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Nuclear magnetic resonance relaxometry as a method of measuring translational diffusion
coefficients in liquids

D. Kruk,1,2 R. Meier,1 and E. A. Rössler1,*
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By application of the field-cycling technique, we measure the dispersion of the 1H nuclear magnetic resonance
(NMR) spin-lattice relaxation time T1(ω) for a series of molecular liquids. We demonstrate that such NMR
relaxometry studies can be used for determining diffusion coefficients. A broad frequency range of 10 kHz–
20 MHz is covered. By scanning T1(ω) one directly probes the spectral density of the diffusion processes. The
value of the diffusion coefficient D can be determined from a linear dependence of the 1H spin-lattice relaxation
rate on the square root of the frequency at which it is measured. The power of this method lies in its simplicity,
which allows one to determine D(T ) independently of the diffusive model. The results obtained are in very good
agreement with those of field gradient NMR methods.
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Nuclear magnetic resonance (NMR) is a phenomenon that
gives rise to a variety of specific experimental methods which
are very valuable as sources of information on dynamical
properties of molecular systems. In recent decades NMR
field gradient diffusometry has became the key method of
measuring translational diffusion coefficients D in liquids [1].
In order to probe the translational motion the sample is
placed in an inhomogeneous magnetic field characterized by a
linear, well-controlled field gradient. The position of a nucleus
possessing a spin (an NMR-active nucleus) is monitored by
changes in its Larmor frequency (precession frequency) which
depend on the location of the traced nucleus. The range
of D accessible by field gradient NMR methods is 10−6–
10−14 m2 s−1 [1,2]. The higher bound of D refers to diffusion
in gases while the lower one corresponds to moderately viscous
(supercooled) liquids.

In this paper we demonstrate, focusing on liquids, that
1H NMR relaxometry can be treated as a method complemen-
tary to field gradient diffusometry. The idea of NMR relaxation
experiments is as follows [3,4]. First, the sample is polarized in
a strong external magnetic field. The generated magnetization
is proportional to the difference in the equilibrium popula-
tions of the 1H Zeeman quantum states determined by the
Boltzmann distribution. Then the field is switched to a lower
value (relaxation field Brel) and the energy levels repopulate
according to the new equilibrium conditions. As a result the 1H
magnetization decreases in time, reaching eventually the value
determined by the lower field Brel. The magnetization decay
is in most cases exponential with a time constant referred to
as the spin-lattice relaxation time T1. The spin transitions are
induced by stochastic fluctuations of magnetic dipole-dipole
interactions between pairs of protons (this is in most cases the
dominating relaxation mechanism), and one has to distinguish
between proton sites on the same molecule (intramolecular)
and on different molecules (intermolecular). In consequence,
the measured value of the relaxation rate R1 (R1 = 1/T1) is
the sum of two contributions resulting from intramolecular and
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intermolecular dipolar interactions, respectively [3]:

R1(ω) = R1,intra(ω) + R1,inter(ω), (1)

where ω = γHBrel (γH is the proton gyromagnetic factor).
The intramolecular relaxation is associated with molecular
rotation changing the orientation of the vector connecting
the interacting nuclei (within a molecule) with respect to
the direction of the external magnetic field. The relaxation
rates depend on the spectral density of these fluctuations (as
well as on the dipolar interaction strength). In the case of
intermolecular relaxation the dipolar interactions are mediated
by the relative translational motion of the molecules, which
leads not only to fluctuations of the orientation of the
internuclear axis, but also to changes in their separation, as
reflected by the intermolecular dipolar correlation function
Cinter(t) [3,5,6]:

Cinter(t) ∝
〈
Y 2∗

m (�(t))
r3(t)

Y 2
m(�(0))
r3(0)

〉
. (2)

Here, the spherical harmonics Y 2
m(�) describe the molecular

orientation via the Euler angle �, while r is the interspin
distance. For isotropic liquids the rotational and translational
dynamics averages the dipole-dipole interactions to zero. For
dipolar relaxation of nuclei with spin quantum number 1

2
the intermolecular relaxation rate R1,inter(ω), measured at the
angular frequency ω = 2πν, is related to the intermolecular
spectral density Jinter [which is a Fourier transform of the
correlation function Cinter(t)] in a simple way according to the
well-known relaxation formula [3]

R1,inter(ω) = 3

10
N

(
μ0

4π
γ 2

Hh̄

)2

[Jinter(ω) + 4Jinter(2ω)], (3)

where N is the proton density (number of protons per unit
volume). This number can be obtained from the relation
N = nNAρ/Mmol, where Mmol is the molecular mass, ρ is the
density of the liquid, n is the number of hydrogen atoms per
molecule, and NA is the Avogadro number. Thus by varying
the relaxation field the spectral density is scanned.

Until recently, field-dependent relaxation experiments had
not been routinely possible. Due to the recent commercial
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availability of STELAR NMR field-cycling (FC) spectrom-
eters, which cover about three orders of magnitude in the
frequency (10 kHz–20 MHz for 1H), NMR relaxometry gained
new momentum [4,7]. The FC technique employs repetitive
changes in the magnetic field: the external magnetic field
is switched from a polarization field to a relaxation one
and back to a high detection field. The measured frequency
dependence of the spin-lattice relaxation rate R1 = T −1

1 is
referred to as relaxation dispersion. An expression analogous
to Eq. (3) can be written for the intramolecular relaxation
rate R1,intra(ω), but including intramolecular spectral densities
that are associated with molecular rotation [3,7]. Thus the key
dynamical processes, translation and rotation, can be moni-
tored, in principle, with 1H NMR relaxometry simultaneously,
which is a unique and great advantage of this method, as shown
in [7,8].

The rotational dynamics of a liquid can be probed by other
methods, for instance dielectric spectroscopy (DS) [9]. The DS
spectral density obtained from the imaginary part of the com-
plex permittivity via JDS(ω) = ε′′/(	εω), where 	ε is linked
to the static dielectric constant εs [(εs − ε∞) = 	ε, where ε∞
is the high-frequency permittivity], is often modeled by a Cole-
Davidson spectral density which reflects its non-Lorentzian
character. It gives as a limit a Lorentzian spectral shape that
corresponds to an exponential correlation function (force-free
isotropic tumbling). As dielectric spectroscopy is indifferent
to translational motion, a comparison between NMR and
DS results is of great value for differentiating between the
contributions to the 1H relaxation associated with rotation
and translation. Recently, we have compared results of FC
1H NMR relaxometry and DS for several viscous
liquids such as glycerol [5,10]. 1H NMR relax-
ation dispersion data compared with the DS results
show a low-frequency excess contribution. To con-
firm its intermolecular (translational) origin, a series of
1H NMR relaxation experiments for isotopically diluted
systems (for instance glycerol-h5 dissolved in glycerol-d8) has
been performed (for a full account see [11]). In Fig. 1 we show
that the low-frequency contribution becomes progressively
suppressed for a decreasing concentration of the 1H-containing
molecules. As 1H-2H dipole-dipole interactions are much
weaker than those between proton pairs (1H-1H), this observa-
tion gives an ultimate proof of the intermolecular origin of the
excess relaxation contribution. The intramolecular relaxation
dispersion (obtained by extrapolating the relaxation data to
the zero-concentration limit of glycerol-h5) and the dielectric
spectral density shapes are essentially identical as in both
cases the rotational dynamics is solely probed. In conclusion,
the dilution experiment shows that there is a considerable
time scale separation of inter- and intramolecular relaxation
contributions.

Different motional models have been applied to quan-
titatively describe the translational motion in condensed
matter [12]. A closed form expression for the intermolecular
correlation function referred to as the hard-sphere force-free
diffusion model has been derived in [5,6]:

Cinter(t) = 72
1

d3

∫ ∞

0

u2

81 + 9u2 − 2u4 + u6
exp

(
− u2t

τtrans

)
du,

(4a)

FIG. 1. (Color online) 1H relaxation dispersion data for glycerol-
h8 and glycerol-h5–glycerol-h0 mixtures with a mole fraction
x = 100%,56%,22%, and 0% (extrapolated) of glycerol-h5. Dashed-
dotted line, fit in terms of the model presented in [8]. In the last case the
low-frequency contribution disappears and only the intramolecular
relaxation part (associated solely with rotational dynamics) remains.
For comparison the dielectric spectral density is included (solid line).
As it well agrees with the relaxation dispersion for x = 0% the
translational origin of the low-frequency relaxation contribution is
again confirmed.

which leads to the spectral density [8]

Jinter(ω)

= 72
1

d3

∫ ∞

0

u2

81 + 9u2 − 2u4 + u6

u2τtrans

u4 + (ωτtrans)2
du,

(4b)

where u is an integration variable. This model assumes that the
interacting nuclei are placed in the centers of the molecules that
undergo Fick diffusion (force-free) with a uniform distribution
of the molecules (treated as hard spheres) outside the distance
of closest approach, d. The correlation time τtrans is defined
as τtrans = d2/D12, where D12 is the relative translational
diffusion coefficient defined as the sum of self-diffusion
coefficients of the participating molecules (thus for identical
molecules it is twice larger than the self-diffusion coefficient,
D12 = 2D). It has been shown by computer simulations that
the effects of structural correlation present in liquids affect
the intermolecular correlation function [13]. In addition, the
intermolecular dipolar interactions are not only mediated
by the translational motion, they are also affected by the
molecular tumbling if the interacting nuclei were not placed
in the molecular centers; this is referred to as eccentricity
effects [14,15]. As we are going to extract the diffusion
coefficients from the low-frequency range of the relaxation
dispersion which corresponds to long times (via the inverse
Fourier transform relationship) these effects become irrelevant
[13,16,17]. For long times the intermolecular correlation func-
tion Cinter(t) follows a power law ∝ t−3/2 that is characteristic
of free diffusion. This time power law implies the form of
the low-frequency expansion of the corresponding spectral
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(b)

(a)

FIG. 2. (Color online) (a) Low-frequency behavior of the trans-
lational spectral density for the hard-sphere force-free model [5,6]
compared with those of rotational spectral densities modeled as
Debye and Cole-Davidson functions; dotted straight line, the
limiting linear dependence predicted by Eq. (2). (b) Normalized
1H NMR relaxation rate R1 and dielectric spectral density for glycerol
as functions of

√
ωτrot. The decomposition of the 1H relaxation

dispersion into intermolecular (dashed) and intramolecular (dotted)
parts [8] shows that the first one controls the low-frequency shape of
the entire relaxation curve.

density [5,12,18–21]:

Jinter(ω) = a − b
√

ω. (5)

This expansion applies when ωτtrans < 1. The seminal fact is
that the constant b depends only on the diffusion coefficient
D; it does not include any details of the diffusion model
[12,17,21]. Besides the very simple mathematical formulation,
which makes the task of determining the diffusion coefficient
values straightforward, an important consequence of this
relation is that for the intermolecular relaxation contribution
there is no frequency-independent low-field region. This is il-
lustrated in Fig. 2(a) where the intermolecular spectral density
(obtained from the hard-sphere force-free model) is compared
with Cole-Davidson and Debye (Lorentzian) spectral densities
describing intramolecular relaxation associated with rotational
motion, both plotted as functions of

√
ωτ (τ denotes here

the characteristic correlation time; it has been set as τtrans =
τrot = τ .) While Jinter in the low-frequency range shows the
linear dependence of Eq. (5), the intramolecular spectral

density Jintra follows a Gaussian-like limiting dependence; for
a Debye function (which is a special case of the Cole-Davidson
function) one gets Jintra ∝ [1 − (ωτrot)2]. Thus, from the low-
frequency shape of the spectral density (relaxation rate) one
can clearly distinguish between rotational and translational
dynamics. To confirm this theoretically predicted feature we
compare in Fig. 2(b) the 1H relaxation dispersion R1(ω) for
glycerol with the corresponding DS results, both plotted as
functions of

√
ωτrot. One sees that the limiting low-frequency

behavior of R1(ω) is indeed linear (it is determined by the
translational contribution) whereas the DS results show a
different frequency dependence.

The translational diffusion coefficient can be obtained from
the model-independent relation b = π/9D3/2. This implies [in
combination with Eq. (3)] that for ωτtrans < 1 the relaxation
dispersion follows the relation

R1(ν) ∼= R1(0) − B
√

ν

= R1(0) − N

(
μ0

4π
γ 2

Hh̄

)2(√
2 + 8

30

)(
π

D

)3/2√
ν,

(6)

where the intramolecular contribution has been included into
R1(0) as there is no visible dispersion of the intramolecular re-
laxation in the linear range of the intermolecular contribution.
The fact that the intramolecular relaxation contribution can be
included into R1(0) is ensured by the relationship between the
rotational and translational correlation times. For the idealized
case of mono-atomic molecules modeled as hard spheres
with the nucleus placed in the molecular center, it has been
theoretically predicted that τtrans/τrot = 9 [3]. Investigating a
variety of liquids, we have found that this ratio is considerably
larger (40–70) [10] (which makes the time scale separation
of these two processes even more easily discernible, as is also
seen in Fig. 1 for glycerol). As a result, the diffusion coefficient
can be straightforwardly calculated from the slope B (which
contains only the spin density N and the diffusion coefficient
D) of the limiting linear dependence of R1(ν) on

√
ν. We wish

to stress that, although relaxation dispersion data contain both
the intramolecular and intermolecular components (which
makes them a unique source of information about the rotational
and translational motion at the same time), for determining the
translational diffusion coefficient there is no need to separate
these contributions.

Although the feature of the low-frequency intermolecular
relaxation dispersion encoded in Eq. (6) has been known
for years, its advantages have not been appreciated so far.
The relationship has been used to determine the diffusion
coefficient for paramagnetic species in solutions [17]. In all
cases the focus was on the dynamics of the paramagnetic
molecules and the electron spin relaxation. In fact, the
relationship of Eq. (6) was once applied to determine the
diffusion coefficient of molecular liquids a long time ago [19];
however, this possibility was not, to our knowledge, further
exploited until now. The reason likely lies in experimental
difficulties—field-dependent relaxation studies have become
routinely available only recently.

We have collected 1H spin-lattice relaxation dispersion data
for several liquids. In Fig. 3, as an example, the 1H relaxation
data for xylitol [HOCH(CH2OH)3CH2OH] obtained in a broad
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D. KRUK, R. MEIER, AND E. A. RÖSSLER PHYSICAL REVIEW E 85, 020201(R) (2012)

FIG. 3. (Color online) 1H relaxation dispersion of the liquid
xylitol plotted as a function of

√
ν; the slope of the linear part at

low frequencies yields the diffusion coefficient D(T ) [cf. Eq. (6)];
the inset shows enlarged high-temperature data.

temperature range are plotted against
√

ν. The linear range of
this dependence progressively extends to higher frequencies
when the motion becomes faster (higher temperatures). The
values of the diffusion coefficients extracted from the linear
part are compared with those from NMR field gradient
diffusometry [22–24] in Fig. 4. The results follow the Vogel-
Fulcher-Tammann expression [10] as is typical of viscous
liquids. A very good agreement between NMR relaxometry
and diffusometry is reached, encouraging us to explore further
the potential of 1H NMR relaxometry by applying it to other
systems. The results for other liquids also are in a very good
agreement with those of field gradient diffusometry. It is worth
mentioning that recently we have applied a full relaxation
theory combined with the force-free hard-sphere diffusion
model to reproduce the whole relaxation dispersion including
the determination of the rotational time constants—cf. Fig. 1
[8,11].

As far as fast diffusional motion is concerned, the limit of
NMR relaxometry is determined only by the fact that a percep-
tible (beyond the experimental inaccuracy of the FC technique)
relaxation dispersion has to be seen in the accessible frequency
range (up to 20 MHz). Using conventional NMR spectrometers
operating at higher frequencies (say up to 600 MHz), this
range can be considerably extended. Nevertheless, NMR
relaxometry loses its sensitivity for fast diffusion processes of
the order of water diffusion (10−9 m2/s). The slow diffusion
limit is determined by two factors. The first one is that using
this type of spectrometer one cannot measure relaxation times
shorter than 1 ms. In the low-field range the relaxation time de-
creases when the correlation times becomes longer, eventually
reaching this limit. The second limitation is that the linear

FIG. 4. (Color online) Translational diffusion coefficient D as
obtained from 1H NMR relaxometry (full symbols) for several liquids
versus the reciprocal temperature; for comparison data from field
gradient NMR (open symbols) are displayed [22–24]; the data are
interpolated via the Vogel-Fulcher-Tammann expression [10].

range of the relaxation dispersion is observed when the
condition ωτtrans < 1 is fulfilled. This implies that to be able
to detect the linear part of the relaxation dispersion at the
low-frequency limit of 10 kHz, the correlation time τtrans must
not be longer than approximately 5 × 10−6 s. Using the relation
τtrans = d2/2D introduced in the force-free hard-sphere model,
where d defined as the distance of closest approach is close to
the molecular diameter, one can estimate the upper limit of the
accessible values of the diffusion coefficient. For a molecule
of diameter of the order of 3 Å one reaches D ∼= 10−14 m2/s,
which is at the limit of field gradient NMR diffusometry. We
have thus demonstrated that 1H NMR relaxometry can serve
as a highly advantageous method of determining values of
diffusion coefficients in a broad range. Taking into account the
simplicity of the mathematical operations required, one can
say that the diffusion coefficients are accessible in a (almost)
direct way. The proposed method of determining diffusion
coefficients can be used in a variety of areas—from industrial
applications (such as, for instance, probing oil properties)
to various research fields. Although we concentrated on 1H
relaxometry, other nuclei, such as, for instance 19F, can also
be exploited, which enlarges its potential. Nevertheless, when
other (than dipole-dipole) relaxation mechanisms are of im-
portance (for instance, hyperfine interactions for paramagnetic
systems), Eq. (6) has to be modified according to a relaxation
theory appropriate for the system of interest.
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951 (2011).
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