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Self-sustained peristaltic waves: Explicit asymptotic solutions
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A simple nonlinear model for the coupled problem of fluid flow and contractile wall deformation is proposed
to describe peristalsis. In the context of the model the ability of a transporting system to perform autonomous
peristaltic pumping is interpreted as the ability to propagate sustained waves of wall deformation. Piecewise-linear
approximations of nonlinear functions are used to analytically demonstrate the existence of traveling-wave
solutions. Explicit formulas are derived which relate the speed of self-sustained peristaltic waves to the rheological
properties of the transporting vessel and the transported fluid. The results may contribute to the development of
diagnostic and therapeutic procedures for cases of peristaltic motility disorders.
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Peristaltic pumping is one of the major mechanisms for
fluid transport in biological systems. Pumping results from
a distinctive pattern of smooth muscle contraction which
propagates in a wave down the fluid-containing muscular
vessel. It is generally accepted that peristalsis is the primary
mechanism behind bolus propulsion through the esophagus
[1], the movement of chime in the gastrointestinal tract [2,3],
and the functioning of the ureter [4,5]. It has also been
suggested that peristaltic contractions play an important role
in lymph and blood transport [6-9].

Peristaltic pumping is generally an autonomous process,
as many in vitro studies on isolated preparations indicate
[9-12]. A number of models have been developed which
aim to describe peristalsis as an inherent property of the
transporting system [13,14]. These models are comprised
of large, complicated sets of nonlinear differential equa-
tions that require laborious numerical analysis. They do
not allow one to easily interpret the pumping indices (i.e.,
observed wave speed, the volume of transported fluid, etc.) in
terms of the parameters which characterize the transporting
system.

In this paper we present a much simpler, analytically
tractable model of peristaltic pumping. The goal is to de-
rive explicit albeit approximate solutions that would allow
one to make qualitative predictions concerning peristaltic
motility.

The model relies on a phenomenological description of the
interaction between mechanical and electrical activity in the
process of peristaltic pumping [15,16]. The electrical activity
is represented by a wave of excitation propagating through
a set of coupled excitable elements [17]. The mathematical
formulation of the problem requires finding self-sustained
traveling-wave solutions of the model.

The model equations are as follows:
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Equation (1) results from the application of lubrication
theory approximations to the equations of motion of an incom-
pressible Newtonian fluid of viscosity u in a tube undergoing
axisymmetric deformation [18-21]. The variables introduced
are& = (R — Ro)/Roand p = p; — p.(1 + ho/Ry) (see Fig. 1
caption).

Equation (2) arises from a circumferential stress-strain rela-
tionship given by the standard linear solid (SLS) model of the
viscoelastic wall material [22,23]. A thin-shell approximation
and Laplace’s law [20,21] were used to rewrite the stress-strain
constitutive equation in terms of p and &. Parameters %, . in
Eq. (2) define the characteristic time scales of stress relaxation
and creep of an unstimulated vessel, respectively. E is the
measure of wall stiffness (E ~ Yhg /Ro where Y denotes the
Young’s modulus of the vessel wall material). The SLS model
is supplemented with an active force generator represented by
the p, (i) term in Eq. (2).

The FitzHugh-Nagumo type phenomenological equations
[24,25] with cubic nonlinearity, f (i) = —pi(id — i, )@ —
1), 8>0, 0<ii <1, are used to model the electrical
activity that gives rise to peristalsis [see Egs. (3) and (4)]. The
diffusive term in Eq. (3) stands for synaptic coupling between
excitable cells. (Both electrical and chemical synapses are
known to contribute to signal transduction [26,27].) The term
1 () represents mechanosensitive currents arising in response
to stretch. (The multiple mechanisms behind mechanosen-
sitivity of peristaltically active systems are discussed, e.g.,
in [2,11,27,28].) I(&) is taken to be linear:

1(&) = @&, «a = const. &)

The @i variable serves as a quantification of a degree to
which the contractile machinery of the wall is activated by
the electrical event of excitation. ¥ is the recovery variable:
F>00<36< 4/ — fi)%). (The conditions ensure that
the system given by Eqs. (3) and (4) has only one stable
equilibrium, as characteristic of excitable media [17].) The
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FIG. 1. A schematic representation of a tube undergoing peristal-
sis. The profile of the lumen is described by R = R(z,t). The internal
pressure distribution is given by p; = p;(z,t). We assume that before
the arrival of the wave the tube is at rest, unstrained and unstimulated,
with lumen radius and wall thickness equal to R, and A, respectively.
The external pressure p, is constant.

capacity to evoke contractions is introduced into the model by
the term p,(if):
pa(@) = Yii, Y = const. (6)

Numerical analysis of Egs. (1)—(6) shows that in a certain
range of parameter values self-sustained deformation waves
can be initiated in the system. In this paper we shall not address
the issue of initiation. Instead, we will focus on the problem
of existence of self-sustained traveling-wave solutions of the
model under consideration. Special attention will be paid
to analyzing how the speed of a steadily propagating wave
depends on rheological parameters of the transporting vessel
and the transported fluid (i.e., parameters E, %, %, T, 0.

We look for traveling-wave solutions of the form

Pn) = pE), Bzt =88, il =ia@),
i(z,0) = #(§), (N
where £ = z — V¢ and V is the wave speed (V > 0 is chosen

to search for wave solutions traveling from left to right). The
solutions are subject to the following conditions as £ — Foc:

{(p',p.%.i,0} — {0,0,0,0,0}, ®)
the prime denoting differentiation with respect to £.

On integrating Eq. (1) with respect to & and inserting
Egs. (5)-(7) into the model, Egs. (1)—(4) take the form

8uVl — (148 = R(1+8)*p, )
p—Vip = E@E - ViE)+ Yi, (10)
—Vii' =af + f(ii)— v+ Di" (11)
—Vi = k(i — 5b) (12)

Finding a set of functions { p,&,i, 7} satisfying Egs. (9)-(12)
as well as the conditions (8) implies solving a nonlinear eigen-
value problem [29,30] which, in general, requires numerical
calculation. To simplify the analysis we will construct an
analytically tractable piecewise-linear version of the model.
The approach proved to be effective in a number of situations
[31-35].
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The simplifications we adopt are as follows:
(i) We replace the cubic reaction term f(ii) with a
piecewise-linear approximation

fa) = —pli — H(@ — i),

where H (ii — ii;;,) is a Heaviside step function.
(i) We restrict our analysis to small deformation values so
that nonlinear terms in Eq. (9) may be neglected [36]:

8] <« 2/7. (13)

Condition (13) has to be checked a posteriori, after
obtaining the solution, to justify the linearization.
After introducing the following dimensionless quantities,
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the piecewise-linear version of the model takes the following
form:

—Ve=p/, (15)

Vi, p'+p=E(E—-Vtse)+u, (16)
—Vu' =¢e—u+H@u —um)—v+ Du”, (17)
—Vv =«k(u — §v). (18)

For a piecewise-linear set of Eqs. (15)—(18) the problem
of finding solutions results in an eigenvalue problem which
is analytically tractable for an arbitrary set of governing
parameters {t,t.,E,u:pr,D,x,6}. The procedure we have
followed to construct the solution is given, for example, in
[32,37]. An example of the solution obtained is presented in
Fig. 2.

A comprehensive discussion of the properties of the
solution will be provided elsewhere. In this paper we focus
solely on the asymptotic behavior of the solution in two
limiting cases that are interesting from a biological standpoint.
The cases we deal with are as follows:

(1) I(e) =0, i.e., the case of negligible mechanosensitive
input into muscle contraction-relaxation control circuits.

1+e &)

-

-1-e®

FIG. 2. (Color online) An example of the solution (z; = 0, 7. = 0,
E=1,uy, =03,D=0,«=0.0525§=0.1).

020902-2



SELF-SUSTAINED PERISTALTIC WAVES: EXPLICIT ...

(i) D = 0, i.e., the case of negligible synaptic conductivity
between the adjacent tube segments.

Case 1: I(e) =0. In this section we discuss the case
when currents arising in smooth muscle cells of a given tube
segment in response to mechanical deformation are negligible
in comparison with those induced by synaptic transmission
from the adjacent tissue segment.

One can easily see that when /(¢) = 0 Eqgs. (17) and (18)
for u and v variables can be solved independently of the
equations (15) and (16) that define p and e. The eigen-
value problem that results from the {u,v} equations defines
the magnitude of the wave velocity, which is independent of
the peculiarities of the mechanical state of the vessel [38]. One
can easily derive from Eqgs. (17) and (18) that, in the singular
limit when the excitable variable u is much faster than the
recovery variable v [39], the velocity is given by

Vi =yv/D, (19)
where
1- 2uthr
Yy = (20)
Uthr — ulzhr

It is worth mentioning that the expression (19) is analogous
to the formula for the velocity of uniformly propagating flame
front predicted by the Zel’dovich—Frank-Kamenetsky model
[41,42]. The solution is unique and exists provided that [43]

Uy < 1/2. Q1)

Case 2: D = 0. In this section we consider the case when
the mechanosensitive currents are much greater than those
induced by synaptic connectivity [44].

The analysis of the system in this special case indicates
that even if synaptic connectivity is ceased altogether, self-
sustained propagation of peristaltic waves is still possible.
The mechanism of propagation is as follows. The transported
fluid bolus results in the dilation of the tube segment which,
being sufficiently large, causes the vessel segment to contract.
(Mechanosensitive currents presented with 7(¢) in the model
equations serve as a trigger for contraction.) Contraction
pushes the fluid bolus into the adjacent segment where it,
in turn, causes dilation. If the dilation reaches a threshold
value, active contraction is triggered and the sequence of
events repeats itself. Thus, through hydroelastic interactions, a
self-sustained wave of deformation propagates along the tube.

We have deduced two asymptotic formulas for the velocity
of traveling waves in the D = 0 case. Both formulas refer to
the singular limit of a slow recovery variable (see Ref. [39]).

The first one is derived under the assumption that the rates
at which p, e, u change during the passage of a peristaltic
wave are much smaller than those of stress relaxation and
creep within the wall tissue. The reduced set of equations can
be obtained from Eqgs. (15)—(17) by formally setting the stress
and stretch relaxation times equal to zero: 7y = 7, = 0. It was
found that the velocity of the traveling front under conditions
described above is given by

Vae =y/1 — E + yVE. (22)
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FIG. 3. (Color online) (a) Vzi,; plotted against 27./t; and
1/ (Eu,,). (b) Bifurcation diagram. The number of traveling-wave
solutions in each region is as follows: “0” —0, “1” —1, “2” —2.

A unique traveling front solution corresponding to Eq. (22)
exists provided that

E < (I — uwphr)/wsny- (23)

The second asymptotic formula applies to the situation
when the excitable variable u reaches quasisteady state on
a much shorter time scale than that at which variables p,e,u
change during the passage of the wave. The reduced set of
equations is obtained from Eqgs. (15)—(17) by resolving Eq. (17)
with a steady state approximation, i.e., by setting

e=u— H@u — uy,).

It was shown that the solution of the eigenvalue problem
corresponding to this limit is not necessarily unique. The
number of the solutions depends on relative values of two
parameter combinations (see Fig. 3). The parametric plane is
divided into three separate regions with either no solutions
(region “0”), one solution (region “1”°) or two traveling front
solutions (region “2”). The critical lines are given by

1/(Euthr) == l»
Qt./ty — D>+ 1/(Eug)* = 1,

where £ = E + 1, t. = 1.E/E. The velocities corresponding
to the solutions are given by

Vi =/ E/t,

x \/ 1= 28/t 4/ (1 = 28 /5, + 1/(Bugy)? — 1.
24)

The linear stability analysis performed in much the same
way as in [32,34,37] indicates that slower fronts [correspond-
ing to the “~” sign in formula (24)] are unstable. The existence
condition for stable solution is as follows:

{Euge < B J2t/7 < 1= /1= 1/(Eup, P} (25)

We have introduced a rather simple phenomenological
model of biological peristalsis. The model is based on a
one-dimensional description of fluid dynamic Eq. (1) coupled
to a constitutive equation describing the rheological properties
of the contractile vessel wall tissue Eq. (2). The contractile
tissue is treated as an active medium in a fashion similar to the
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one accepted in [46-48] (see Refs. [17,49,50] for additional
information on active media research).

It should be noted that Eqgs. (1) and (2) and their close
analogs have appeared together in previous work to calculate
the fluid-wall interaction during peristaltic pumping [20-22].
Similarly, Egs. (3) and (4) have formerly been used to
simulate the electrical activity associated with peristalsis [47].
Combining these equations into a single model, however, has
not been suggested previously.

The ability of a transporting system to perform autonomous
peristaltic pumping is interpreted as the ability to propagate
sustained waves of wall deformation. Hence the mathematical
problem of describing self-sustained peristalsis comes to
finding traveling-wave solutions of the model and analyzing
their dependence on the model parameters.

The solutions obtained in the present paper correspond
to single-wave peristaltic pumping such as occurs in the
esophagus [1], the gastrointestinal tract (propulsive pumping
regimes) [2,3,12,16], and the ureter at low urine formation
rates [4,10].

This paper describes the results of the analysis in several
biologically relevant limiting cases. In these cases explicit
existence conditions for traveling-wave solutions have been
established [see (21), (23), (25)]. Explicit formulas have been
derived which relate the speed of self-sustained peristaltic
waves to mechanical and electrical properties of the trans-
porting system (e.g., the Young’s modulus of the vessel, the
viscosity of the transported fluid, the sensitization of local
reflex responses, etc.) [51]. See Fig. 4 for an example of
velocity curves predicted by the model.

It should be noted that asymptotic velocities V,, and V5,
(limiting case 2: D = 0) correspond to explicit solutions
with piecewise-continuous displacement gradients &'(£) and
displacements ¢(&§), respectively. Rigorously speaking, this
means that on approaching the corresponding limiting sets of
parameters we overstep (in the vicinity of the matching point)
the restrictions imposed by the lubrication-theory—thin-wall
approximation. This is a potential weakness of the piecewise-
linear modeling. To verify the analytical calculations a series
of numerical experiments with a continuous reaction term
has been conducted. The comparison of the results reveals
that such characteristics of the solution as bounded existence
domain and propagation velocity dependence on rheological
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FIG. 4. (Color online) Dependence of traveling front velocity
on the Young’s modulus of the vessel wall (u,,, =0.3, D =0.4,
7, = 25, 7. = 10). Curves “17, “2a”, “2b” illustrate the dependences
V=V, V=V, V=V given by Egs. (19), (22), and (24),
respectively. Note that hysteresis is expected with variation of
parameter E in the limit corresponding to V = V;;; (curve “2b”). E{",
ES", V" are given by the following formulas: E{" = (1 — up, )/ e,
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parameters of the transporting vessel and the transported
fluid are robust, independent of the peculiarities of nonlinear
function representation. Formulas (22) and (24) provide a good
estimate for the velocity of a continuous solution in a wide
range of parameters.

We strongly believe that the results, especially the explicit
asymptotic formulas (19), (22), and (24) for the velocity of the
wave, open up alternative possibilities for the interpretation
of a wide range of physiological transport phenomena. In
particular they may contribute to diagnostic procedures just
as the Moens-Korteweg formula for the velocity of pulse
wave propagation contributes to the diagnosis of hypertension
[52,53]. The results may also prove useful in the qualitative
analysis of the therapeutic effects of various drugs on peri-
staltic motility.
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