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Boundary layers in stochastic thermodynamics
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We study the problem of optimizing released heat or dissipated work in stochastic thermodynamics. In the
overdamped limit these functionals have singular solutions, previously interpreted as protocol jumps. We show
that a regularization, penalizing a properly defined acceleration, changes the jumps into boundary layers of finite
width. We show that in the limit of vanishing boundary layer width no heat is dissipated in the boundary layer,
while work can be done. We further give an alternative interpretation of the fact that the optimal protocols in the
overdamped limit are given by optimal deterministic transport (Burgers equation).
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With the advent of micromanipulation, thermodynamic
quantities such as work and heat have taken new operational
meaning for isolated microstates or single trajectories in
phase space. The problem is then naturally posed to optimize
such fluctuating quantities by varying the externally imposed
conditions, usually called the protocol. The prime experimen-
tal system for such potentially optimized micromanipulation
is particles or molecules in optical traps [1,2]. Protocol
optimization may also turn out to be important in improving
unique computational schemes harnessing the advances of
nonequilibrium statistical physics [3]. Many functionals of
fluctuating paths may be optimized conceivably, but two of the
most natural and important are obviously expected released
heat to the environment, and expected dissipated work. For
specific examples in stochastic thermodynamics, systems
described by overdamped Langevin equations, Schmiedl and
Seifert showed that the optimizing protocols have disconti-
nuities [4]. Several studies have tried to assign a physical
meaning to such infinitely fast transformations, and even to
look for an approximate process that would be amenable
for real experiments [5–7]. In a recent contribution using
a Hamilton-Jacobi-Bellman approach we showed that the
solutions of these examples are special cases of a more general
scheme connecting optimal protocols to optimal deterministic
transport [8]. The discontinuities or jumps in the protocols are
generic, and can be understood as the optimal deterministic
transport proceeding at constant speed from start to finish [8].

The infinitely fast transformations should be smoothened
by inertial effects either in the system, or in a physical model
of the protocol. In this Rapid Communication we show that a
regularization by current acceleration (a concept to be defined)
allows for equally explicit solutions to the problem and direct
investigations of the corresponding boundary layers. We hence
show from the limit of regularized solutions that no heat is
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released during the fast transformations. In this work we use
extensively forward and backward derivatives of the stochastic
process as developed for stochastic quantization [9,10]. As a
side effect, we are thus also able to derive the earlier results
on deterministic transport in an alternative way.

The model we consider is the dynamics of the nonequilib-
rium transition of finite duration �t = tf − to described by the
Langevin equations in the overdamped limit

dξ t = − bt

τ
dt +

√
2

τβ
dωt , (1)

with initial value ξ to
= xo, drift bt = ∂ξ t

V (ξ t ,t), and wt a
vector-valued white noise with covariance 〈ẇt ẇt ′ 〉 = δ(t − t ′),
and mobility τ−1. ξ t is an Rd -valued stochastic process
indexed by the open time interval I = [to,tf]. During the
transition the control potential changes from V (x,to) = Uo(x)
to V (x,tf ) = Uf(x) and the probability density ρ(x,t) evolves
according to the Fokker-Planck equation

∂tρ − 1

τ
∂x · (ρ∂xV ) = 1

βτ
∂2

xρ. (2)

Following Ref. [11], an energy balance for the single
stochastic trajectories ξ t of these dynamics yields the so-called
stochastic thermodynamics. Defining the work done on the
system during the time interval �t as

δW =
∫ tf

to

∂tV (ξ t ,t)dt, (3)

and the heat released by the system as

δQ = −
∫ tf

to

ξ̇ t ◦ ∂ξ t
V (ξ t ,t)dt, (4)

then the balance dU = δW − δQ resembles the first law of
thermodynamics over the time interval [to,tf]. Note that the
product in (4) must be defined in the Stratonovich sense.

We now introduce the notions of the current velocity
and the osmotic velocity associated to the stochastic process
ξ t . Assuming that (1) leads to a smooth diffusion process
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described by a transition probability density p(xt ,t | ys ,s), the
mean forward derivative is defined as

Dξ t := lim
t ′↓t

∫
dx

x − ξ t

t ′ − t
p(x,t ′|ξ t ,t) ≡ bt

τ
, (5)

The mean backward derivative can be written similarly using
the opposite conditional probability p(ξ t ,t |x,t ′). For Markov
processes we can use Bayes’ formula and write instead

D∗ξ t := lim
t ′↑t

∫
dx

ξ t − x
t − t ′

p(ξ t ,t |x,t ′)ρ(x,t ′)
ρ(ξ t ,t)

≡ b∗t

τ
. (6)

The mean forward and mean backward derivatives are related
by

b∗t = bt − 2

βτ
∂ξ t

ln ρ(ξ t ,t), (7)

and the current velocity vt and the osmotic velocity ut are

vt = (bt + b∗t )/2τ, (8)

ut = (1/βτ )∂ξ t
ln ρ(ξ t ,t). (9)

For any smooth function f (ξ t ) we have(
D + D∗

2

)
f = (∂t + v · ∂x) f, (10)

while the mean forward (or mean backward) derivative by
itself has a diffusive term, and in the symmetric derivative of
Eq. (10) it cancels out. Correspondingly, the Fokker-Planck
equation is always deterministic mass transport in terms of the
current velocity

∂tρ + ∂x · (ρv) = 0. (11)

We now use the current velocity and osmotic velocity in
the heat and work functionals over the interval I, which we
define as the expectation values W = E δW and Q = E δQ

respectively. Straightforward application of the Itô lemma
(see, e.g., Ref. [12]) yields the heat functional

Q = E
∫ tf

to

[
dξ t · bt + dt

βτ
∂ξ t

· bt

]
. (12)

If the probability measure ρ decays sufficiently fast after an
integration by parts we can write

Q = E
∫ tf

to

dt[‖vt‖2 + ut · vt ]. (13)

Probability conservation and the definition of u then yield

Q = 1

β
E ln

ρtf

ρto

+ E
∫ tf

to

dt τ‖vt‖2. (14)

From this follows immediately an inequality for the work:

W � E

{
Uf − Uo + 1

β
ln

ρtf

ρto

}
= Ff − Fo ≡ F , (15)

which is a form of the second law of thermodynamics.
In our earlier contribution [8] the control was the drift b, and

the functional was (12). Proceeding as above, we can take the
control to be v, and the functional to be (14). Given that (10)
and (11) are already inviscid equations, this means that we can
directly interpret (14) as a deterministic optimization problem
the solution of which must be an inviscid equation (diffusion

does not appear). To find that inviscid equation, which is the
Burgers equation [8], v = ∂xψ/τ ,

∂tψ + ‖∂xψ‖2

2τ
= 0, (16)

explicit calculations equivalent to those in Ref. [8] must be
performed. From (16) it follows that

E
∫ tf

to

dt τ‖vt‖2 = 2E
∫ tf

to

dt
dψt

dt
, (17)

implying for the heat released during the optimal transforma-
tion the expression [8]

Q	 = E

{
2(ψtf − ψto ) + 1

β
ln

ρtf

ρto

}
, (18)

with ρ evolving according to (11). In the special case of Gaus-
sian initial and final densities, ρ (x,to) = (β/2π )d/2e−(β‖x‖2/2)

and ρ (x,tf) = (β/2πσ 2)d/2e−(β‖x−h‖2/2σ 2) with h a constant
vector, the heat released by the optimal protocol over a time
horizon �t is

Q	(h,σ ) = d

2β
ln

1

σ 2
+ τ

�t

[
d(σ − 1)2

β
+ ‖h‖2

]
, (19)

and the optimal current velocity

v	 (x,t) = (σ − 1)x + h
�t σt

, (20)

with σt = [(tf − t) + (t − to)σ ]/�t a linear function of t .
A surprising property of this optimal driving [first obtained
in Ref. [4] for the minimization of the work (3)] is the
existence of discontinuities at the initial and final times of
the transformation.

We will now turn to the main topic of this Rapid Commu-
nication, which is to regularize the optimization by penalizing
the current acceleration

at =
(

D + D∗
2

)
vt . (21)

We note that v and a are as rough functions as ξ along
trajectories (but no rougher). The current acceleration would
be a complicated expression in terms of the original drift field
b and density field, but the heat functional regularized by
current acceleration preserves the same time symmetry as the
heat functional itself. With these preliminaries, the problem
of determining the minimal heat released in a transformation
between given states reached with assigned values of the initial
and final current velocity reduces to the problem of finding the
minimum of the functional

A := E
∫ tf

to

dt τ (‖vt‖2 + ετ 2‖at‖2)

+ E
∫ tf

to

dt λ ·
[
vt − φ(xo) − xo

�t

]
. (22)

In (22) the Lagrange multiplier λ enforces the constraint

xtf = φ(xo), with xto = xo and ẋt = vt . (23)
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and the map φ specifies the relation between the initial and
final states

ρtf (φ(x))

∣∣∣∣det
∂φ(x)

∂x

∣∣∣∣ = ρto (x). (24)

By (8) and (9) we can write the initial current velocity as

vto = bto

τ
− 1

βτ
∂x ln ρto (x) , (25)

and similarly for vtf . It follows that if the current velocity
vanishes at the boundary of the control horizon,

vto = vtf = 0, (26)

the initial and final probability densities correspond to equi-
librium states. Furthermore, if the initial and final states are
Gaussian, as used above to obtain (19), then the boundary
conditions (23) reduce to

xto = xo and xo = (xtf − h)/σ. (27)

In general, finding the map φ is the main obstacle hindering
the derivation of explicit solutions. If we, however, consider
the initial state and the map φ as the boundary input, we
can recast the optimization problem into the simpler problem
of minimizing the action of a classical unstable oscillator in
a shifted potential τ‖ y − λ/(2τ )‖2. The identifications yt =
ẋt = vt provide the connection to the original problem and
the boundary conditions (26) and (27). From the stationarity
condition for Eq. (22), we obtain the Euler-Lagrange equation

2τ (ετ 2...
x t − ẋt ) = λ, (28)

whence for the boundary conditions (23) and (26) it follows

ẋt = λ

2τ

[
1 −

cosh
( 2(t−to)−�t

2τ
√

ε

)
cosh

(
�t

2τ
√

ε

)
]

, (29)

with

λ = − 2τ [h + (σ − 1) xo]

�t − 2τ
√

ε tanh
(

�t

2τ
√

ε

) . (30)

The average position xt and acceleration ẍt are obtained from
(29). The convergence of the regularized solution toward the
overdamped case of Ref. [8] is shown in Fig. 1. Furthermore,
expressing the action functional (22) in terms of the stationary
solution and averaging over the initial state, we obtain

A	(h,σ,ε) = τ‖h‖2 + d (σ − 1)2 β−1

�t − 2τ
√

ε tanh
(

�t

2τ
√

ε

) . (31)

It is straightforward to verify that in the limit of vanishing ε,
E ln(ρtf /ρto )/β + A	 reduces to the overdamped result (19)
(see the bottom-right-hand panel of Fig. 1). Furthermore,
for any small but finite ε, our regularization unambiguously
determines through (8) and (9) the control potential V (bt =
∂ξ t

V ) in the closed control interval I. This means that for any
ε > 0 the optimal work expression

W	 = E

{
Uf − Uo + ln

ρtf

ρto

}
+ A	 (32)

is well defined. In particular, for transformations between equi-
librium Gaussian sates we have immediately W	 = Q	.
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FIG. 1. (Color online) Average position xt , velocity ẋt , normal-
ized acceleration

√
ε ẍt as obtained from (29), and averaged action

A∗ (31) for a time interval [0,1] τ = h = σ = 1, and different values
of ε: the black curve corresponding to 0.1, red (dark gray) to 0.01,
orange (medium gray) to 0.001, and yellow (light gray) to 0.000 01.
In the bottom-right-hand panel the dashed line corresponds to the
overdamped value ε = 0.

Finally, we consider the minimization of (22) under the
hypothesis that the final state is still Gaussian but out of
equilibrium. In particular, we suppose the final value of the
control potential Uf = c|x − h|2/2 to differ from the osmotic
(equilibrium) potential ln[ρf (2πσ 2/β)d/2] = −|x − μ|2/
2σ 2, thus implying a nonvanishing final current velocity.
Proceeding as before we obtain

ẋt = Gλ sinh

(
t − to√

ετ

)
+ λ

2τ

[
cosh

(
t − to√

ετ

)
− 1

]
, (33)

with Gλ = [2τ ytf
− λ(cλ − 1)]/2τsλ and where, to ease nota-

tion, sλ = sinh(�t/
√

ετ ), cλ = cosh(�t/
√

ετ ), and

λ = cλ + 1

sλ

ytf

√
ετ (cλ − 1) − [μ + xo(σ − 1)]sλ

(�t/2τ )(cλ + 1) − √
εsλ

. (34)

In the limit of vanishing regularization the minimal work done
on the system to operate the transformation tends to

W	

ε↓0→
(

cdσ 2

2β
+ c‖μ − h‖2

2

)
+ Q	(μ,σ ), (35)

while within the open interval (to,tf) the mean state of the sys-
tem changes linearly as xt = x + (t − to)[μ + x(σ − 1)]/�t ,
independently of the final value of the current velocity ytf . We
illustrate this phenomenon in Fig. 2.

From (35) we can determine the Gaussian nonequilibrium
state which, given the final value of the control potential
Uf , minimizes the work. A straightforward calculation shows
that the minimum is attained for μ = c�t h/(c�t + 2τ ) and
σ−2 = [

√
�t(c�t + 2τ ) + τ 2 − τ ]2/(�t)2. Thus, we recover

the result of Refs. [4,8] for the minimal work transforming an
initial equilibrium state under the constraint that the protocol
at the end of the control horizon should attain an assigned final
value. Our regularization framework allows us to interpret such
work as the lower bound over the work done between given
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FIG. 2. (Color online) Average position xt , velocity ẋt , normalized acceleration
√

ε ẍt as obtained from (33), for a time interval [0,1],
x = −0.1, σ = 3.5, τ = h = 1, and ytf = 1 (upper panels), ytf = 1.5 (lower panels). The black curve corresponds to ε = 0.1, red (dark gray)
to ε = 0.01, orange (medium gray) to ε = 0.001, and yellow (light gray) to ε = 0.000 01.

states, positing that it is possible to retain knowledge of the
final protocol but the knowledge on the final nonequilibrium
state is lost.

In summary, we have investigated optimal control in
stochastic thermodynamics. First, we have shown that the
optimal control equations for heat and work transforma-
tions between given states have a natural interpretation in
terms of functionals definite under the time reversal of
the Markov process describing the overdamped dynamics.
Second, we have proposed a regularization framework in
terms of current acceleration. The regularization allows us
to identify without ambiguities the internal energy of the
system with the drift potential. In the limit of vanishing
regularization, the current acceleration tends to zero within
the control horizon but diverges (as ε−1/2 in the examples
considered) at the control-horizon end times, thus carrying
no contribution to the heat release. Correspondingly, the
optimal protocol converges toward the overdamped solution

by forming boundary layers, i.e., regions of faster variation at
the control horizon boundaries. As ε vanishes, these regions
shrink to measure zero sets over which the internal energy
forms in the limit discontinuities, bringing finite contributions
to the work done on the system during the transformation.
In conclusion, we achieved a fully consistent theoretical
picture of optimal overdamped statistical thermodynamics
well suited for the interpretation of experimental and numerical
data.
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