement outcomes in the backward
process.

protocol with y = 0, we obtain the outcomes of backward
measurement y ′ = 0 with probability P [y ′ = 0|�(y = 0)†] =
v0(1 − ε) + (1 − v0)ε and y ′ = 1 with probability P [y ′ =
1|�(y = 0)†] = v0ε + (1 − v0)(1 − ε). On the other hand,
corresponding to the backward protocol with y = 1, we obtain
the outcomes of backward measurement y ′ = 0 with prob-
ability P [y ′ = 0|�(y = 1)†] = v1ε + (1 − v1)(1 − ε) and
y ′ = 1 with probability P [y ′ = 1|�(y = 1)†] = v1(1 − ε) +
(1 − v0)ε.

Step 5. Removal of the barrier. We remove the barrier, and
the system returns to the initial state. This is the time reversal
of the barrier insertion in Step 2 of the forward process.

From Step 4 of the backward process, we have

γ := P [y ′ = 0|�(y = 0)†] + P [y ′ = 1|�(y = 1)†]

= (1 − ε)(v0 + v1) + ε(2 − v0 − v1). (104)

On the other hand, we can straightforwardly obtain

〈e−βW 〉 = (1 − ε)(v0 + v1) + ε(2 − v0 − v1), (105)

which confirms Eq. (89).

B. Feedback-controlled ratchet

We next discuss a model for Brownian motors [110–115],
in particular a feedback-controlled ratchet [58,61,63]. We
consider a rotating Brownian particle with a periodic boundary
condition. Let x be the position or the angle of the particle,
and its boundary condition is given by x = x + L with L

being a constant. In the following, we restrict the particle’s
position to −L/2 � x < L/2. We assume that the particle
obeys the overdamped Langevin equation (32) and that control

- L/2 L/2- L/2 + l 0

K

V

x

0= 1=

- L/2 L/2

- L/2 + l

0

K

V

x

- L/2 + 2l

FIG. 6. Two shapes of potential V (x,λ) corresponding to λ = 0,1.

parameter λ takes two values (λ = 0 or 1). Corresponding to
them, the ratchet potential V takes the following two profiles
(Fig. 6):

V (x,0) =

⎧⎪⎨
⎪⎩

K(x + L/2)/l

(−L/2 � x < −L/2 + l),
−K(x − L/2)/(L − l)

(−L/2 + l � x < L),

(106)

V (x,1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−K(x + L/2 − l)/(L − l)
(−L/2 � x < −L/2 + l),

K(x + L/2 + 2l)/l

(−L/2 + l � x < −L/2 + 2l),
−K(x − L/2 − l)/(L − l)

(−L/2 + 2l � x < L/2),

(107)

where l is a constant with 0 < l < L/2, and K is a positive
constant that characterizes the height of the potential.

We start with the initial equilibrium with parameter λ = 0
and control the system from time t = 0 to τ with the following
three protocols:

(1) Trivial control. We do not change the parameter λ = 0.
(2) Flashing ratchet. At times t = mτ0 with m being

integers and τ0 being a constant, we switch parameter λ from
0 to 1 or from 1 to 0 periodically.

(3) Feedback-controlled ratchet. At times t = mτ0, we
switch the parameter with the following feedback protocol.
We measure the position x at t = mτ0 without error. We then
set λ = 1 from t = mτ0 to (m + 1)τ0 if and only if the outcome
is in −L/2 � x < −L/2 + l. Otherwise, parameter λ is
set to 0.

For numerical simulations, we set l = 3L/10, K = 3kBT ,
τ0 = 0.05, and τ = 0.25, with units kBT = 1, L = 1, and
η/2 = 1. We performed the simulations by discretizing
Eq. (32) with �t = 0.00025 for 1 000 000 samples. We note
that, to obtain the initial thermal equilibrium, we waited
τwait = 0.5 and checked that the system was fully thermalized
in the periodic ratchet with parameter λ = 0.

The time evolution of the ensemble average 〈x(t)〉 is plotted
in Fig. 7(a) for the above three protocols. As expected, nothing
happens for the first protocol, while the particle is transported
to the right on average for the second and third protocols.
In the case of the feedback-controlled ratchet, the particle is
transported to the right faster than the case of the flashing
ratchet. Figure 7(b) shows the time evolution of the work
〈W (t)〉 that is performed on the particle. The work is induced
only in the switching times. We find that, in order to transport
the particle, the energy input to the particle with feedback
control is smaller than that with the flashing.

Figure 8 shows the left-hand side of the Jarzynski equality
〈e−β(W−�F )〉 for the flashing and feedback-controlled ratchet,
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FIG. 7. (a) Numerical results of the ensemble average of trajec-
tory x(t) corresponding to the three control protocols: the trivial
control, the flashing ratchet, and the feedback-controlled ratchet.
(b) Numerical result of the ensemble average of the work W (t)
corresponding to the flashing ratchet and the feedback-controlled
ratchet.

and the efficacy parameter γ for the feedback-controlled
ratchet. We note that �F = 0 always holds. With feedback
control, 〈e−β(W−�F )〉 increases from 1 as the number of switch-
ings increases, while, without feedback control, 〈e−β(W−�F )〉
converges to 1 for all switching times in consistent with the
original Jarzynski equality. On the other hand, to obtain γ ,
we numerically performed the backward experiments. The
discretization of the time is �t = 0.0005, and the number of
the samples is 10 000 for each trajectory of λ(t). We note that
the number of the trajectories of λ is given by 2m with m times
of switchings. Figure 8 shows a good coincidence between
〈e−βW 〉 and γ , which confirms the validity of Eq. (89) in the
feedback-controlled ratchet.

0
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FIG. 8. Numerical tests of the Jarzynski equality for the flashing
ratchet and a generalized Jarzynski equality (89) for the feedback-
controlled ratchet.

VII. CONCLUSIONS

In this paper we have studied the effects of measurements
and feedback control on nonequilibrium thermodynamic
systems. In particular, we have generalized nonequilibrium
equalities to the systems that are subject to feedback control.
Our formulations and results are applicable to a broad class of
classical nonequilibrium systems.

In Sec. II we reviewed stochastic thermodynamics by
focusing on the nonequilibrium equalities. In Sec. III we
formulated measurements on nonequilibrium systems and
defined mutual information Ic by Eq. (31) for multiple
measurements. In Sec. IV we formulated feedback control
on nonequilibrium systems. We discussed the properties of the
joint probability (47), which is well defined due to causality.
We introduced the mutual information Ic by Eq. (55), which
is not equivalent to I in the presence of feedback control.
In fact, Ic describes the correlation between the system and
the outcomes, which characterizes the effective information
obtained by the measurements. We have also shown that the
detailed fluctuation theorem (58) holds in the presence of
feedback control.

Section V constitutes the main results of this paper. We
derived two types of generalizations of the nonequilibrium
equalities. In Sec. V A we derived a generalized detailed
fluctuation theorem (65), which involves the mutual infor-
mation. Based on Eq. (65), we derived the generalizations of
the integral fluctuation theorem (66), the Jarzynski equality
(71), the second laws [(67), (72), and (73)], the fluctuation-
dissipation theorem (70), and the KPB equality (68), which
all involve the mutual information. In Sec. V B, we derived
the renormalized detailed fluctuation theorem (83) and derived
the generalizations of the integral fluctuation theorem (87), the
Jarzynski equality (89), the second law (91), the fluctuation-
dissipation theorem (92), and the KPB equality (96). We have
shown that mutual information Ic, rather than I , plays the
crucial role to formulate the nonequilibrium equalities under
feedback control. These results are the generalizations of the
fundamental equalities in nonequilibrium statistical mechanics
to feedback-controlled processes, and lead to the generalized
second law of thermodynamics with feedback control, which
gives the minimal energy cost that is needed for the feedback
control.

In Sec. VI we discussed simple examples to explicitly show
that our results in Sec. V can be applied to typical situations. In
Sec. VI A, we discussed the Szilard engine with measurement
errors that achieves the equality of the generalized second law
of thermodynamics (72) or (73). This is an important model
to quantitatively illustrate that the mutual information can be
converted to the work. We also confirmed the two generalized
Jarzynski equalities (71) and (89) in the generalized Szilard
engine. In Sec. VI B, we considered a feedback-controlled
ratchet and confirmed a generalized Jarzynski equality (89).

All of our formulations and results are consistent with
the original nonequilibrium equalities and the second law of
thermodynamics, and our results serve as the fundamental
principle of nonequilibrium thermodynamics of feedback
control. We note that, in our results such as Eq. (65), the
thermodynamic quantities and the information contents are
treated on an equal footing. Therefore, our theory may
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be regarded as the nonequilibrium version of “information
thermodynamics” [100,102], which serves as the fundamental
theory of nonequilibrium information heat engines.
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APPENDIX: PHYSICAL MEANING
OF THE ENTROPY PRODUCTION

In this Appendix, we discuss the physical meanings of the
entropy production σ in the following two typical setups to
clarify the typical situations to which our results apply.

Isothermal processes. We assume that there is a single
heat bath at temperature T = (kBβ)−1 and that the initial
distributions of both forward and backward experiments are
in the canonical distributions. We stress that we do not
assume that the final distributions of both the forward and
backward experiments are in the canonical distributions: The
final distribution of the forward (backward) experiments does
not necessarily equal the initial distribution of the backward
(forward) experiments. Let H (x,λ) be the Hamiltonian of
the system with the time symmetry H (x,λ) = H (x∗,λ∗). The
canonical distribution with parameter λ is given by

Pcan[x|λ] := eβ[F (λ)−H (x,λ)], (A1)

where

F (λ) := −kBT ln
∫

dxe−βH (x,λ) (A2)

is the Helmholtz free energy. In this situation, the entropy
production reduces to

σ [XN ] = β(W [XN ] − �F ), (A3)

where

W [XN ] := H (xN,λfin) − H (x0,λint) − Q[XN ] (A4)

is the work performed on the system from the external
parameter, and �F := F (λfin) − F (λint) is the free-energy
difference. In this case Eq. (14) leads to the Jarzynski equality
(19), and the second law (15) reduces to inequality (20).

Transition between arbitrary nonequilibrium states. We
assume that there are several heat baths, and that we can control
the strength of interaction between the system and the baths
through λ. In other words, we can attach or detach the system
from the baths by controlling λ; for example, we can attach
an adiabatic wall to the system. We set an arbitrary initial
distribution P0[x0] for the forward experiments. On the other
hand, the initial state of the backward experiments is assumed
to be taken as P

†
0 [x†

0] := PN [xN ], where PN [xN ] is the final
distribution of the forward experiments. Although this choice
of the backward initial state is artificial and is difficult to be
experimentally realized except for special cases, this backward
initial state is a theoretically useful tool to derive a version of
the second law of thermodynamics as follows. In this case the
entropy production is given by

σ [XN ] = − ln PN [xN ] + ln P0[x0] −
∑

i

βiQi[XN ], (A5)

and its ensemble average leads to

〈σ 〉 = SN − S0 −
∑

i

βi〈Qi〉, (A6)

where

Sn := −
∫

Pn[xn] ln Pn[xn]dxn (A7)

is the Shannon entropy at time tn. By introducing notation
�S := SN − S0, the second law (15) leads to

�S �
∑

i

βi〈Qi〉. (A8)
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