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Nonuniversal heat conduction of one-dimensional lattices
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For one-dimensional nonlinear lattices with momentum conserving interparticle interactions, intensive studies
have suggested that the heat conductivity κ diverges with the system size L as κ ∼ Lα and the value of α is
universal. But in the Fermi-Pasta-Ulam-β lattices with nearest-neighbor (NN) and next-nearest-neighbor (NNN)
coupling, we find that α strongly depends on γ , the ratio of the NNN coupling to the NN coupling. The correlation
between the γ -dependent heat conduction behavior and the in-band discrete breathers is also analyzed.
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In the studies of nonelectronic heat conduction, it is an
important step of progress to realize that the heat conductivity κ

diverges with the system size L as κ ∼ Lα in one-dimensional
nonlinear chains with momentum conserving interactions
[1,2]. The value of the exponent α is believed to be constant
and universal [3], though there are many debates on what
value(s) it takes. (For example, if there exists one universal
class with α = 1

3 [4,5] or two with α = 1
3 and α = 2

5 [6–8] is
still controversial.) The universality of α roots in the theory first
proposed by Peierls [9], where the essence of the nonelectronic
heat conduction is modeled as a weakly interacting phonon
gas at low temperatures. Based on this model, a universal heat
conduction law constrained only by the dimensionality of a
system, regardless of the details of its microscopic dynamics,
is thereby expected.

On the other hand, at high temperatures nonlinear exci-
tations such as traveling solitary waves [10] and discrete
breathers (DBs) [11] are ubiquitous in nonlinear lattices; hence
the interactions between phonons and nonlinear excitations
should be studied and taken into account when their effects
are considerable. As nonlinear excitations involve microscopic
dynamical details, whether a universal heat conduction law
still exists certainly deserves careful investigations. In this
respect quite a few studies have been reported. Early work by
our group showed that traveling solitary waves may play an
important role in heat conduction of the Fermi-Pasta-Ulam-β
(FPU-β) chains [12,13], but this was argued against by some
authors [14,15]. In addition, DBs have also been proposed
as a phonon scattering mechanism [16] for the normal heat
conduction (i.e., κ converges in the thermodynamical limit)
numerically observed in the harmonic chains with on-site
potentials [17] and in the rotator chains [18]. However, in
spite of these studies, at present whether and, if yes, how
the nonlinear excitations would affect the heat transport in
low-dimensional momentum conserving systems is still an
open question.

In this Rapid Communication we present strong evidence
of the nonuniversal heat conduction behavior. Specifically, we
perform numerical analysis to investigate the heat conduction
in one-dimensional FPU-β chains with both the nearest-
neighbor (NN) and the next-nearest-neighbor (NNN) coupling.
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Our results show that the value of α varies continuously
with the ratio of the NNN coupling to the NN coupling,
suggesting the system does not belong to any universality
class characterized by a constant α. Moreover, we find α

is correlated to the overlap of the phonons’ spectra and the
DBs’ spectra, which is consistent with the assumption that
DBs may provide a new phonon scattering mechanism and
thus have implications on the heat conduction behavior of the
system [16].

Our model is a chain of N identical particles with both the
NN and NNN interactions [19] whose Hamiltonian is

H =
∑

i

[
p2

i

2μ
+ V (xi+1 − xi) + γV (xi+2 − xi)

]
. (1)

Here xi is the displacement of the ith particle from its
equilibrium position and pi is its momentum. The potential
is of the FPU-β type; i.e., V (x) = 1

2x2 + 1
4x4. Both the mass

μ and the lattice constant are set to be unity. The parameter
γ is tunable; it specifies the comparative strength of the
NNN coupling. γ = 0 corresponds to the conventional FPU-β
system.

We employ the reverse nonequilibrium molecular dynamics
simulation method (RNEMD) [20] to build the nonequilibrium
stationary state across the system. Compared with the usual
method that brings the two ends of system in contact with
two heat baths at different temperatures, it is advantageous
in suppressing the boundary effects and therefore leads to a
faster convergence to the stationary state. Meanwhile it keeps
the total energy and momentum of the system unchanged. Let
us consider a chain of N particles. Following the prescription
of RNEMD [20] the periodic boundary condition is imposed
to make the chain form a circle, and then the circle is divided
into M (M being even) slabs of equal size, each containing
n = N

M
particles. Next, two opposite slabs chosen arbitrarily

are set to be the cold and the hot slab, respectively. For the sake
of convenience, we give each slab a serial number and assign
the cold slab to be slab 1 and, accordingly, the hot one to be
slab M

2 + 1. The key idea of RNEMD is that, as the system
evolves, the momentum of the hottest particle in the cold slab
is artificially interchanged with that of the coldest particle
in the hot slab at a frequency denoted by fexc. This procedure
forces a redistribution of kinetic energy �E = ∑ 1

2μ
(p2

h − p2
c )

during time t between the cold and the hot slab. (Here the
subscripts h and c refer to the hottest and coldest particles
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whose momenta are exchanged, and the sum runs over all
exchange events in time t .) As a consequence, the relaxation
of �E will drive the flow of two heat fluxes from the hot slab
to the cold slab along the two “semicircular” sides (with an
effective length of L = N

2 − n) bridging them. In the stationary
state eventually reached, we measure the heat flux across
each side 〈J 〉 ≡ limt→∞ �E

2t
and the temperature profile of the

system, represented by the time averaged kinetic temperature
of every slab, denoted by 〈Tk〉 for slab k. The instantaneous
local kinetic temperature Tk ≡ 1

nμkB

∑nk
i=n(k−1)+1 p2

i , where kB

is the Boltzmann constant (set to be unity) and the sum runs
over all n particles in slab k. The heat conductivity can then
be obtained, and it reads κ = −〈J 〉/∇T , with the temperature
gradient ∇T being evaluated over the slabs between the cold
and the hot one.

We start our simulations with a fully thermalized chain at
temperature T = 2.5. The velocity-Verlet algorithm [21] with
a time step of 0.01 is used to evolve the system, and M = 80
and fexc = 0.1 are adopted for the RNEMD. For each system
size a transient stage of time 106, which has been verified to
be long enough for reaching the stationary state, is discarded;
then the next evolution of time 107 is performed for the time
average. We have verified that our results do not significantly
depend on the particular simulation details taken here.

Before presenting our main results, it is interesting to make
a quick comparison between our simulations and those by
different methods. For γ = 0, i.e., the conventional FPU-β
system, Fig. 1(a) shows our result of the temperature profile for
L = 2496. It can be seen that a constant temperature gradient
is well established between the cold and the hot slabs. In
addition, for larger system sizes the temperature profiles (not
shown) have been checked to be the same upon a rescaling.
Figure 1(c) shows the dependence of κ on the effective system
size L; it suggests that κ diverges as L ∼ Lα with α = 0.325 ±
0.002, which we emphasize to be very close to the predicted
value 1

3 by the hydrodynamic theory [4] and the result of a
recent careful numerical study [5]. For γ = 1 we have obtained
similar results [see Figs. 1(b) and 1(d)], but the best fitting

(a) (b)

(c) (d)

FIG. 1. (Color online) The temperature profile for (a) γ = 0
and (b) γ = 1 with the effective system size L = 2496. The heat
conductivity κ vs L for (c) γ = 0 and (d) γ = 1. The dashed lines
are for the best fitting of κ ∼ Lα , suggesting α = 0.325 ± 0.002 for
γ = 0 (c) and α = 0.35 ± 0.02 for γ = 1 (d).

FIG. 2. (Color online) The dependence of α on parameter γ . The
vertical dashed line indicates γc = 0.25. Error bars give the standard
error for evaluating α by linearly fitting ln κ vs ln L.

performed over 2496 � L � 19968 suggests α = 0.35 ± 0.02
instead [see Fig. 1(d)]. Note that our α value for γ = 1 is
remarkably different from that given in Ref. [19], where α

was evaluated over much shorter system sizes (L < 2000) so
that it fails to correctly capture the divergence of κ in the
thermodynamical limit.

Figure 2 presents our main result, where the dependence of
the divergence exponent α on the parameter γ is investigated.
It can be seen that, as γ changes from 0 to 1, α decreases and
reaches its minimum αmin ≈ 0.25 at γ ≈ γc = 0.25 and then
increases up to about 0.35 at γ = 1 with a trend of saturation
[22]. The fact that α changes continuously is in clear contrast
to the existence of a general α value(s) independent of the
dynamics.

As phonons are the heat energy carriers in our system, the
fact that α takes its minimum at γc implies that the NNN
coupling may enhance the phonon scattering for γ being
close to γc. To probe the underlying scattering mechanism,
the phonon dispersion relation turns out to be very suggestive.
Keeping only the harmonic terms in both the NN and NNN
interactions, the dispersion relation reads ωq = 2[sin2 q

2 +
γ sin2 q]

1
2 , where q is the wave number and ωq is the

corresponding frequency. Interestingly, γc is a transition value
for the phonon dispersion relation as well (see Fig. 3): For
γ � γc the maximum frequency corresponds to the boundary
of the Brillouin zone at q = π , which is ωπ = 2, but for

FIG. 3. (Color online) Phonon dispersion relation for the FPU-β
system with the NNN interactions. From bottom to top, the curves
correspond to γ = 0, 0.25, and 1, respectively. The horizontal dashed
line indicates ωπ = 2.
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FIG. 4. (Color online) (a) and (c) Snapshots of the energy distri-
bution and the power spectrum of the residual thermal fluctuations
for γ = 0. (b) and (d) The corresponding results for γ = 0.25. The
power spectrum in (c) and (d) takes an arbitrary unit. The inset in
(d) is a zoom for the boxed in-band components.

γ > γc, it grows larger than ωπ , and the corresponding q value
decreases away from q = π . For γ = γc the group velocity
vg = dωq/dq is close to zero in a wider q domain close to the
Brillouin zone boundary. This property favors the formation
of DBs in the presence of the nonlinearities [23], which will
be shown later [see Fig. 5(b)].

It has been known that the temperature activated DBs
may be crucial for the energy transport and other dynamical
processes following the work by Peyrard [24]. Interesting
examples include the melting transitions in solids and folding
in polypeptide chains [25]. To study if DBs may have any
effects on heat conduction in our system, the first step is to
check if DBs exist at the focused temperature T = 2.5. We
apply the method given in Ref. [17]: A chain of N = 2000
particles is initially thermalized at temperature T = 2.5; then
the heat baths are removed, and the absorbing boundary
conditions are imposed [26]. If DBs exist, after all the mobile
excitations such as phonons and solitary waves are absorbed,
they may show up in the internal segment of the chain. In this
way the DBs have been identified. As an example, the snapshot
of the energy profile after a long time (8 × 105) absorbtion
is presented in Figs. 4(a) and 4(b) for γ = 0 and γ = γc,
respectively. In both plots the DBs can be well recognized.
We have verified that this is also the case for other γ values
in [0,1].

Now we study how the properties of the DBs may depend
on parameter γ . We calculate the power spectra P (ω) of
the residual thermal fluctuations after long time absorbtion;
i.e., the set of all DBs emerges eventually. To facilitate the
computation short chains of size N = 200 are considered.
The results for γ = 0 and γ = γc are plotted in Figs. 4(c)
and Fig. 4(d) for a comparison, which shows that for γ = 0
the DB frequencies are outside the linear phonon band of
0 � ω � ωπ , in agreement with the classical DB theory [27].
However, in clear contrast, for γ = γc a significant portion
of the DB frequencies appear inside the linear phonon band,
suggesting the existence of the in-band DBs [28–30]. In the
inset in Fig. 4(d) the collective modes in the linear phonon
band can be clearly recognized.

FIG. 5. (Color online) (a) The energy portion of the residual
thermal fluctuations within the phonon band. (b) λ vs γ for e(0) =
0.005 (triangles), 0.045 (squares), and 0.18 (dots).

Based on these results, a natural conjecture is that it is
the in-band DBs that have interactions with phonons. Given
this, the lack of the in-band DBs in the former case of γ = 0
implies they have no effects on heat conduction; hence the
Peierls phonon gas model is still valid for understanding the
general α = 1

3 behavior observed. But for γ = γc, as the in-
band DBs randomly distribute along the lattice, they introduce
an inherent disorder [27] and may serve as random scatters to
the phonons. This may explain why α becomes smaller.

If this conjecture is correct, combining the results given in
Fig. 2, we may expect that as γ is increased, the interactions
between the in-band DBs and the phonons would become
stronger and stronger (weaker and weaker) for 0 � γ � γc

(γc < γ � 1). As a measure of the interaction intensity
between the in-band DBs and the phonons, we assume
ε = ∫ ωπ

0 P (ω)dω/
∫ ∞

0 P (ω)dω, the ratio of the energy of
the collective modes within the linear phonon band to the
total energy of the residual thermal fluctuations. For several
different γ values we have calculated the corresponding power
spectrum in the same way as in Figs. 4(c) and 4(d) and
evaluated ε and summarized the results in Fig. 5(a). A positive
correlation between ε and α (see Fig. 2) can be clearly
recognized. [Note that in Fig. 5(a) the maximum of ε does
not correspond to γc exactly but rather a slightly smaller γ

value; this discrepancy may be a result of the big statistical
errors in the evaluated power spectra of the residual thermal
fluctuations where short chains of N = 200 have to be used
because of computation cost.]

Now let us turn to the question why the DB-phonon
interactions could be the strongest at γ = γc. Our study in the
following suggests the DB concentration is the highest at γ =
γc, which we conjecture to be the reason. The concentration of

DBs in an equilibrium state is approximately e
− esh

kB T , where
esh is the energy threshold for creating the DBs [27]. It
implies that if DB concentration is the highest at γ = γc,
then the corresponding esh should be the smallest. To check
if this is the case we consider an energy relaxation process
on a chain of N = 2000. Initially, all particles are assigned
a zero displacement and a zero velocity except the center
particle, which is given a nonzero kinetic energy e(0) instead.
Then absorbing boundary conditions are imposed, and after
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a transient time of 2 × 105 we calculate e(t), and the total
energy remains in the chain at time t , up to t = 8 × 105. We
find that it decays as e(t) ∼ t−λ [23] and that the exponent λ

depends on both the initial excitation energy e(0) and γ : If
e(0) is small, harmonic behaviors manifest themselves, and
λ → 0.5, as pointed out in [31]. But for large enough e(0)
long-lived DBs may form, and thereby λ → 0. Hence λ → 0
is an indicator of the presence of long-lived DBs. We increase
e(0) progressively, and we find that it is exactly at γ = γc when
the signal of DBs first appears [see Fig. 5(b)], suggesting esh

is smallest for γ = γc and, accordingly, the concentration of
the DBs is highest. [Note that the dependence of esh on γ (not
shown) is a smooth function with the minimum at γ = γc,
consistent with the smooth dependence of α on γ (see Fig. 2).]

In summary, we have studied a one-dimensional lattice of
the FPU-β type with both NN and NNN coupling. We find

that, tuning the NNN coupling, the divergence exponent α of
the heat conductivity may continuously change from 0.25 to
about 1

3 , in contrast to the existence of a generality class(es).
In addition, we have shown that there is a positive correlation
between α and the energy of the in-band modes of DBs, on the
basis of which we conjecture that the observed nonuniversal
heat conduction behavior is due to the interactions between
the in-band DBs and phonons. To establish a firm connection
between them requires the details and direct evidence of the
DB-phonon interactions, which are not provided in the present
work.
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