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Size dependence of the propulsion velocity for catalytic Janus-sphere swimmers
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The propulsion velocity of active colloids that asymmetrically catalyze a chemical reaction is probed
experimentally as a function of their sizes. It is found that over the experimentally accessible range, the velocity
decays as a function of size, with a rate that is compatible with an inverse size dependence. A diffusion-reaction
model for the concentrations of the fuel and waste molecules that takes into account a two-step process for the
asymmetric catalytic activity on the surface of the colloid is shown to predict a similar behavior for colloids at
the large size limit, with a saturation for smaller sizes.
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Introduction. The motion of colloids under the influence of
externally imposed solute concentration gradients in solutions,
known as diffusiophoresis [1], is an interesting nonequilibrium
phenomenon [2,3] that has recently been used for a number
of applications, such as manipulating colloids in microfluidic
systems [4]. If a colloid is equipped with a mechanism to
generate and maintain a concentration gradient around itself,
e.g., by having an asymmetric coating of a catalyst on its sur-
face [5], then the self-diffusiophoresis provides a mechanism
that propels the colloid as long as the fuel molecule—that
the catalyst breaks down—is available in the solution, without
the need to impose an external gradient or other forms of
driving [6,7]. In addition to providing a mechanism for making
artificial micro- and nanoscale swimmers, which is an active
multidisciplinary area of research [8], self-diffusiophoresis has
also been suggested to play a role in biological systems with
catalytic motility, such as Listeria [9], where the phenomenon
needs to be formulated in the advection-dominated limit [10].
The mechanism has also been demonstrated to work in critical
binary fluid mixtures [11].

Recent studies have revealed very interesting properties
for self-diffusiophoretic colloids under a variety of circum-
stances. These studies examined the effects of solute density
fluctuations (and the resulting anomalous nature of colloidal
fluctuations) [12], confinement [13], geometrical features [14],
attachment of polymer tether [15] and cargo [16], external
shear flow [17], and gravity [18], as well as the efficiency
of the catalytic propulsion mechanism [19]. Other studies
have focused on the characteristics of the motion such as the
direction of propulsion in the Janus-sphere system [20], as well
as making more complicated geometries such as dumbbells
with a variety of catalytic patterns [21,22].

While knowing the characteristics of such active colloids
could help us determine how feasible this mechanism is
as a means of making catalytic swimming devices, it also
provides an opportunity to systematically probe the statistical
physics of a well-defined nonequilibrium model system. This
could be of particular significance when there are rival
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theoretical formulations with conflicting predictions about the
dependency on certain parameters. As a recent example, we
note the controversies surrounding the size dependence of
the thermophoretic response of colloids [23]. It is natural to
expect that size could also provide such a testing ground for
self-diffusiophoresis.

Here we study, both experimentally and theoretically, the
effect of size on the propulsion velocity of spherical colloidal
swimmers that have a hemispherical coating of catalyst. We
have made Janus particle swimmers with well-defined sizes
ranging from 250 nm to 5 μm in radius (R), and have analyzed
their trajectories to determine their intrinsic velocities, keeping
other parameters known to alter velocity—such as catalyst
coating, thickness, and fuel concentration—constant. We find
that the velocity is extremely sensitive to the size of the Janus
particle, exhibiting a decrease that is compatible with a 1/R

dependence in the range of our observations, as Fig. 1 shows.
We use a simple model to study the reaction- diffusion process
of the fuel and the waste molecules that involves a two-step
process for the catalytic breakup of the fuel on the surface
of the Janus particle. Our model predicts a crossover for the
swimming velocity from a size-independent form at small R

to an asymptotic form in the large R limit as

V � 0.3
kBT λ2

effC∞
ηR

, (1)

where kBT is the thermal energy scale, η is the viscosity of
water, C∞ is the concentration of the fuel molecules far away
from the sphere, and λeff is an effective Derjaguin length (see
below for definition). As seen in Fig. 1, this scaling form
appears to fit reasonably well with the measured velocities in
the range covered by our experiments.

Experiment. Janus particle swimmers are made by evapo-
rating platinum metal onto a monolayer of polystyrene beads
with a well-defined size distribution, purchased from Thermo
Scientific. As the thickness of the platinum coating affects
the propulsion velocity, the differently sized spheres were
codeposited onto the same substrate, to ensure they received
an equivalent coating. After manufacture, the assorted Janus
beads were suspended into aqueous solutions containing 10%
H2O2 fuel. The active colloids have a propulsive component in
addition to their passive Brownian motion, which is controlled
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FIG. 1. (Color online) Experimental results for the swimming
velocity as a function of the radius of the colloidal sphere. The solid
line is a plot of Eq. (1) with T = 293 K, η = 1.0 × 10−3 Pa s, C∞ =
3.0 M (10% w/v), and λeff = 0.62 Å (the only fitting parameter).
Inset: The same results in log-log form.

by the translational diffusion coefficient D = kBT /(6πηR).
The persistence in the orientation of the propulsion decays
after the rotational diffusion time τR = 8πηR3/kBT . Videos
of 30-s duration of many different Janus particles for each
diameter were recorded using a Nikon microscope. The
trajectory of each particle was subsequently determined
using custom-built LABVIEW image analysis software, and
the resulting quantitative mean-square displacements (�L2)
as a function of the time step (�t) were analyzed to
determine the intrinsic propulsion velocities (V ) [24]. This was
achieved by fitting the mean-square displacement data to an
approximate quadratic expression for swimmer displacements
�L2 = 4D�t + V 2�t2, which is valid while t � τR [7]. The
�t ranges fitted were adjusted as far as experimentally possible
to ensure this latter condition was satisfied (radius, fitted range,
and percentage of τR: 0.25 μm; �t = 0.022 s, 22.7%; 0.5 μm;
�t = 0.133 s, 17.2%; 1 μm; �t = 0.133 s, 2.1%; 2.5 μm;
�t = 1 s, 1%; 5 μm; �t = 4 s, 0.51%). For small particles, a
maximum video frame capture rate of 66 Hz imposed a limit
on the shortest time period that could be fitted. Theoretical
values for D were used to constrain the fits. We note that the
majority of the data was taken in the solution with the focal
plane situated in the middle of a 1-mm path-length cuvette.

The resulting swimming velocities obtained by performing
a trajectory analysis for Janus particles half coated with a
platinum catalyst in 10% H2O2 with radii in the range of
0.25–5 μm are shown in Fig. 1. We observe that the velocity
of the active colloids decreases as their size increases. This
appears to contradict the expectation that the velocity of
self-diffusiophoretic swimmers is independent of size, and
is only controlled by the activity, which is a measure of
the effective rate of activity for the catalytic reaction, the
mobility, which is controlled by the interaction of the solute
molecules with the surface of the colloid, and the diffusion
coefficient of the solute [5]. This is, however, only a statement
about the contribution of size to the swimming velocity
due to hydrodynamics. The key to resolving this apparent
contradiction is to realize that the activity, which is taken as
an effective rate of particle production per unit area, is itself

the result of a complex catalytic reaction-diffusion process
and might depend on size. To calculate this effective rate we
need to properly understand the kinetics of the reaction by
taking into account all of the molecular species involved in the
reaction, their asymmetric and localized catalytic activities on
the surface of the colloids, as well as their diffusion in the bulk.
This is what we set out to do next.

Reaction-diffusion process of the fuel molecules. We con-
sider the simplest kinetic route for the chemical reaction that
involves an intermediate process in which hydrogen peroxide
forms a complex with the platinum:

H2O2 + Pt
k1−→ Pt(H2O2)

k2−→ H2O + O + Pt. (2)

Assuming a separation of time scale between the solute
diffusion and the motion of the sphere [12], we can treat the
reaction-diffusion process of the molecules in the stationary
limit. Using the notation Chp ≡ [H2O2] and Co ≡ [O], and
ignoring advection (see below), the solutes satisfy the diffusion
equations ∇2Chp(r,θ ) = 0 and ∇2Co(r,θ ) = 0 in the bulk,
subject to the boundary conditions

−Dhp∂rChp|r=R = −k1Chp(R,θ )pfr(θ )K(θ ), (3)

−Do∂rCo|r=R = k2pcx(θ )K(θ ), (4)

at the surface of the sphere, where Dhp and Do are the diffusion
coefficients for hydrogen peroxide and oxygen, respectively.
Here, K(θ ) is the “coverage” function

K(θ ) =
{

1, 0 < θ < π
2 ,

0, π
2 < θ < π,

(5)

which describes the angular pattern of the platinum patch on
the surface of the Janus particle, pcx(θ ) is the probability
of a Pt(H2O2) complex forming at the surface, and pfr(θ )
is the probability that platinum is free. Naturally, the two
probabilities satisfy pcx + pfr = 1. The stationary state for the
two stages of the reaction of Eq. (2) requires

k1Chp(R,θ )pfr(θ ) = k2pcx(θ ), (6)

which could be used to solve for the probabilities.
Equation (6) puts a constraint on the two concentra-
tions as DhpChp(r,θ ) + DoCo(r,θ ) = DhpC∞,such that there
is only need to solve for one of the concentrations,
namely, hydrogen peroxide, which will now be subject
to the nonlinear boundary condition −Dhp∂rChp|r=R =
−k2k1Chp(R,θ )K(θ )/[k2 + k1Chp(R,θ )]. The solution of the
Laplace equation for the concentration of hydrogen per-
oxide in terms of Legendre polynomials reads Chp(r,θ ) =
C∞[1 − ∑

	 B	(R
r

)	+1P	(cos θ )], which can be inserted in the
boundary condition to give the self-consistent equation for the
coefficients B	 as

∑
	

B	(	 + 1)P	 =
(

k1R
Dhp

)[
1 − ∑

	 B	P	

]
K(θ )

1 + (
k1C∞

k2

)[
1 − ∑

	 B	P	

] . (7)

These coefficients will determine the concentration profiles
of all the solute molecules, from which we can deduce the
diffusiophoretic slip velocity as Vs = (I − nn)[μhp∇Chp +
μw∇Cw + μo∇Co] just outside the surface of the Janus sphere,
where w denotes water and n is the surface normal unit
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vector [2]. Here the surface mobility for the solute species j is
defined as μj = kBT

η

∫ ∞
0 dz z[1 − e−Wj (z)/kBT ] in terms of the

interaction potential Wj (z) between the diffusing molecules
and the surface of the colloid. Note that μw = 0, since we have
a special case in which one of the products of the reaction is the
same as the solvent. Averaging over the surface of the sphere
(using integration over the solid angle 
), we can obtain the
swimming velocity of the Janus sphere as V = − 1

4π

∫
d
Vs ,

which yields

V = 2

3

(
kBT λ2

eff

η

)
C∞
R

B1

(
k1R

Dhp
,
k1C∞

k2

)
, (8)

where the effective Derjaguin length [1] is calculated as λ2
eff =∫ ∞

0 dz z{Dhp

Do
[1 − e−Wo/kBT ] − [1 − e−Whp/kBT ]}. The propul-

sion velocity depends on the concentration of the fuel and
the size of the sphere through the coefficient B1, which needs
to be solved for using Eq. (7).

Different scaling regimes. We can extract the different
asymptotic forms of the coefficient B1 by examining the
behavior of Eq. (7) in various limits. In the large size limit
when R � Dhp/k1 and R � DhpC∞/k2, Eq. (7) requires
[1 − ∑

	 B	P	]K(θ ) to nearly vanish, which can be achieved
via 1 − ∑

	 B	P	 = α[1 − K(θ )], where α is a constant of
proportionality that can be determined numerically. Using the
expansion of the coverage function in Legendre polynomials
K(θ ) = 1

2 + 3
4P1(cos θ ) − 7

16P3(cos θ ) + · · · , we can read off
the coefficients in this limit. In particular, we find B1 �
3
4α, which yields Eq. (1), using the numerically determined
α = 0.6 (see below). When R � Dhp/k1 and C∞ � k2/k1,
Eq. (7) yields B1 � 3

8 ( k1R
Dhp

), which gives the swimming velocity

V � kBT λ2
effk1C∞/(4ηDhp). Similarly, when R � Dhp/k1

and C∞ � k2/k1, we obtain B1 � 3
8 ( k2R

DhpC∞
), which yields

V � kBT λ2
effk2/(4ηDhp). These results are summarized in

Fig. 2. We have numerically solved Eq. (7) to find B1 as a
function of the size and fuel concentration. The result is shown
in Fig. 3, and agrees with the above asymptotic analysis. The
plateau value of B1 = 0.45 in Fig. 3 yields α = 0.6.

Comparison with experiment. The strong size dependence
of the measured velocities (presented in Fig. 1) suggests that
in the current experiment the system must correspond to
region III in the diagram in Fig. 2. In this regime, the swimming
velocity could be approximately described by Eq. (1), which is
independent of the two reaction rates (that are generally very
difficult to ascertain and could be very variable), and only
depends on the Derjaguin length (in addition to other known
quantities), which we expect to be in the range of an angstrom.
The solid line in Fig. 1 shows that, in addition to the general
behavior, Eq. (1) also predicts the right order of magnitude for
the swimming velocity, with a choice of λeff = 0.62 Å for the
Derjaguin length.

The 1/R behavior is expected to saturate when R �
Dhp/k1 for C∞ � k2/k1, or R � DhpC∞/k2 for C∞ �
k2/k1 (see Fig. 2). Since we do not observe this saturation
even for R = 250 nm (and using Dhp = 1.4 × 10−9 m2 s−1),
we can estimate that in the current experiment k1 > 3.4 ×
1024 M−1 m−2 s−1, or in units where concentration is in
percentage (as in Ref. [7]) kv

1 > 1.0 × 1014 μm−2 s−1.

(I) (II)

(III)

Current Experiment

Previous Experiment

V ∼ kBTλ2
effC∞

ηR

V ∼ kBTλ2
effk1C∞

ηDhp

V ∼ kBTλ2
effk2

ηDhp

∼ 1

∼ 1

k1R
Dhp

k1C∞
k2

FIG. 2. (Color online) Three different scaling regimes for the
swimming velocity as a function of the size and fuel concentration.
The dashed lines show the crossover boundaries between the different
regimes. The dotted lines show the locations in this diagram
corresponding to the current experiment and the previous experiment
of Ref. [7].

In the previous experiment [7], where we changed the
concentration of hydrogen peroxide and not the size of the
beads, we had two constraints in our fitting for the three
parameters of λeff , kv

1, and k2, and therefore we could not
determine the values of these parameters unambiguously.
We assumed a value of λeff = 5 Å based on its expected
order of magnitude, and reported the values of kv

1 = 4.4 ×
1011 μm−2 s−1 and k2 = 4.8 × 1010 μm−2 s−1 from the fitting
[7]. If we use λeff = 0.62 Å as suggested by the current
experiment, we need to rescale both reaction rates by a factor
of (5/0.62)2 � 65, which yields kv

1 = 2.9 × 1013 μm−2 s−1

and k2 = 3.1 × 1012 μm−2 s−1. Using R = 801 nm and the
new value for kv

1, we can estimate that k1R/Dhp = 0.5 in
the experiment of Ref. [7], suggesting that it corresponded
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FIG. 3. (Color online) The coefficient B1 that determines the
swimming velocity as shown in Eq. (8) as a function of size and
fuel concentration.
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to a crossover from region I to region II, as shown in Fig. 2.
Note that using the estimate for λeff obtained in the current
experiment for the previous one is a crude approximation, as
we expect the variability in the coating to affect this parameter.
However, we expect our estimate to represent the order of
magnitude of the parameter better than the originally presumed
value.

Discussion. In our analysis, we have made a number
of simplifying assumptions. The kinetics of the breakup of
hydrogen peroxide catalyzed by platinum could in reality
be more complicated than Eq. (2). However, we expect that
more complicated intermediate steps will not change the main
qualitative features of our results. Another assumption in our
calculations is that the advection term can be neglected in
the reaction-diffusion equation for the solutes. This might
appear unjustified as the Peclet number for our swimmers
could be rather large, reaching, for example, Pe = 83 for
the 5-μm bead. However, in diffusiophoresis the condition
that advection could be neglected is not Pe � 1, but rather
Pe � R/λeff (in the limit λeff � R) [25], which is always the
case in our experiments. Using Eq. (1), we can calculate the
Peclet number in the large R limit as Pe ≡ V R

D
� 3πλ2

effC∞R.
Hence, we find that advection can be neglected provided

C∞ � 1/λ3
eff , which is interestingly independent of the size

of the swimmer.
It would be desirable to experimentally probe the entire

parameter space as presented in Fig. 2. There are, however,
experimental limitations on the practical range of size and
fuel concentration, if we are to use a consistent protocol
based on particle tracking and stay within the regime where
self-diffusiophoresis is expected to be the dominant propulsion
mechanism. Smaller sizes would require the use of scattering
methods, due to the optical limit, which would no longer
allow direct determination of individual swimmer velocities.
Increasing the fuel concentration or using larger particles
will lead to the local production of oxygen concentrations
too large to dissolve, causing bubble release. The bubbles
contribute to propulsion and do not allow systematic probing
of self-diffusiophoresis.

In conclusion, we have shown that the size dependence of
the propulsion velocity of catalytic Janus beads could be used
to shed more light on the nature of the nonequilibrium activity
of such colloids.
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