
RAPID COMMUNICATIONS

PHYSICAL REVIEW E 85, 020101(R) (2012)

Measuring maximal eigenvalue distribution of Wishart random matrices with coupled lasers
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We determined the probability distribution of the combined output power from 25 coupled fiber lasers and
show that it agrees well with the Tracy-Widom and Majumdar-Vergassola distributions of the largest eigenvalue
of Wishart random matrices with no fitting parameters. This was achieved with 500 000 measurements of
the combined output power from the fiber lasers, that continuously changes with variations of the fiber lasers
lengths. We show experimentally that for small deviations of the combined output power over its mean value the
Tracy-Widom distribution is correct, while for large deviations the Majumdar-Vergassola distribution is correct.
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Random matrix theory has been exploited in numerous
research fields ranging from nuclear spectra to quantum
transport, models of quantum gravity in two dimensions,
mesoscopic nonlinear dynamics, atomic physics, wireless
communications, and multidimensional data analysis [1–5].
Of special interest are the minimal and maximal eigenvalues
of random matrices, that determines for example the conduc-
tance fluctuations in two- and three- dimensional Anderson
insulators [6,7]. An analytical expression describing typical
deviations of the maximal eigenvalue was presented in the
1990s by Tracy and Widom (TW) [8,9] initiating many further
theoretical developments in random matrix theory [10,11].
Recently, Majumdar and Vergassola (MV) calculated the prob-
ability of large deviations of the maximal eigenvalue [12–14]
above the mean and Pierpaolo, Majumdar, and Bohigas (PMB)
calculated below the mean. The MV and the PMB distributions
were numerically confirmed, but so far eluded experimental
demonstration.

In this Rapid Communication, we provide the first exper-
imental observation of the MV and PMB distributions in a
physical system and connect the field of coupled random lasers
to random matrix theory. We report our measured distribution
of the combined output power from an array of 25 coupled
fiber lasers whose cavity lengths randomly fluctuate in time.
We found that the measured distribution of the combined
output power agrees well with the distribution of maximal
eigenvalue of Wishart random matrices as predicted by TW
and MV. For deviations close to the mean value, the measured
distribution is shown to have a universal shape that agrees with
the TW distribution. For large deviations from the mean value
the measured distribution deviates from the TW distribution,
but agrees well with the MV and PMB distributions over more
than five decades with no fitting parameters. To account for
this agreement, we present a heuristic model that illustrates
the relation between the output power distribution from our
array of coupled lasers to the maximal eigenvalue of Wishart
random matrices.

Our experiment consisted of an array of 25 coupled fiber
lasers schematically presented in Fig. 1. Each fiber laser
was comprised of a ytterbium doped double clad fiber with
lengths that varied from 1.3 m to 1.7 m, a high reflecting
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fiber Bragg grating (FBG) at the rear end of the fiber,
and a low reflecting FBG at the front of the fiber. Each
fiber lasers was end pumped by a stabilized diode laser of
975 nm wavelength. The length of each fiber laser was about
5 m and the output wavelength was 1070 nm with a band-
width of 10 nm. Accordingly, there were 100 000 available
frequencies (longitudinal modes) for each laser. The light
emerging from all the fiber lasers was collected with a lens
that was focused onto a detector to obtain the combined
output power. The fiber lasers were arranged in 5 × 5 array,
where the coupling between them was achieved by means of
four coupling mirrors. By controlling the orientations of the
coupling mirrors we could realize a variety of connectivities
for the fiber lasers in the array, and in our experiments we
concentrated on the one-dimensional and two-dimensional
connectivities. Details about the experimental configuration,
coupling arrangement, and connectivity manipulations were
presented in previous work [15].

The lasers were operated close to threshold to maximize
mode competition and ensure that lasing will only occur at
the mode where the losses are minimal [16,17]. We measured
the combined output power from the array over a duration of
60 hours. The correlation time of the output power fluctuations
was found to be shorter than 0.5 s; hence we obtained over
500 000 uncorrelated measurements. Representative results
of the combined output power over its mean as a function
of time, with and without coupling between the lasers, are
presented in Fig. 2. These are shown over a relatively short
time duration, but their behavior was similar throughout the
60 hours measurement. As seen, the power fluctuations with
coupling (dashed curve) are much larger than those without
coupling between the lasers (solid curve), indicating that the
fluctuations result from the coupling between the lasers [18].

Next we compared the measured results to the distribution
of the largest eigenvalues of Wishart random matrices. Figure 3
presents the probability distributions of the measured output
power in a one-dimensional connectivity (circles) and in a
two-dimensional connectivity (asterisks) where the position of
the maximum is chosen according to the maximum of the TW
distribution (solid curve) [19]. We present the TW distribution
using the scaled units [12]

x = t − 4N

N
, (1)
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FIG. 1. (Color online) Experimental arrangement for measuring
the combined output power distribution of 25 coupled fiber lasers.
FBG, fiber Bragg gratings that serve as rear mirror (>99% reflectivity)
and front mirrors (∼5% reflectivity); E(i), the complex electric field
in the ith fiber near the rear FBG for each fiber laser; li , the length of
the ith fiber. Mi,j corresponds to the propagation matrix for a single
round trip in the cavity and includes the propagation in each fiber,
the output coupler (∼2% reflectivity), and the coupling between the
different fibers (∼8% coupling). The light emerging from all the fiber
lasers was collected with a lens that was focused onto a detector
to obtain the combined output power. Details about the experimental
configuration, coupling arrangement, and connectivity manipulations
were presented in previous work [15].

where t is the largest eigenvalue and N is the matrix size.
As evident, there is a very good agreement between the
probability distributions of the experimental results and the
TW distribution both for the one-dimensional connectivity and
for the two-dimensional connectivity.

For closer inspection of the tails of the measured distri-
butions, we present in Fig. 4 the probability distributions of
the measured combined output power, for one-dimensional
connectivity [circles, Fig. 4(a)] and two-dimensional connec-
tivity [asterisks, Fig. 4(b)], together with the TW distribution
(solid curves) and MV and PMB distributions (dashed curves)
on a logarithmic scale. The insets illustrate the connectivities
between the 25 fiber lasers [15].
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FIG. 2. (Color online) Representative experimental results of the
combined output power from the 25 fiber lasers as a function of time.
Solid curve (red) - without coupling between the lasers; Dashed curve
(blue) - with coupling between the lasers. These results indicate that
the fluctuations are caused by the coupling between the lasers.
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FIG. 3. (Color online) Probability distribution of the scaled
combined output power. Circles, experimental results in a one-
dimensional connectivity; asterisks, experimental results in a two-
dimensional connectivity; solid curve, Tracy-Widom (TW) distri-
bution. As seen, there is a very good agreement between the
probability distributions of the experimentally measured results and
the TW distribution in linear scale for both connectivities. For closer
inspection of the fit to the tails of the distribution see Fig. 4.

The PMB distribution, plotted with no fitting parameters,
is [14]

P (x) = c1 exp[−N2�−(−x)] (2)

and the MV is [12]

P (x) = c2 exp [−N �+ (x)] , (3)

where c1 = 0.5 and c2 = 0.0063 were found using numerical
simulation in [12], and the functions �+(x) and �−(x) are

�+(x) = x

2
+ 1 − ln(x + 4) + 1

x + 4
G

(
4

4 + x

)
(4)

and

�−(x) = ln

(
2√

4 − x

)
− x

8
− x2

64
, (5)

with G(z) = 3F2[{1,1,3/2},{2,3},z] a hypergeometric func-
tion.

As evident from Fig. 4, there are significant systematic
deviations of the measured distribution from the TW dis-
tribution, both at values which are much larger or much
smaller than the mean value [12–14]. However, there is a
very good agreement between the experimental results and
the MV and the PMB distributions for both connectivities,
without any fitting parameters. The experimental results of the
one-dimensional and the two-dimensional connectivities are
essentially identical indicating the universality of the maximal
eigenvalue distribution.

In order to illustrate the relation between the distribution of
the measured power fluctuations and the maximal eigenvalues
of Wishart random matrices, we developed a simple linear
model. While an array of coupled fiber lasers is essentially a
nonlinear system, many of its properties can be determined by
its linearized round trip propagation matrix [16]. For example,
the eigenvectors of this matrix correspond to the various global
modes of the array while the eigenvalues are λn = 1 − αn,
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FIG. 4. (Color online) Probability distribution of the scaled com-
bined output power for (a) one-dimensional connectivity (circles),
and (b) two-dimensional connectivity (asterisks) in logarithmic
scale. Solid curves, Tracy-Widom (TW) distribution; dashed curves,
Majumdar-Vergassola (MV) distribution for eigenvalues much larger
(right green) and Pierpaolo, Majumdar, and Bohigas (PMB) distribu-
tion for eigenvalues much smaller (left blue) than the mean, with no
fitting parameters. As seen, at the tails of the measured distribution
there are significant systematic deviations from the TW distribution.
However, there is a very good agreement for both connectivities,
between the measured results and the MV and PMB distributions at
values which are much larger and much smaller from the mean value,
respectively. Insets illustrate the connectivities between the 25 fiber
lasers in each case [15].

where αn is the loss of mode n [20,21]. The tendency of lasers
to minimize losses will lead the coupled lasers to operate in the
eigenmode corresponding to the largest eigenvalue [17,22].

We start by letting the electric field E(i) near the rear FBG
of each fiber laser be a component of a vector of the total
input field |E0〉 (see Fig. 1). After propagating one round trip,
the field |E1〉 can be described as |E1〉 = M |E0〉, where M
is a 25 × 25 round trip propagation matrix. Details on the
derivation of a round trip propagation matrix are presented
in [21]. Specifically, the elements along the diagonal of M
denote the self-feedback light for each laser, as

Mi,i = (1 − 4κ)e2iki li , (6)

where κ is the coupling strength between two adjacent lasers,
li the length of the ith fiber laser, and ki the wave vector
of the ith laser out of all the 100 000 available frequencies.
The off-diagonal elements of M denote the coupling between
the lasers. For adjacent lasers which are not coupled the
corresponding elements are zero. However, when the adjacent

lasers are coupled the corresponding elements above the
diagonal are

Mi,j = κeiki (li+lj ), (7)

and below the diagonal the elements are

Mi,j = κeikj (li+lj ). (8)

In a resonant cavity at steady state, the vector |E1〉 should
be one of the eigenvectors of M, so |E1〉 = λn |E0〉 where
λn is inversely proportional to the losses in a single round
trip. For many round trips, a complex λn will increase the
losses due to interference. These considerations imply that to
ensure minimal losses in the combined cavity λn should be real
and maximal [16]. Due to the mode competition between the
eigenvectors of M on the nonlinear gain, the coupled lasers
will lase at the mode with the minimal losses [17], which
corresponds to the eigenvector of the round trip propagation
matrix with the maximal real eigenvalue. For high gain lasers
such as fiber lasers, the output power of a mode is proportional
to its eigenvalue [21]. Therefore, the combined output power
of the array provides a direct measure for the value of the
largest eigenvalue of the propagation matrix.

Due to thermal and acoustical fluctuations the length
of each fiber laser changes rapidly such that liki mod
2π is effectively a random phase [18,23]. These random
phases, after each variation in the fiber lengths, result in
a different random round trip propagation matrix. The time
scale of the length fluctuations in our system is much longer
than the relaxation oscillation time of the lasers [16], justifying
the steady state assumption. Accordingly, the distribution of
the combined output power from the array fits the distribution
of the largest eigenvalue of random matrices.

The probability for finding a single common wave vector k

such that all the lasers in the array will have the same phase
and a real valued λn is exponentially small in the number
of lasers and is ∼10−5 for 25 lasers [24,25]. So, when the
length of the fibers is set after each fluctuation, the lasers try
to find the k vector which will satisfy the highest number of
lasers. Therefore, the lasers group in several clusters, each
with its own wave vector [26]. In each cluster the coupling
can be either +κ or −κ . Since the light that is coupled from
one cluster to the other is essentially lost, the structure of the
round trip propagation matrix M is block diagonal, where the
elements along the diagonal are 1 − 4κ and the off-diagonal
elements when there is coupling between two specific lasers
are ±κ . So after each fluctuation we have a different matrix
where the blocks sizes and locations and the signs of the
off-diagonal elements are random. To show that such a
round trip propagation matrix M fall on the Wishart random
matrix universality class, we simulated 104 different random
realizations of our array with small (∼10 μm) fluctuations in
the lengths of each fiber. In each realization we found the
clusters with common wave vector that yield minimal losses
and obtained the corresponding round trip propagation matrix
M [27]. Since M represents the round trip propagation in the
cavity we can define a matrix X which represents a single
pass in the cavity, so, M = XXT . We evaluated the probability
distribution of each element in X and found it to have a
Gaussian shape (data not shown), indicating that the round trip
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propagation matrix M is indeed a Wishart matrix. Therefore,
the distribution of the combined output power from the array
should fit to the TW, MV and PMB distributions.

To conclude, we presented an experimental configuration
of 25 coupled fiber lasers and showed that the probability
distribution of their combined output power agrees well with
the distribution of the largest eigenvalue of Wishart random
matrices, namely the Tracy-Widom, Majumdar-Vergassola
and Pierpaolo-Majumdar-Bohigas distributions. We believe
that such a configuration can be extended to investigate
symplectic and non-Hermitian random matrices with various
connectivities by varying the polarizations and the losses in
the fiber lasers. Moreover, while in this Rapid Communication

we investigated the combined output power from an array of
coupled lasers operating close to threshold, it is possible to
operate the lasers far above their threshold and to investigate
the phase locking across the array [15,27]. Such measurement
of phase locking gives a direct measure for the number of lasers
in each cluster and thereby enables investigation of coupled
ensembles of oscillators where a common frequency for all the
oscillators cannot be found.
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his helpful comments.
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