
PHYSICAL REVIEW E 85, 016709 (2012)

Optimizing the accuracy of lattice Monte Carlo algorithms for simulating diffusion

Mykyta V. Chubynsky* and Gary W. Slater†

Department of Physics, University of Ottawa, 150 Louis-Pasteur, Ottawa, Ontario, Canada K1N 6N5
(Received 20 August 2010; revised manuscript received 24 September 2011; published 12 January 2012)

The behavior of a lattice Monte Carlo (LMC) algorithm (if it is designed correctly) must approach that of the
continuum system that it is designed to simulate as the time step and the mesh step tend to zero. However, we show
for an algorithm for unbiased particle diffusion that if one of these two parameters remains fixed, the accuracy of
the algorithm is optimal for a certain finite value of the other parameter. In one dimension, the optimal algorithm
with moves to the two nearest neighbor sites reproduces the correct second and fourth moments (and minimizes
the error for the higher moments at large times) of the particle distribution and preserves the first two moments of
the first-passage time distributions. In two and three dimensions, the same level of accuracy requires simultaneous
moves along two axes (“diagonal” moves). Such moves attempting to cross an impenetrable boundary should be
projected along the boundary, rather than simply rejected. We also treat the case of absorbing boundaries. We
discuss the relation between optimally accurate LMC algorithms and a particular case of lattice Boltzmann (LB)
algorithms for simulating diffusion and compare the computational efficiency of optimal LMC and optimal LB
algorithms.

DOI: 10.1103/PhysRevE.85.016709 PACS number(s): 02.70.Tt, 05.10.Ln, 05.40.Jc, 87.15.Vv

I. INTRODUCTION

Particles diffusing in a liquid medium perform random
walks. In a computer simulation of this process, it is sometimes
convenient to introduce a lattice, assume that the particles can
only reside at lattice sites, and allow only certain types of
moves between the sites [1–17]. Different variants of such
lattice Monte Carlo (LMC) algorithms are distinguished by
the sets of allowed moves and the corresponding probabilities.
These are chosen depending on the purpose of the algorithm.
For instance, Metropolis Monte Carlo [18] can be used to
study equilibrium properties, but is, in general, inadequate
for dynamics, especially in a strong external field [12]. For
dynamical algorithms, another important (and often neglected)
ingredient is the time step (the amount by which the time is
incremented after each attempted LMC move) [19]. While,
in principle, the time step can vary during a simulation, in
this paper we restrict ourselves to algorithms where it remains
constant. Moreover, we only consider the case of unbiased
diffusion, where there is no external field or other external
influence (such as a flow) that would drive the particles
preferentially in a particular direction. Some of the approaches
used in this paper are applicable to the case of biased diffusion
as well, and this will be described in a separate publication. We
also assume that the system is uniform, that is, the diffusion
constant is the same everywhere.

As an example of a dynamical LMC algorithm, consider
unbiased one-dimensional (1D) diffusion along an infinite line,
with the 1D lattice sites placed equidistantly and numbered
consecutively by integer numbers. In the simplest approach, at
each step the particle moves left or right to a neighboring site
with equal probabilities. If for a particle that is known to be at

*chubynsky@gmail.com
†gslater@uottawa.ca

site i the probability that it moves to site j during a given time
step is pi→j , then

pj→j+1 = pj→j−1 = 1/2, (1)

pj→l = 0 for l �= j ± 1. (2)

The time step τ can be determined, for example, using a
mapping onto the mean first-passage time between sites [19]
and is equal to

τ = a2

2D
, (3)

where a is the distance between the lattice sites (the lattice
constant or the mesh step) and D is the diffusion constant of
the particle in the medium.

Rather than working with individual particles, one can look
at the evolution of particle distributions, described by the set
of the mean particle numbers at each site, {ni(t)}, where the
subscript i refers to the site number. In general, the mean
particle numbers after the move are given in terms of those
before the move by

nj (t + τ) =
∑

l

pl→j nl(t), (4)

where, in principle, |l − j | can be allowed to be larger than
unity. Equation (4) is known as the master equation. For the
particular simple algorithm described by Eqs. (1)–(3),

nj (t + τ) = 1
2 [nj−1(t) + nj+1(t)]. (5)

The set of equations (5) for all sites can be solved numerically
for given initial and boundary conditions, and this provides,
in a sense, a numerically exact solution of the LMC algorithm
[20]. In effect, we have two variants of the LMC approach:
the particle-based approach and the numerically exact master
equation approach. Both can be used in practice and our
results in this paper apply to both, with the former becoming
equivalent to the latter in the limit when averaging over
infinitely many realizations is done. Throughout this paper,
we assume that the time step τ is the same for all sites

016709-11539-3755/2012/85(1)/016709(30) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.85.016709

MYKYTA V. CHUBYNSKY AND GARY W. SLATER PHYSICAL REVIEW E 85, 016709 (2012)

and moves and is history-independent. This is essential for
the numerically exact variant; while not strictly necessary
for the particle-based approach (e.g., in kinetic Monte Carlo
[2,21–23] the time increment is different for different moves),
keeping the time step constant simplifies both the analysis and
the implementation of the LMC algorithm.

On the other hand, diffusion can be studied using continuum
equations that describe the time evolution of the particle
concentration. For example, for unbiased diffusion in 1D,

∂n(x,t)

∂t
= D

∂2n(x,t)

∂x2
. (6)

To solve such an equation numerically, one can discretize it
replacing the derivatives with differences:

n(x,t + τ) − n(x,t)

τ

≈ D × n(x + a,t) − 2n(x,t) + n(x − a,t)

a2
(7)

or

n(x,t + τ) ≈ n(x,t) + Dτ

a2
[n(x + a,t)

− 2n(x,t) + n(x − a,t)]. (8)

This is known as the forward time centered space finite-
difference scheme [24]. If x = ja, where j is integer, then
we get a set of equations involving only the values of n(x,t) at
discrete points:

nj (t + τ) ≈ nj (t) + Dτ

a2
[nj+1(t) − 2nj (t) + nj−1(t)], (9)

where nj (t) ≡ n(ja,t). Note that this coincides with Eq. (5)
when τ is given by Eq. (3). In other words, the master equation
for a LMC algorithm can be viewed as a discretization of the
continuum equation for the same diffusion problem.

Note, however, that other choices of the time step τ are
possible in Eq. (9). For each such choice, one can define a
new LMC algorithm with a new set of transition probabilities
by comparing Eqs. (9) to (4) (with the caveat that these
probabilities have to remain bounded between zero and one).
Indeed, if we rewrite Eq. (9) as

nj (t + τ) ≈ Dτ

a2
nj−1(t) +

(
1 − 2Dτ

a2

)
nj (t) + Dτ

a2
nj+1(t)

(10)

and compare this expression to Eq. (4), we obtain

pj−1→j = pj+1→j = Dτ

a2
, (11)

pj→j = 1 − 2Dτ

a2
. (12)

To ensure that these probabilities remain between zero and
one, the time step must be in the range

0 < τ � a2

2D
. (13)

Note that, in general, we now have a nonzero probability pj→j

of staying at the same site during a particular time step (Fig. 1).
The only exception is the particular case of the algorithm given

+1pj j+1pj j

j jp

pj j pj j−1 −1

→→
j −1 j +1 j +2j −2

→

→ →

ja

FIG. 1. A schematic of the 1D algorithm considered in this
paper. At a particular step, in addition to the usual moves to nearest
neighbors, the particle can also stay put (which can be considered
as the move to the original site). The notation for the probabilities
of the moves is given. These probabilities (along with the time step)
can be adjusted to optimize the algorithm. For unbiased diffusion, we
always have pj−1→j = pj+1→j .

by Eqs. (1)–(3), which corresponds to the largest possible time
step,

τmax = a2

2D
. (14)

Such an algorithm (to which we refer as the ordinary
algorithm) is a logical choice from the point of view of the
computational efficiency of the simulation. However, choosing
a shorter time step can increase the accuracy of the LMC
algorithm.

The problem of optimizing the accuracy of the algorithm
given by Eqs. (11) and (12) seems trivial at first. Indeed, the
smaller the time step and the mesh step, the more accurately the
discretization (9) represents the continuum equation (6) and
thus the more accurate the corresponding LMC algorithm. In
practice, however, computational resources are limited and one
can only choose the smallest time step for which the simulation
is still feasible. The practically relevant question then is as
follows: Given that time step, what is the optimal mesh step?
Based on Eq. (13), it cannot be infinitely small. The smallest
possible mesh step (the finest space discretization), amin =√

2Dτ , corresponds to the ordinary algorithm described by
Eqs. (1)–(3). While at first glance it seems it should provide
the best accuracy, we will see below that this is not the case.
Conversely, in some cases one may wish to fix the mesh
step (for example, choosing the largest value that ensures
that spatial inhomogeneities are still reproduced accurately)
and then optimize the time step. The largest possible time
step, τ = a2/2D [again, corresponding to Eqs. (1) and (2)],
as mentioned, is optimal in terms of computational speed. As
for the accuracy, at first glance it may seem that the smaller
the τ the better, but again, this trivial answer turns out to be
incorrect.

This problem of optimizing the accuracy of LMC algo-
rithms for diffusion given a fixed time step or mesh step
is the subject of this paper. While in our considerations we
fix the mesh step and allow the time step and the transition
probabilities to vary, it will be clear from our derivation that
fixing the time step instead will lead to the same probabilities
and the same relation between the mesh step and the time step
at optimality, at least as long as all inhomogeneities, such as
obstacles and their features, are much larger than the mesh
step. In the next section, we solve the optimization problem

016709-2

OPTIMIZING THE ACCURACY OF LATTICE MONTE . . . PHYSICAL REVIEW E 85, 016709 (2012)

for the 1D diffusion algorithm described above. We do this
using three different approaches, with the same end result.
In Secs. III and IV, we consider the 2D and 3D analogs of
the same problem and show that the same accuracy as in 1D
requires the introduction of simultaneous moves in at least two
directions, or diagonal moves. In Secs. V and VI, we show how
the LMC rules should be modified for sites next to reflecting
or absorbing boundaries. In Sec. VII, we discuss the relation
between the optimal LMC algorithms and lattice Boltzmann
algorithms for simulating fluid dynamics and diffusion. We
end the paper with a discussion of our results.

II. ONE DIMENSION

In this section, we optimize the 1D LMC algorithm
for unbiased diffusion with the moves restricted to nearest
neighbors. We do this in three different ways. The first
approach is based on the comparison between the solutions
of the continuum equation (6) and the master equation (4)
(with only pj±1→j and pj→j nonzero); they should match
particularly for long-wavelength, slowly decaying modes.
The other two methods compare the exact moments of the
particle distribution or the first-passage time (FPT) distribution
with those of the respective distributions generated by the
algorithm. Using these three different approaches reveals more
properties of the optimal algorithm, but the resulting sets
of parameters are the same. We also consider the full FPT
distributions and show numerically that while for both the
ordinary algorithm [Eqs. (1)–(3)] and the optimally accurate
algorithm the distribution eventually approaches the correct
one as the mesh gets finer, the latter algorithm achieves the
same accuracy for a much coarser mesh.

A. Comparison to the continuum equation

Note first that the general solution of the continuum
equation (6) on an infinite line can be written as a sum (or,
rather, an integral) over modes with different wave numbers k,
each of which decays exponentially in time:

n(x,t) =
∫ ∞

−∞
C(k) exp[ikx − αc(k)t]dk, (15)

where C(k) is an arbitrary complex function [except for the
fact that we need C(−k) = C∗(k) for the solution to be real]
and the dispersion relation is

αc(k) = Dk2. (16)

The general form of the master equation for a LMC algorithm
in 1D where only moves between neighboring sites are allowed
is

nj (t + τ) = pj→j nj (t) + pj−1→j nj−1(t) + pj+1→j nj+1(t).

(17)

The general solution of the system of master equations (17)
can be written in a form similar to Eq. (15), except for the fact
that the integration limits are finite due to space discretization:

nj (t) =
∫ π/a

−π/a

C(k) exp[ikaj − αd (k)t]dk. (18)

The dispersion relation αd (k) can be obtained by substituting
Eq. (18) in Eq. (17):

αd (k) = − 1

τ
ln[pj→j + pj−1→j exp(−ika)

+pj+1→j exp(ika)]. (19)

Note that Eq. (19) is the exact dispersion relation for the
discrete equation (17), even for finite values of a and τ .

The closer Eq. (19) approximates the dispersion relation
(16) for the exact, continuum equation, the more accurate
the discretization and the corresponding LMC scheme. One
can argue that the behavior of the solution of the diffusion
equation on the longest length scales (smallest k) should
be reproduced in the first place, especially given that these
longest-wavelength modes also take the most time to decay.
For this reason, we expand the dispersion relations Eqs. (16)
and (19) in powers of k and try to match as many terms as
possible. Since Eq. (16) contains only a k2 term, we need
to find the conditions that would eliminate as many terms as
possible in the series expansion of Eq. (19), starting with the
lowest order, except for the k2 term whose coefficient should
equal D. The k0 term disappears if

pj→j + pj−1→j + pj+1→j = 1. (20)

In other words, the probabilities must be normalized. Given
Eq. (20), we find that the k1 term in Eq. (19) has a zero
coefficient if

ia

τ
(pj−1→j − pj+1→j) = 0. (21)

This means that the probabilities of moving to the left and right
should be equal, which makes sense since our diffusion process
is unbiased. Taking conditions (20) and (21) into account,
Eq. (19) becomes

αd (k) = − 1

τ
ln[1 + pj−1→j (−k2a2 + k4a4/12

− k6a6/360 + · · ·)]. (22)

After expanding the logarithm in a series, the k2 term of the
resulting expression matches Eq. (16) if

a2pj−1→j

τ
= D. (23)

This is equivalent to Eq. (11) and ensures the correct diffusion
rate. Requiring that the next (k4) term be equal to zero gives
the expression

− 1

τ

(
− p2

j−1→j a
4

2
+ pj−1→j a

4

12

)
= 0. (24)

The solution of this equation is simply

pj−1→j = 1
6 . (25)

Note that pj−1→j = 0 is not a solution, since in the limit
pj−1→j → 0 not just the expression in the parentheses in
Eq. (24), but also τ approaches zero and the ratio pj−1→j /τ

remains finite, according to Eq. (23). This means that the k4

term is not eliminated in the limit τ → 0 and so, perhaps

016709-3

MYKYTA V. CHUBYNSKY AND GARY W. SLATER PHYSICAL REVIEW E 85, 016709 (2012)

surprisingly, the algorithm is not optimal in this limit. From
Eqs. (20), (21), (23), and (25), we then get

pj±1→j = 1

6
, (26)

pj→j = 2

3
, (27)

τ = a2

6D
. (28)

Interestingly, the optimal algorithm (in terms of accuracy)
requires a time step that is 1/3 of the maximum value τmax

allowed for a particular step length a [as given by Eq. (14)]; as
a consequence, the particle must stay put 2/3 of the time. While
this is costly in terms of computing time, it is obviously better
than the naive expectation that optimality would be achieved
for τ → 0 even when a is finite.

Ideally, further terms in the series expansion of Eq. (19)
should also be zero. All odd-order terms are automatically
zero, but for even-order terms starting with O(k6) this is
impossible to achieve since we have run out of adjustable LMC
parameters. Indeed, with pj−1→j and τ given by Eqs. (26) and
(28), respectively, Eq. (22) becomes

αd (k) = D(k2 − a4k6/540 + · · ·). (29)

The sixth-order term (and all subsequent terms) do vanish
in the limit a → 0 (which also automatically means τ → 0).
For a fixed and finite mesh step a, one can introduce more
parameters by allowing longer-range moves, but this can cause
problems since it would effectively increase the coarseness
of the discretization of space (e.g., with jumps of size 2a, a
particle could move through an obstacle of size a).

In Fig. 2, we compare the exact dispersion relation αc(k),
as given by Eq. (16), with the dispersion relations that
correspond to LMC algorithms built with different time steps
τ . The latter dispersion relations are obtained using Eq. (19)
with the probabilities given by Eqs. (11) and (12) and thus
satisfying Eqs. (20), (21), and (23), which guarantees the
correct expansion terms up to k2, but the k4 term only
vanishes for τ = 1

3τmax. For the maximum possible value τ =
τmax = a2/2D, which corresponds to the ordinary algorithm
with zero probability of staying on the site, two peculiarities
catch the eye. First, at k = π/2a, αd (k) diverges; that is,
the corresponding mode decays infinitely fast. Indeed, the
distribution

. . . ,0, 1
2 ,1, 1

2 ,0, 1
2 ,1, 1

2 ,0, . . . (30)

decays to the uniform distribution . . . , 1
2 , 1

2 , 1
2 , . . . in a single

time step and does not change afterward. Even more strikingly,
for k = π/a, the real part of αd (k) is zero; that is, this mode
does not decay at all. At the same time, the imaginary part is
Im αd (π/a) = π/τ . As a result, the initial distribution

. . . ,0,1,0,1, . . . (31)

oscillates indefinitely:

. . . ,0,1,0,1, . . . → . . . ,1,0,1,0, . . .

→ . . . ,0,1,0,1, . . . → (32)

0 π/4 π/2 3π/4 π
ka

0

2

4

6

8

10

R
e(

α)
a2 /D

re
al

com
plex

τ=τ
max

τ→0

τ=τ max
/3

ex
ac

t

τ=
τ m

ax

τ=
τ m

ax
/2

FIG. 2. For Fourier components of a 1D particle distribution,
characterized by their wave number k, a comparison between the
exact decay rate obtained by solving the continuum diffusion equation
[given by Eq. (16), thick line] and the decay rate observed in a
LMC algorithm with time step τ [given by Eq. (19)] for several
different values of τ (thin lines). For the maximum possible time
step, τ = τmax = a2/2D, the decay rate diverges at ka = π/2, and
for larger ka it is complex, becoming purely imaginary (Re α = 0)
at ka = π . As τ decreases, the wave number at which the divergence
occurs shifts to higher k, reaching ka = π when τ = τmax/2. The
closest matching between the exact and LMC decay rates at small k

is observed when τ = τmax/3.

One practical consequence of this is that a particle starting
at one of the even-numbered sites will always visit only odd-
numbered sites at odd-numbered time steps, and only even-
numbered sites at even-numbered time steps. When a smaller
time step is used with the same lattice constant a, there is
some probability of staying on the same site at each time
step, and oscillations similar to Eq. (32) decay. Eventually, for
τ < 1

2τmax, the oscillations do not occur at all, as αd is always
real in that case. The exact dispersion curve is matched best
for small k when τ = 1

3τmax, as expected.
Instead of using the explicit solution of the master equations

[Eq. (18)], another possible approach is to insert the partial
solutions of the continuum problem [i.e., the integrand of
Eq. (15)] in the master equation (17), replacing x with ja, and
find for what values of the parameters the resulting equality
is satisfied most accurately for small k. After the substitution,
dividing both sides by C(k) exp(ikaj − Dk2t), we obtain

exp(−Dk2τ)
?	 pj→j + pj−1→j exp(−ika)

+pj+1→j exp(ika). (33)

Here we use the
?	 sign as a reminder that this is a relation that

needs to be verified (hence the question mark); moreover, it is
not expected to hold exactly, since lattice diffusion is only an
approximate representation of the continuum diffusion process

016709-4

OPTIMIZING THE ACCURACY OF LATTICE MONTE . . . PHYSICAL REVIEW E 85, 016709 (2012)

(thus, “	”). By expanding both sides in the Taylor series in k

we can verify that this equality is satisfied to O(k4) solely when
the probabilities and the time step are given by Eqs. (26)–(28).

An algorithm with a nonzero probability to stay put was
proposed before [19] for biased diffusion in an external field.
It was shown that in that case this nonzero probability was
necessary even to reproduce the correct diffusion constant.
Interestingly, the zero-field limit of that algorithm coincides
with the optimal algorithm derived here, even though in zero
field even the ordinary algorithm reproduces the diffusion
constant correctly.

B. Moments of the particle distribution

Another way of constructing and analyzing LMC algo-
rithms is by looking at the moments of the particle distribution.
In continuum space, for particles starting at the origin (x = 0)
at t = 0, the distribution at time t is

n(x,t) = 1

2
√

πDt
e−x2/4Dt . (34)

The moments of this distribution are

〈x2m〉 = (2m − 1)!!(2Dt)m = (2m − 1)!! × 〈x2〉m. (35)

All odd moments are zero. The first three nonzero moments
are

〈x2〉 = 2Dt, (36)

〈x4〉 = 12D2t2, (37)

〈x6〉 = 120D3t3. (38)

We now compute the moments of the particle distribution
during a LMC random walk. For a lattice walk starting at site
0, the position after N steps is

xN = a

N∑
i=1

ηi, (39)

where ηi is +1 (−1) for a move to the right (left) and 0
when the particle does not move. We assume from the outset
that pj−1→j = pj+1→j , which makes all odd moments zero
automatically. Before proceeding, it is convenient to note that
for any positive integer m,

〈η2m〉 = 02m × pj→j + 12m × pj−1→j + (−1)2m × pj+1→j

= pj−1→j + pj+1→j = 2pj−1→j , (40)

〈η2m−1〉 = 02m−1 × pj→j + 12m−1 × pj−1→j

+ (−1)2m−1 × pj+1→j

= pj−1→j − pj+1→j = 0. (41)

The second moment, which is the average square of Eq. (39),
is

〈
x2

N

〉 = a2
N∑

i,k=1

〈ηiηk〉. (42)

Since different steps are uncorrelated,

〈ηiηk〉 = δik〈η2〉 = 2δikpj−1→j . (43)

Here and below δi1,...,im is (the generalization of) the Kro-
necker’s δ, which is unity when all indices coincide and zero
otherwise. We obtain

〈
x2

N

〉 = 2a2pj−1→j

N∑
i,k=1

δik = 2a2pj−1→jN = 2a2pj−1→j

τ
t.

(44)

This coincides with the continuum result Eq. (36) when
a2pj−1→j /τ = D. This is the same as Eq. (11) [or (23)] that
is obtainable from matching the k2 terms in the continuum
and discrete dispersion relations. Thus, the second moment
is correct at all times for both the ordinary and the optimal
algorithms and, in general, whenever Eqs. (11) and (12) are
valid. For the fourth moment,

〈
x4

N

〉 = a4
N∑

i,k,r,s=1

〈ηiηkηrηs〉. (45)

The average 〈ηiηkηrηs〉 equals: (1) 〈η2〉2 when there are two
pairs of equal indices, but the indices in different pairs are
different; (2) 〈η4〉 when all four indices are equal; (3) 0
otherwise. As a single expression,

〈ηiηkηrηs〉 = (δikδrs + δirδks + δisδkr − 3δikrs)〈η2〉2

+ δikrs〈η4〉
= 4(δikδrs + δirδks + δisδkr − 3δikrs)p

2
j−1→j

+ 2δikrspj−1→j , (46)

and we get〈
x4

N

〉 = a4 [
(12N2 − 12N)p2

j−1→j + 2Npj−1→j

]
= a4

[
12(t2/τ 2)p2

j−1→j + (t/τ)

× (2pj−1→j − 12p2
j−1→j)

]
. (47)

When Eq. (11) is satisfied, so the second moment is correct,
this becomes

〈
x4

N

〉 = 12D2t2

[
1 +

(
pj−1→j − 6p2

j−1→j

)
a4

6D2τ t

]
. (48)

This approaches the continuum result [Eq. (37)] when t → ∞,
but is equal to it at all times only if pj−1→j = 1/6, which
coincides with Eq. (25) and gives rise to the optimal algorithm
Eqs. (26)–(28).

In general, even moments are given by

〈
x2m

N

〉 = a2m

N∑
ij =1

〈
ηi1 . . . ηi2m

〉
. (49)

For the sixth moment, we need 〈ηi1 . . . ηi6〉. This equals: (1)
〈η2〉3 when there are three pairs of equal indices, but no
equality of indices between any of the pairs; (2) 〈η2〉〈η4〉 when
there are four equal indices and another pair of equal indices
not equal to the first four; (3) 〈η6〉 when all six indices are
equal; (4) 0 otherwise. When the indices run from 1 to N ,
there are 15N (N − 1)(N − 2) combinations of the indices of
the first type, 15N (N − 1) combinations of the second type,

016709-5

MYKYTA V. CHUBYNSKY AND GARY W. SLATER PHYSICAL REVIEW E 85, 016709 (2012)

and N combinations of the third type. Then

〈
x6

N

〉 = a6[15N (N − 1)(N − 2)〈η2〉3

+ 15N (N − 1)〈η2〉〈η4〉 + N〈η6〉]
= a6

[
120N (N − 1)(N − 2)p3

j−1→j

+ 60N (N − 1)p2
j−1→j + 2Npj−1→j

]
= a6

[
120(t/τ)3p3

j−1→j + (t/τ)2
(
60p2

j−1→j

− 360p3
j−1→j

) + (t/τ)
(
2pj−1→j − 60p2

j−1→j

+ 240p3
j−1→j

)]
. (50)

It is easy to check that the coefficient of the t3 term matches
Eq. (38) whenever Eq. (11) is satisfied, that is, whenever the
second moment (and the leading term in the fourth moment)
are correct. Moreover, the t2 term is zero if and only if
pj−1→j = 1/6, that is, for the optimal algorithm. However,
even in this case the remaining t1 term is incorrect. Yet, the
error of the sixth moment at large t is optimized, since in this
case the relative error is O(t−2), whereas in all other cases the
t2 term is present and the error is O(t−1).

In fact, this statement about the optimization of the error is
true for all moments. In the case of the (2m)th moment, the
two terms of the highest order in t are of order tm and tm−1.
By analogy with the sixth moment, the only combinations of
indices in 〈ηi1 . . . ηi2m

〉 contributing to these terms are (1) those
with m pairs of equal indices with no equality between pairs
and (2) those with four equal indices and m − 2 pairs of equal
indices with no equality between these groups. For the first
type, there are (2m − 1)!! ways to break the indices into pairs
and N !/(N − m)! ways to assign the values of the indices to
these pairs, for a total of (2m − 1)!!N !/(N − m)! terms in the
sum, each of which is 〈η2〉m. For the second type, there are (2m

4)
ways to choose the group of four indices, (2m − 5)!! ways to
break the remaining indices into pairs, and N !/(N − m + 1)!
ways to assign the values of the indices to all these groups,
for a total of (2m

4)(2m − 5)!!N !/(N − m + 1)! terms, each
of which is 〈η4〉〈η2〉m−2. The (2m)th moment then is

〈
x2m

N

〉 = a2m

[
(2m − 1)!!N !

(N − m)!
〈η2〉m

+
(2m

4

)
(2m − 5)!!N !

(N − m + 1)!
〈η4〉〈η2〉m−2 + O(Nm−2)

]

= a2m

[
(2m − 1)!!

(
Nm − m(m − 1)

2
Nm−1

)

× (2pj−1→j)m+
(

2m

4

)
(2m−5)!!Nm−1(2pj−1→j)m−1

+O(Nm−2)

]

= a2m

[
(2m − 1)!!

(
2pj−1→j

τ

)m

tm + (2m − 1)!!m

× (m − 1)2m−1
pm−1

j−1→j /6 − pm
j−1→j

τm−1
tm−1

+O(tm−2)

]
. (51)

We see again that the coefficient of the leading tm term is
correct whenever Eq. (11) is satisfied, and the subleading term
vanishes when pj−1→j = 1/6.

C. Moments of the FPT distribution

Consider again a particle diffusing in continuum space and
starting at x = 0 at time t = 0. In the FPT problem [25], we
consider two imaginary walls at x = ±b and find the first
instance at which the particle reaches one of these walls. The
corresponding time T is the FPT. The LMC analog of the FPT
problem would be starting at site 0 at t = 0 and determining
the first time one of the sites ±N is reached. In a good LMC
algorithm, the corresponding FPT distribution should match
the continuum one for b = Na as closely as possible.

Consider first the case N = 1 (and thus b = a). In the LMC,
the FPT then corresponds to the step at which the particle first
moves out of site 0 (and into one of its neighboring sites ±1).
This happens at mth step with probability

πm = pm−1
j→j (1 − pj→j). (52)

Then the first moment of the FPT, or the mean FPT (MFPT),
is

〈T1〉d = τ

∞∑
m=1

mπm = τ

1 − pj→j

= a2

2D
, (53)

where Eq. (12) was used, the subscript “1” denotes N = 1, and
the subscript “d” stands for “discrete.” The second moment,
or the mean-square FPT (MSFPT), is

〈
T 2

1

〉
d

= τ 2
∞∑

m=1

m2πm = τ 2(1 + pj→j)

(1 − pj→j)2
= a4

4D2
(1 + pj→j).

(54)

On the other hand, the corresponding continuum results are
[25]

〈T1〉c = a2

2D
, (55)

〈
T 2

1

〉
c
= 5a4

12D2
. (56)

Note that while the results for the MFPT are always the
same (〈T1〉d = 〈T1〉c), those for the MSFPT only coincide
for pj→j = 2/3, which corresponds to the optimal algorithm.
Note also that the MSFPT for the LMC [Eq. (54)] is the lowest
for pj→j = 0 (the “trivial” ordinary algorithm). In fact, in this
case the MSFPT is simply the square of the MFPT; that is, the
variance of the FPT is zero. The FPT is deterministic and is
always equal to the time step of the algorithm. On the other
hand, the optimal algorithm produces the correct variance of
the FPT.

In fact, the matching of the first and second moments of the
FPT for N = 1 guarantees such matching for any other N and
even for “asymmetric” FPT problems where the two walls are
at different distances from the initial position. This can be seen
from the following consideration. Consider a random walk in
continuum space and map it onto a lattice walk by introducing
sites at points x = ja and making a jump of the lattice walk
from site j to site j ± 1 when the continuum walk visits site

016709-6

OPTIMIZING THE ACCURACY OF LATTICE MONTE . . . PHYSICAL REVIEW E 85, 016709 (2012)

j ± 1 for the first time after visiting site j . The probability
of any particular sequence of visited sites in such a walk will
be the same as in the LMC algorithms (either the ordinary or
the optimal one), since the only requirement for obtaining the
same probability is that the walk be unbiased. This means that
the probability Pm to reach in m jumps a particular set of sites
of interest starting from another specific site will always be the
same for the walk obtained by direct mapping from the contin-
uum walk and for any of the LMC approximations (where for
the optimal LMC only the actual jumps are counted and not
the steps where the particle stays put). On the other hand, the
mean waiting times for a single jump are given by Eq. (53) for
the LMC algorithms and by Eq. (55) for the walk obtained by
mapping from the continuum walk; likewise, the mean-square
waiting times are given by Eqs. (54) and (56), respectively.
Therefore, if it is known that the first-passage number of
jumps is m, then the MFPT is m〈T1〉d,c and the MSFPT is
m(m − 1)〈T1〉2

d,c + m〈T 2
1 〉d,c, where the appropriate subscript

d or c and the appropriate pj→j are chosen depending on the
walk. After averaging over all possible m we get for the MFPT

〈T 〉 =
∑
m

Pmm〈T1〉d,c (57)

and for the MSFPT we get

〈T 2〉 =
∑
m

Pm

[
m(m − 1)〈T1〉2

d,c + m
〈
T 2

1

〉
d,c

]
. (58)

Given that Pm are the same for all three walks and since
〈T1〉d = 〈T1〉c for all pj→j , the MFPT for both LMC
algorithms is always the same as for the lattice walk obtained
from the continuum walk and thus the same as for the
continuum walk. This is also true for the MSFPT for the
optimal LMC algorithm, as in that case 〈T 2

1 〉d = 〈T 2
1 〉c, but

not for the ordinary LMC, as in that case this equality does
not hold. Instead, for the ordinary LMC, using Eq. (58) and
Eqs. (53)–(54) with pj→j = 0,

〈T 2〉 =
∑
m

Pm[m(m − 1)(a4/4D2) + m(a4/4D2)]

= a4

4D2

∑
m

m2Pm = a4

4D2
〈m2〉, (59)

where 〈m2〉 is the mean-square first-passage number of jumps
of the unbiased random walk. This is just the square of the
(deterministic) interval between jumps (equal to τ) times
〈m2〉. For the FPT problem where the particle starts at site 0
and the walls are at sites ±N , 〈m2〉 is [26]

〈m2〉 = 5N4 − 2N2

3
, (60)

so

〈T 2〉 = a4

12D2
(5N4 − 2N2). (61)

If a = b/N , then

〈T 2〉 = b4

12D2
(5 − 2/N2), (62)

which coincides with the continuum result 5b4/(12D2) in the
limit N → ∞, but deviates for finite N . This is illustrated in

1

1.2

1.4

1.6

M
F

P
T

, M
S

F
P

T

5/3

MFPT, ordinary

MFPT, optimal

MSFPT, ordinary

MSFPT, optimal

5/3-2/(3N2)

(a)

0 2 4 6 8 10
Inverse mesh step N

1

2

3

4

3rd
 m

om
en

t o
f t

he
 F

P
T

61/15

ordinary

optimal

61/15-10/(3N 2)+4/(15N 4)

61/15+2/(45N4)

(b)

FIG. 3. For the ordinary Eqs. (1)–(3) and optimal Eqs. (26)–(28)
LMC algorithms, the first two moments [MFPT and MSFPT; panel
(a)] and the third moment [panel (b)] of the FPT that would be
observed in the simulations of 1D diffusion with D = 1/2 starting at
x = 0 at t = 0 and with the walls located at x = ±1 (i.e., b = 1), as
a function of the inverse mesh step N . The data points are obtained
by numerically iterating the corresponding master equations. For the
optimal algorithm, the MFPT and MSFPT are independent of N and
coincide with the continuum values (1 and 5/3, respectively, shown
by the dotted lines). For the ordinary algorithm, the MFPT is likewise
N -independent, but the MSFPT data lie on the curve given by Eq. (62)
(dashed line). For the third moment, the dashed lines are perfect fits
to the data, and the dotted line represents the continuum value.

Fig. 3(a), where the comparison to the optimal algorithm is
made; for the latter, as mentioned, the exact result is recovered
for all N . Note that the data in Fig. 3 are obtained for b = 1,
which gives a = 1/N , and so N = 1/a is simply the inverse
mesh step.

In Fig. 3(b), we show the third moment of the FPT.
These results have been obtained numerically, by iterating
the corresponding master equations (the numerically exact
method), which, of course, is much more accurate than
would be achievable with particle-based LMC simulations.
As expected, the results are now N -dependent in both cases,
but the deviation from the asymptotic value is much smaller for
the optimal algorithm and, in fact, is barely visible already for
N = 1. While we have not derived the analytical results (this
would be very tedious to do), the equations given in the figure

016709-7

MYKYTA V. CHUBYNSKY AND GARY W. SLATER PHYSICAL REVIEW E 85, 016709 (2012)

provide essentially perfect fits to the data, and we believe that
these are exact (with any deviations due entirely to numerical
errors). It is seen that while the deviation from the continuum
value is O(1/N2) for the ordinary algorithm, it is O(1/N4) for
the optimal one, in full analogy with the higher moments of the
spatial particle distribution (Sec. II B), where the leading term
in the deviation from the continuum value likewise vanishes
when the algorithm is optimized.

We can also obtain numerically, likewise by iterating the
corresponding master equations, the whole FPT distributions
for different algorithms and compare them to the continuum
result. First of all, the immediate shortcoming of the ordinary
algorithm is that for even N , the particle can only reach the
boundaries at even steps, while for odd N , it can only reach the
boundaries at odd steps. This means that the first-passage prob-
ability will vary wildly, alternating between zero and a nonzero
value even for arbitrarily large N . To eliminate this, we plot
only the nonzero values of the probabilities dividing them by
two, in effect, averaging between the zero and nonzero values.

The continuum result for the probability density r(t) of
reaching the boundary at time t (or the first-passage rate) can
be obtained by representing the solution of the continuum
equation as a sum over Fourier components satisfying the
absorbing boundary conditions, that is, equal to zero at
x = ±b, with the result (see, e.g., Ref. [27])

r(t) = πD

b2

∞∑
m=0

(−1)m(2m + 1) exp[−(2m + 1)2π2Dt/4b2].

(63)

This series converges faster at large t . An alternative but
equivalent series which converges more rapidly at small t

results from representing the solution as a sum of Gaussians
with alternating signs centered at x = 2bm (where m are
integer):

r(t) = b

2
√

πDt3

∞∑
m=−∞

(−1)m(2m + 1)

× exp[−(2m + 1)2b2/4Dt]

= b√
πDt3

∞∑
m=0

(−1)m(2m + 1) exp[−(2m + 1)2b2/4Dt].

(64)

The function r(t) is thus exponentially small for small t ,
reaches a maximum at some intermediate time and decays
exponentially for large t (the thick solid line in Fig. 4).

Take for simplicity b = 1 and D = 1/2, which gives the
MFPT 〈T 〉 = 1. In this case, a = 1/N and the time step
is 1/N2 for the ordinary algorithm and 1/(3N2) for the
optimal algorithm. The comparison of the ordinary and optimal
algorithms (with different degrees of discretization N) with
the exact result is made in Fig. 4. For N = 1, the FPT is
deterministic and always equals 1 for the ordinary algorithm,
as the particle always moves to site +1 or −1 during the first
step. For the optimal algorithm, on the other hand, the particle
can move to one of the sites ±1 at any step with probability
1/3; therefore, the FPT distribution decays exponentially.
While the maximum present in the continuum distribution is
not reproduced, the continuum distribution is matched quite
closely for large t . Already for N = 2 the optimal algorithm

0 0.5 1 1.5 2
Time t

0

0.5

1

F
irs

t p
as

sa
ge

 r
at

e
r

ordinary:
N = 1
N = 2
N = 3
N = 5
N = 10

N = 1
N = 2

optimal:

continuum

0 0.5t

-0.2

0

Δr

6

8

10

FIG. 4. The continuum first-passage rate for 1D diffusion with
D = 1/2 starting at x = 0 at t = 0 and with the walls located at x =
±b = ±1 (thick solid line), compared to an analogous quantity for
the LMC algorithms (symbols, in some cases connected by thin lines
for guidance to the eye). This first-passage rate analog is calculated as
the probability of first passage at a particular step divided by the time
step of the algorithm. For the ordinary algorithm, the even steps for
odd N and the odd steps for even N , at which the passage probability
is always zero, are discarded and the rates for remaining time steps
are divided by two. The inset shows the difference between the LMC
rate and the continuum rate, for the optimal algorithm with N = 2
(thick line) and for the ordinary algorithm with N = 6, 8, 10 (thin
lines), as indicated by the labels next to the lines.

reproduces the continuum curve very accurately. With the
ordinary algorithm, a similar accuracy is not achieved until
N ≈ 8–10, as the inset of Fig. 4 shows, where the difference
between the LMC results and the continuum values is plotted.
Very good results at large t obtained with the optimal algorithm
would not be surprising, as it is designed specifically to be as
accurate as possible in this case; however, we see that it also
works very well for moderate t . In terms of the computational
effort, the ordinary algorithm with N = 8 takes N2 = 64
steps on average to reach the walls, whereas the optimal
algorithm with N = 2 takes 3N2 = 12 steps on average; thus,
the speedup is a factor of at least 5. The advantage is even
larger when the numerically exact approach based on solving
numerically the master equations is used, since decreasing the
mesh step increases the number of such equations and not only
the number of time steps.

As mentioned above, the accuracy of the optimal algorithm
is expected to be particularly good at large times. In the limit
of large t , the first-passage rate decays exponentially:

r(t) 	 γ exp(−βt). (65)

It is therefore convenient to compare the algorithms by finding
the rate of the exponential decay β and the prefactor γ and
comparing to the continuum values. By looking at the first
term of Eq. (63), for D = 1/2 and b = 1 we get the continuum
decay rate of βc = π2/8 and the prefactor of γc = π/2. For
the LMC algorithms, these quantities can be derived as well

016709-8

OPTIMIZING THE ACCURACY OF LATTICE MONTE . . . PHYSICAL REVIEW E 85, 016709 (2012)

(see Appendix). For the ordinary algorithm, the decay rate is

βord = −N2 ln cos

(
π

2N

)
, (66)

and the prefactor is

γord = N tan

(
π

2N

)
. (67)

For the optimal algorithm, they are, respectively,

βopt = −3N2 ln

[
2

3
+ 1

3
cos

(
π

2N

)]
(68)

and

γopt = N sin(π/2N)

2/3 + (1/3) cos(π/2N)
. (69)

These quantities are plotted in Fig. 5. For the optimal
algorithm, even for N = 1 the results are quite close to the

1.2

1.3

1.4

La
rg

e-
tim

e
de

ca
y

ra
te

 β

π2/8

ordinary

optimal

(a)

0 2 4 6 8 10
Inverse mesh step N

1.5

2

La
rg

e
tim

e
de

ca
y

pr
ef

ac
to

r
γ

π/2

(b)

FIG. 5. The large-time rate of exponential decay (a) and the
corresponding prefactor (b) for the first-passage rate to the walls
located at x = ±1 starting at x = 0 in simulations of 1D diffusion
using the ordinary (open circles) and the optimal (solid circles) LMC
algorithms. The curves are the analytical expressions Eqs. (66)–
(69). The continuum limit values are indicated by the dotted
lines.

continuum value (βopt = 1.216 . . . vs π2/8 = 1.233 . . . for the
rate and γopt = 1.5 vs π/2 = 1.570 . . . for the prefactor). For
the ordinary algorithm, similar accuracy is achieved for N =
4–5; note that for N = 1 the decay rate diverges, as the FPT is
deterministic. For N = 2 the results for the optimal algorithm
are nearly indistinguishable from the continuum values on
the scale of the plot and are closer than those for the ordinary
algorithm with N = 10. Note that the long-time approximation
is applicable even for quite small t : For example, for t = 1
(equal to the MFPT), the full sum in Eq. (63) is 0.457 365 . . .

and its first term is 0.457 436 . . ., so the difference is only
≈−7 × 10−5.

III. TWO DIMENSIONS

In 2D, the continuum unbiased diffusion equation is

∂n(x,y,t)

∂t
= D

(
∂2n(x,y,t)

∂x2
+ ∂2n(x,y,t)

∂y2

)
. (70)

Its general solution can be written in a form similar to Eq. (15):

n(x,y,t) =
∫ ∞

−∞

∫ ∞

−∞
C(kx,ky) exp[ikxx + ikyy

−αc(kx,ky)t]dkxdky. (71)

The dispersion relation is analogous as well:

αc(kx,ky) = D
(
k2
x + k2

y

)
. (72)

As for the design of the corresponding LMC algorithm,
we first note that different types of lattices can be chosen.
We consider the simplest choice, the square lattice, with the
lattice constant still denoted a. The lattice sites can be denoted
by pairs of integer numbers, (i,j). If only moves along the
Cartesian axes are allowed, there are five different probabilities
of moves: p(i,j)→(i+1,j) ≡ p+x and p(i,j)→(i−1,j) ≡ p−x for the
moves along the x axis in the positive and negative directions,
respectively; p(i,j)→(i,j+1) ≡ p+y and p(i,j)→(i,j−1) ≡ p−y for
the moves along the y axis; and the probability of staying on
the same site, p(i,j)→(i,j) ≡ p0. The master equation for the
mean particle number n(j,l) at a particular site (j,l) is

n(j,l)(t + τ) = p0n(j,l)(t) + p+xn(j−1,l)(t) + p−xn(j+1,l)(t)

+p+yn(j,l−1)(t) + p−yn(j,l+1)(t). (73)

In the ordinary 2D LMC algorithm, the particle moves at every
step, all moves are equiprobable, and since the particle only
moves along a particular axis at every second step on average,
the time step has to be equal to 1/2 that in the ordinary 1D
algorithm:

p0 = 0, (74)

p±x = p±y = 1/4, (75)

τ = a2

4D
. (76)

However, in general, as in 1D, we allow p0 �= 0.
The general solution of the system of master equations for

all sites is (again, similarly to 1D)

n(j,l)(t) =
∫ π/a

−π/a

∫ π/a

−π/a

C(kx,ky) exp[ikxaj

+ ikyal − αd (kx,ky)t]dk, (77)

016709-9

MYKYTA V. CHUBYNSKY AND GARY W. SLATER PHYSICAL REVIEW E 85, 016709 (2012)

with

αd (kx,ky) = − 1

τ
ln[p0 + p+x exp(−ikxa) + p−x exp(ikxa)

+p+y exp(−ikya) + p−y exp(ikya)]. (78)

As in 1D, the goal is to choose the probabilities and the time
step τ so that αc and αd match as closely as possible for
small kx and ky . While it is possible to match all coefficients
of the Taylor expansion up to and including the quadratic
terms (which, as in 1D, guarantees the correct diffusion rate),
matching all quartic terms, like we did in 1D, is obviously
impossible. This is because the form of Eq. (78) is such that
there are always terms ∝k2

x and ∝k2
y , but no quartic term ∝k2

xk
2
y

under the logarithm. When the logarithm is expanded, this will
necessarily produce such a quartic term. At the same time, no
quartic terms are present in the expression for αc [Eq. (72)] that
we need to match. This reasoning is valid for any set of moves,
even if moves to second neighbors and more distant sites are
present, as long as all moves are along one of the axes. On the
other hand, moves along both axes simultaneously will produce
a term ∝k2

xk
2
y under the logarithm with a coefficient that can

be chosen so that in the final expansion this term vanishes.
The simplest moves of this type are the four “diagonal”
moves whereby the particle moves by one lattice constant
along the x axis and simultaneously along the y axis (Fig. 6).
This introduces four additional probabilities: p(i,j)→(i+1,j+1) ≡
p+x,+y , p(i,j)→(i+1,j−1) ≡ p+x,−y , p(i,j)→(i−1,j+1) ≡ p−x,+y ,
and p(i,j)→(i−1,j−1) ≡ p−x,−y . The new master equation is

n(j,l)(t + τ) = p0n(j,l)(t) + p+xn(j−1,l)(t) + p−xn(j+1,l)(t)

+p+yn(j,l−1)(t) + p−yn(j,l+1)(t)

i(+1, j)i(−1, j)

i(−1, j−1) i(, j−1) i(+1, j−1)

p0

p+x

p−x
p−x

p+x

p + y

p−y

p + y

p−y

p +
,+x

y

p +
,+x

y

p −
,−x

y

p
+

,−x
y

p
+

,−x
y

p
−

,+x
y

p
−

,+x
y

p −
,−x

y

i(, j+1)i(−1, j+1)
i(+1, j+1)

i(, j)

a

a

FIG. 6. A schematic of the general 2D LMC algorithm considered
in this paper. Only moves to and from site (i,j) are shown. In addition
to the traditional axial moves (arrows of medium thickness), diagonal
moves (thin arrows) are introduced; also, there is a probability to stay
put (represented by the thickest arrow). Notation for the probabilities
of the moves is given.

+p+x,+yn(j−1,l−1)(t) + p+x,−yn(j−1,l+1)(t)

+p−x,+yn(j+1,l−1)(t) + p−x,−yn(j+1,l+1)(t).

(79)

The dispersion relation now becomes

αd (kx,ky) = − 1

τ
ln[p0 + p+x exp(−ikxa) + p−x exp(ikxa)

+p+y exp(−ikya) + p−y exp(ikya)

+p+x,+y exp(−ikxa − ikya)

+p+x,−y exp(−ikxa + ikya)

+p−x,+y exp(ikxa − ikya)

+p−x,−y exp(ikxa + ikya)]. (80)

Matching the k0 term,

p0 + p+x + p−x + p+y + p−y + p+x,+y

+p+x,−y + p−x,+y + p−x,−y = 1, (81)

which is again just the normalization statement. Matching the
linear terms,

p+x + p+x,+y + p+x,−y − p−x − p−x,+y − p−x,−y = 0,

(82)

p+y + p+x,+y + p−x,+y − p−y − p+x,−y − p−x,−y = 0.

(83)

These ensure that the average velocities are zero in both
directions (no bias). Taking Eqs. (81)–(83) into account, we
can expand under the logarithm to obtain

αd (kx,ky) = − 1

τ
ln

[
1 − (Cxx/2)a2k2

x − (Cyy/2)a2k2
y

+Cxya
2kxky − i(Cxxy/2)a3k2

xky

− i(Cxyy/2)a3kxk
2
y + (Cxx/24)a4k4

x

+ (Cyy/24)a4k4
y − (Cxy/6)a3k3

xky

− (Cxy/6)a3kxk
3
y + (Cxxyy/4)a4k2

xk
2
y + O(k5)

]
,

(84)

where

Cxx = p+x + p−x + p+x,+y + p+x,−y + p−x,+y + p−x,−y

= 2(p+x + p+x,+y + p+x,−y), (85)

Cyy = p+y + p−y + p+x,+y + p+x,−y + p−x,+y + p−x,−y

= 2(p+y + p+x,+y + p−x,+y), (86)

Cxy = −p+x,+y + p+x,−y + p−x,+y − p−x,−y, (87)

Cxxy = −p+x,+y + p+x,−y − p−x,+y + p−x,−y, (88)

Cxyy = −p+x,+y − p+x,−y + p−x,+y + p−x,−y, (89)

Cxxyy = p+x,+y + p+x,−y + p−x,+y + p−x,−y . (90)

Expanding the logarithm, we now get

αd (kx,ky) = 1

τ

[
(Cxx/2)a2k2

x + (Cyy/2)a2k2
y − Cxya

2kxky

+ i(Cxxy/2)a3k2
xky + i(Cxyy/2)a3kxk

2
y

+ (
C2

xx/8 − Cxx/24
)
a4k4

x

016709-10

OPTIMIZING THE ACCURACY OF LATTICE MONTE . . . PHYSICAL REVIEW E 85, 016709 (2012)

+ (
C2

yy/8 − Cyy/24
)
a4k4

y

+ (Cxy/6 − CxxCxy/2)a3k3
xky

+ (Cxy/6 − CyyCxy/2)a3kxk
3
y

+ (
CxxCyy/4 − Cxxyy/4 + C2

xy/2
)

× a4k2
xk

2
y + O(k5)

]
. (91)

Comparing to Eq. (72), we obtain the following equations:

Cxxa
2/2τ = D, (92)

Cyya
2/2τ = D, (93)

Cxy/τ = 0, (94)

Cxxy/τ = 0, (95)

Cxyy/τ = 0, (96)(
C2

xx/8 − Cxx/24
)
/τ = 0, (97)(

C2
yy/8 − Cyy/24

)
/τ = 0, (98)

(Cxy/6 − CxxCxy/2)/τ = 0, (99)

(Cxy/6 − CyyCxy/2)/τ = 0, (100)(
CxxCyy/4 − Cxxyy/4 + C2

xy/2
)
/τ = 0. (101)

From Eqs. (97) and (98), Cxx = Cyy = 1
3 (Cxx = 0 and Cyy =

0 are not solutions, as in that case τ = 0). From this, using
Eq. (92) or (93), we can compute the time step:

τ = a2

6D
. (102)

Interestingly, this optimal time step is equal to the one we
obtained previously for the 1D problem Eq. (28). From
Eq. (94), Cxy = 0. By inserting the values of Cxx , Cyy , and Cxy

in Eq. (101), we obtain Cxxyy = 1/9. From Eqs. (95) and (96),
Cxxy = Cxyy = 0. Equations (99) and (100) are then satisfied
automatically. Thus, all coefficients C are known. Using the
expressions for C [Eqs. (85)–(90)], we obtain linear equations
for the probabilities. Together with Eqs. (82) and (83), this

forms a linear system of eight equations with eight unknowns
that has a unique solution,

p+x = p−x = p+y = p−y = 1/9, (103)

p+x,+y = p+x,−y = p−x,+y = p−x,−y = 1/36. (104)

Finally, from Eq. (81),

p0 = 4/9. (105)

The set of parameters given by Eqs. (102)–(105) defines an
unbiased 2D LMC algorithm that is “optimal” for the particular
set of moves considered here, since it is the only set of
parameters that reproduces the continuum dispersion relation
up to O(k5), the same accuracy as for the optimal 1D algorithm
considered in Sec. II. (In both cases, the k5 terms were not
required to vanish explicitly, but are zero automatically, as are
all other odd-order terms.) The set of moves is itself optimal
in the sense that it is the smallest set of shortest-ranged moves
that ensures such accuracy. We note that the probability of
staying put is reduced from 2/3 to 4/9, and that the diagonal
moves have small but finite probabilities.

Note that the probabilities (103)–(105) can be obtained as
products of 1D optimal probabilities Eqs. (26) and (27): The
probability of every 2D move is the product of the probabilities
of the 1D moves that it “consists of.” For example, the 2D
diagonal move (+x, + y) can be thought of as consisting of
two 1D moves, j − 1 → j , one in the x direction and one
in the y direction, and indeed, p+x,+y = pj−1→j × pj−1→j .
Likewise, a move along one axis, say, −x, in 2D LMC can be
represented as a move by one site in that direction and staying
put in the orthogonal direction, which gives the correct equality
p−x = pj+1→j × pj→j . For the probability of staying put, by
similar reasoning p0 = pj→j × pj→j , which is also correct.
Thus, the 2D optimal algorithm can be considered as the direct
product of the 1D optimal algorithm with itself, in the sense
that if the 2D probabilities are arranged in a matrix, this matrix
is the direct product of the vectors of the 1D probabilities:

⎛
⎜⎝

p−x,−y p−x p−x,+y

p−y p0 p+y

p+x,−y p+x p+x,+y

⎞
⎟⎠ =

⎛
⎜⎝

pj+1→j × pj+1→j pj+1→j × pj→j pj+1→j × pj−1→j

pj→j × pj+1→j pj→j × pj→j pj→j × pj−1→j

pj−1→j × pj+1→j pj−1→j × pj→j pj−1→j × pj−1→j

⎞
⎟⎠

=

⎛
⎜⎝

pj+1→j

pj→j

pj−1→j

⎞
⎟⎠ ⊗ (pj+1→j pj→j pj−1→j). (106)

The fact that the direct product algorithm should work
as well in 2D as its “factors” do in 1D can be seen
directly from Eq. (80): If the probabilities entering that
equation are the products of the 1D probabilities, then the
expression under the logarithm can be represented as a prod-
uct of two expressions, f (kx)f (ky), where f (k) = pj→j +
pj−1→j exp(−ika) + pj+1→j exp(ika) is the expression under
the logarithm in the 1D analog of Eqs. (80) and (19).

On the other hand, if the probabilities in f (k) are chosen
optimally, then, according to Eq. (19) and the considera-
tions following it, ln[f (k)] = −τDk2 + O(k6); therefore, in
Eq. (80)

αd (kx,ky) = − 1

τ
ln[f (kx)f (ky)]

= [
Dk2

x + O
(
k6
x

)] + [
Dk2

y + O
(
k6
y

)]
, (107)

016709-11

MYKYTA V. CHUBYNSKY AND GARY W. SLATER PHYSICAL REVIEW E 85, 016709 (2012)

which matches the continuum dispersion relation Eq. (72) up
to and including the fifth-order terms. (Note, by the way, that
there are no cross terms containing both kx and ky in any
order and also, as in 1D, no odd-order terms.) Note that this
consideration assumes that the time step in 2D is the same as
in 1D, which is indeed the case.

Moreover, the following general statement can be made.
Suppose the general solution of some continuum equation in
2D can be represented as

n(x,y,t) =
∫

C(kx,ky)gkx
(x,t)gky

(y,t)dkxdky, (108)

where gk(x,t) are solutions (depending on the parameter k) of
some 1D equation for which there exists a LMC algorithm.
Then a 2D algorithm that is the direct product of the 1D LMC
algorithm with itself is as good for the 2D equation as the
1D algorithm is for the 1D equation. This can be checked
by substituting gkx

(x,t)gky
(y,t) into the master equation (79)

(or its generalization, if, e.g., more distant sites are involved)
[much like we did in Eq. (33)], which makes both sides of
that equation products of the corresponding sides of the 1D
master equation (17) or its generalization, in which gkx

and
gky

are likewise substituted. In view of this, we could have
immediately “guessed” the correct 2D algorithm by looking at
the solution of the 2D diffusion equation [Eq. (71), from which
gk(x,t) = exp(ikx − Dk2t)], without the lengthy derivation
that followed. That derivation was still useful, however, as it
proved both the uniqueness of the solution given the set of
moves and the fact that the diagonal moves were necessary.

Note that from the fact that the 2D optimal algorithm is
the direct product of the 1D optimal algorithm with itself, it
follows that projecting all moves of the 2D optimal algorithm
along the x axis and keeping the time step the same produces
the 1D optimal algorithm. Then, if we take a solution of
the master equation (79) and “project” it onto the x axis by
summing up over columns of sites (i.e., ni = ∑

j n(i,j)), the
result will be a solution of the master equation (17) for the
1D optimal algorithm. Similarly, in the continuum case a 2D
solution can be projected onto the x axis by integrating over y

and the same statement can be made. It is easy to see then that
the second- and fourth-order moments 〈x2〉 and 〈x4〉 [where all
particles start at site (0,0)] are still correct at all times in the 2D
optimal algorithm, since these moments do not change when
the projecting is done. Arguing similarly for the y axis, we can
prove the same for 〈y2〉 and 〈y4〉. Note, though, that there is also
one fourth-order moment in 2D that involves both the x and
the y axes, namely, 〈x2y2〉. To easily calculate this moment,
note that if at time t = 0 the 2D particle distribution can be
represented as a product of two 1D distributions and this 2D
distribution evolves according to the optimal algorithm, then it
is also representable as a similar product at later times, with the
two factors evolving according to the 1D optimal algorithm.
That is,

n(i,j)(0) = ni(0)nj (0) ⇒ n(i,j)(t) = ni(t)nj (t). (109)

This can be proved by induction, by assuming that the 2D
distribution is representable as a product at time t and proving
this for time t + τ . [Note, by the way, that Eq. (109) does not

hold for the 2D and 1D ordinary algorithms.] Similarly, in the
continuum case

n(x,y,0) = n(x,0)n(y,0) ⇒ n(x,y,t) = n(x,t)n(y,t). (110)

Then, since the initial distribution where all particles are
concentrated at the origin is representable in this way, it is
easy to see that in both the continuum case and for the optimal
algorithm,

〈x2y2〉 = 〈x2〉〈y2〉, (111)

and thus this mixed moment is the same in both cases. All
other moments involving two axes are likewise products of 1D
moments and therefore some sixth-order (〈x4y2〉 and 〈x2y4〉)
and even eighth-order (〈x4y4〉) moments are correct as well,
but, of course, other sixth-order moments (〈x6〉 and 〈y6〉) are
incorrect.

For the ordinary algorithm given by Eqs. (74)–(76),
projecting along the x axis gives a 1D LMC algorithm with
the probability of staying put equal to 1/2 [Eqs. (11) and
(12) with τ = a2/4D]; that is, it is intermediate between the
ordinary and the optimal 1D algorithms. Since Eqs. (11) and
(12) are still obeyed, the second moment 〈x2〉 is still correct
for this 1D algorithm and thus 〈x2〉 and 〈y2〉 are correct for the
2D ordinary algorithm. However, the fourth-order moments
〈x4〉, 〈y4〉 and 〈x2y2〉 are incorrect, the latter because the
considerations above for the optimal algorithm do not apply
and so 〈x2y2〉 �= 〈x2〉〈y2〉. In fact, it is obvious that 〈x2y2〉
cannot be correct after the first step, because in the ordinary
algorithm the particle only moves along x or along y at any
step, but not in both directions at the same time, so after the
first step either x = 0, or y = 0, and 〈x2y2〉 = 0. At large t ,
we have checked numerically that the relative error is O(1/t),
just as for 〈x4〉 and 〈y4〉; on the other hand, for the optimal
algorithm even for higher-order moments that are not exact,
the error is always O(1/t2).

Unfortunately, the statements about the moments of the FPT
distribution (Sec. II C) do not generalize in the same way for
the optimal algorithm. First of all, it is not immediately clear
how to establish the correspondence between the discrete and
continuum first-passage problems. In the discrete case, one is
given a set of sites, the first passage to which is investigated.
In the continuum case, one needs a closed curve, but there
are multiple ways in which a curve can be drawn between
a given set of sites. Apparently, the most straightforward
case is that of a rectangular region with all four segments
of the boundary lying along rows and columns of sites. In
particular, one can consider a square region with the boundaries
at x = ±1 and y = ±1 and compare to a set of discrete
problems with a = 1/N for all positive integer N , which is the
closest analog of the situation we considered in 1D. It can be
checked numerically for the optimal algorithm that not only
the MSFPT, but even the MFPT is not reproduced correctly in
the discrete case for finite N . However, for all N both moments
are much more accurate than those obtained with the ordinary
algorithm (results not shown). In fact, for large N , the error
is O(1/N4) for the optimal algorithm and O(1/N2) for the
ordinary algorithm. For small and moderate N , the difference
between the algorithms is particularly striking for the MSFPT.
The full FPT distribution is also very accurate for the optimal

016709-12

OPTIMIZING THE ACCURACY OF LATTICE MONTE . . . PHYSICAL REVIEW E 85, 016709 (2012)

algorithm, with the results similar to those shown in Fig. 4 for
1D, although the ordinary algorithm works better than it did
in the 1D case, in particular, the first-passage probability no
longer alternates between zero and a nonzero value (but still,
this probability goes up and down, being higher at odd steps
for odd N and at even steps for even N).

IV. THREE AND MORE DIMENSIONS

In 3D, first of all, we can use the same arguments as in 2D
to prove that the 3D algorithm constructed from the “direct
product” of the 1D algorithms will reproduce the dispersion
relation with the same precision, that is, up to O(k5). This
3D algorithm involves four types of moves: in addition to
moves along one of the Cartesian directions, diagonal moves
along two directions, and staying put, the new type of move
in 3D is a move along all three directions simultaneously. The
probabilities of the moves are

p0 = (2/3)3 = 8/27, (112)

p±x = p±y = p±z = (2/3)2 × (1/6) = 2/27, (113)

p±x,±y = p±y,±z = p±x,±z = (2/3) × (1/6)2 = 1/54, (114)

p±x,±y,±z = (1/6)3 = 1/216, (115)

and the time step is the same as in 1D and 2D:

τ = a2

6D
. (116)

However, unlike in 2D, this direct product algorithm is not
the only way to satisfy the dispersion relation up to O(k5). For
instance, there is no need to introduce moves simultaneously
along all three directions. Just like the moves along two
directions are used to adjust the term ∝k2

xk
2
y , the moves along

three directions would be useful to adjust the term ∝k2
xk

2
yk

2
z ,

but this term is O(k6), and the terms of this order cannot all
be made to vanish simultaneously anyway, since there are not
enough different moves (i.e., not enough free parameters).
Therefore, we can retain just the moves that we used to
optimize the 2D algorithm, that is, those along either one or
two directions, and the resulting equations are very similar.
In particular, the analogs of Eqs. (80), (84), and (91) for αd

are obtained simply by adding the analogous terms involving
the z axis. This is also true for the analogs of Eqs. (81), (82),
and (83), to which a similar equation obtained from equating
the coefficient of kz to zero is added. Expressions for the
coefficients C in terms of the probabilities p [the analogs
of Eqs. (85)–(90)], as well as those for the new coefficients
involving the z axis (Czz, Cxz, Cyz, Cxxz, Cyyz, Cxzz, Cyzz,
Cxxzz, Cyyzz), are also built by analogy. The equations for C

[Eqs. (92)–(101)] are still valid, and the analogous equations
involving the z axis are added to them. From these equations,
Cxx = Cyy = Czz = 1/3, Cxxyy = Cxxzz = Cyyzz = 1/9, and
all other C are zero; the time step is again the same as in 1D
and 2D, as well as in the direct product algorithm in 3D; that
is, it is given by Eq. (116). Finally, for the probabilities we

obtain

p+x = p−x = p+y = p−y = p+z = p−z = 1/18, (117)

p+x,+y = p+x,−y = p−x,+y = p−x,−y = p+x,+z = p+x,−z

= p−x,+z = p−x,−z = p+y,+z = p+y,−z = p−y,+z

= p−y,−z = 1/36, (118)

p0 = 1/3. (119)

Projecting the moves of either this algorithm or the direct
product algorithm Eqs. (112)–(116) onto one of the axes
produces the 1D optimal unbiased algorithm and projecting
onto one of the planes (xy, yz, or xz) produces the 2D optimal
unbiased algorithm. Also, as in 2D, we can “project” the
solution onto one of the axes by summing over the remaining
two indices and the resulting 1D distribution will be a solution
of the 1D optimal algorithm. Moreover, we can also “project”
the solution onto one of the planes and obtain a solution of
the 2D optimal algorithm. Noting that all nonzero moments
of the particle distribution of order four and lower [where all
particles start at site (0,0,0)] involve only one (〈x2〉, 〈y2〉, 〈z2〉,
〈x4〉, 〈y4〉, 〈z4〉) or two (〈x2y2〉, 〈y2z2〉, 〈x2z2〉) axes, all of
these moments will be the same as in 2D and will therefore
remain correct. As in 2D, some of the higher-order moments
involving two axes are also correct. In addition, for the direct
product algorithm, the moments involving three axes in which
none of the coordinates enter with the power higher than four
will be correct as well (the lowest-order moment of this type
is the sixth-order 〈x2y2z2〉). Note that such moments cannot
be correct in the other algorithm, as there are no simultaneous
moves in three directions, so after the first step these moments
are zero.

We now have two different “optimal” LMC algorithms for
3D. The second algorithm is the only possible one without
moves in three directions; however, if these moves are allowed,
the first algorithm is but one example. This direct product
algorithm, in a way, has an advantage that one additional
sixth-order (k2

xk
2
yk

2
z) and some additional higher-order terms

in the dispersion relation vanish; in fact, it follows from a
consideration analogous to that of the previous section that all
cross terms containing at least two of the three variables kx ,
ky , and kz are zero in all orders [28]. However, since other
sixth-order terms (k6

x , k6
y , and k6

z) do not vanish and given that,
generally speaking, all sixth-order terms are expected to be of
about the same magnitude, the advantage of the direct product
algorithm is perhaps not very significant. Note that fifth-order
terms (as well as all other odd-order terms, in fact, even those
odd in any of the variables) vanish in both algorithms. On the
other hand, the advantage of the algorithm without moves in
three directions is that it is somewhat more short-ranged and
slightly easier to program, as there are fewer moves. There may
also be CPU time savings, in particular, for the numerically
exact variant of the algorithm, as the master equation that needs
to be solved iteratively will contain fewer terms, as well as,
perhaps to a lesser extent, for the particle-based version, as
one needs to choose between fewer moves.

We note that in the 3D case, the time step of either of the
two “optimal” algorithms we have considered, τ = a2/6D,
is also the time step of the nonoptimal but straightforward
“ordinary” algorithm where the particle moves at each step

016709-13

MYKYTA V. CHUBYNSKY AND GARY W. SLATER PHYSICAL REVIEW E 85, 016709 (2012)

along one of the six Cartesian directions. This is unlike in
1D and 2D, where the analogous straightforward algorithms
have a larger time step and thus are more computationally
efficient (as we discussed in detail for 1D). Note, however,
that compared to the straightforward algorithm, we now use an
extended set of moves including longer-range diagonal moves
that allow an even larger time step when optimal accuracy is not
required. That a larger time step is possible with the expanded
set of moves is particularly obvious in 2D, where the algorithm
with diagonal moves only is equivalent to the straightforward
algorithm with the mesh step of

√
2 times the original mesh

step (and the axes rotated by 45◦) and thus the corresponding
time step is twice that of the original straightforward algorithm.

It is also interesting to note that the projection of the
ordinary 3D algorithm onto one of the axes coincides “acci-
dentally” with the optimal 1D algorithm. For this reason, some
fourth-order moments of the particle distribution, namely, 〈x4〉,
〈y4〉, and 〈z4〉, are correct for the ordinary 3D algorithm;
moreover, higher-order moments involving a single axis are
the same as for the 1D optimal algorithm and thus the relative
error is O(1/t2) at large t . However, the “mixed” fourth-
order moments, 〈x2y2〉, 〈x2z2〉, and 〈y2z2〉, are incorrect; in
particular, they are zero after the first step, since simultaneous
moves along more than one axis do not exist in this algorithm.
We have checked numerically that for large t the relative error
for these moments is O(1/t). On the other hand, for both
optimal algorithms, even for those moments that are not exact
the error is always O(1/t2). This is obvious for the direct
product algorithm, as in this case all moments are products of
1D moments; for the other optimal algorithm, we have checked
this numerically for a few moments of order six and higher.
Moments involving three axes (e.g., 〈x2y2z2〉) are zero in the
ordinary algorithm after both the first and the second steps.

Extending these results to a space of arbitrary dimen-
sionality using a hypercubic lattice is straightforward. First
of all, direct product algorithms can be constructed, with
the same properties as in 2D and 3D. On the other hand,
simultaneous moves in more than two directions may still be
unnecessary. To construct an algorithm with moves in one
direction (axial moves) and two directions (diagonal moves)
only, equations analogous to Eqs. (92)–(101) can be written for
any dimensionality, and the solutions are always the same: All
coefficients C with two equal indices (e.g., Cxx) are always
equal to 1/3, all such coefficients with two pairs of equal
indices (e.g., Cxxyy) are equal to 1/9, and all other C are zero.
In d dimensions,

Cxx = 2p1 + 4(d − 1)p2, (120)

Cxxyy = 4p2, (121)

where p1 is the probability of any particular axial move and p2

is the probability of any particular diagonal move. This gives

p1 = 4 − d

18
, (122)

p2 = 1

36
. (123)

It is easy to check that this works for d = 1, 2, and 3
(except for d = 1, there are no diagonal moves and so p2

is meaningless). For d > 3, though, p1 is non-negative only
for d = 4. In this case, p1 = 0, so the optimal algorithm

contains no axial moves, only diagonal ones. Since there
are (4

2) = 6 pairs of axes and thus 2 × 2 × 6 = 24 different
diagonal moves, the total probability of a diagonal move is
24/36 = 2/3, so the probability to stay put is p0 = 1/3, as
in 3D. The time step is still a2/6D. Note that this is now
larger than in the straightforward algorithm with only axial
moves and zero probability to stay put; but again, a larger time
step is only possible because we use longer-range diagonal
moves. For d > 4, it is impossible to make all k4 terms in the
dispersion relation zero with the set of moves considered. This
may be possible using even longer-ranged moves (e.g., moves
to second neighbors along axes) and/or simultaneous moves
in three or more directions. In particular, the direct product
algorithm is always an option in space of any dimensionality.

As in 3D, projecting the moves onto the axes gives the 1D
optimal algorithm and projecting onto the coordinate planes
gives the 2D optimal algorithm. In fact, projecting the moves
of the direct product algorithm onto a coordinate hyperplane
always produces the moves of the optimal direct product
algorithm in the space of corresponding dimensionality, and
projecting the moves of the 4D optimal algorithm with moves
in one and two directions only onto a 3D hyperplane produces
the moves of the 3D optimal algorithm with moves in one and
two directions. The analogous statements about “projecting”
the solutions follow immediately, as is the correctness of the
second and fourth moments of the particle distribution.

V. TREATMENT OF IMPENETRABLE
(REFLECTING) BOUNDARIES

So far, we have treated diffusion in a homogeneous medium
without any boundaries. Of course, this is a trivial situation
and the really interesting cases are those where some spatial
inhomogeneities (e.g., in the form of obstacles) are present. In
this section, we examine how to take impenetrable “reflecting”
boundaries into account in LMC algorithms. Such boundaries
are introduced into the continuum diffusion problems via
boundary conditions, which in the unbiased case reduce to
the expression

b̂ · −→∇ n = 0, (124)

where b̂ is the unit vector normal to the boundary. Since the
particle flux is proportional to the concentration gradient

−→∇ n,
Eq. (124) ensures that there is no particle flow across the
boundary.

A. One dimension

We consider the case of a single boundary (or wall), which
means that particles cannot go beyond a certain point x = xb

on the line; without the loss of generality, we choose xb = 0
and assume that the region x > 0 is accessible (Fig. 7). Let the
site nearest to the wall have index 0 (the solid square in Fig. 7).
Since this site has a neighbor only on the right, moves from
the left to that site are impossible, and the master equation for
the mean particle number at that site has to be modified:

n0(t + τ) = p0→0n0(t) + p1→0n1(t). (125)

All other sites (which we refer to as bulk sites) have two
neighbors and we assume that the corresponding master
equations, including all the probabilities that are involved and

016709-14

OPTIMIZING THE ACCURACY OF LATTICE MONTE . . . PHYSICAL REVIEW E 85, 016709 (2012)

p
1→0 +1pj j

pj j−1 pj j−1

p
0→0 j jp → j jp →

→

→ →
d= a/2

a a

1 20−1

x0

FIG. 7. Treatment of a reflecting boundary in the 1D optimal
LMC algorithm. The inaccessible region is shaded. The site closest
to the boundary is the boundary site 0 (solid square); all other sites
are bulk sites (solid circles). The open square is a fictitious site in
the inaccessible region useful in the analysis of the algorithm, as
described in the text. The optimal placement of the boundary site is
at the distance d = a/2 from the wall. Only the probabilities of the
two moves leading to the boundary site (thick arrows), including the
move from the boundary site to itself, are allowed to change (although
p1→0 does not in the end); the probabilities of all other moves (thin
arrows) are assumed to be the same as in the bulk from the outset.
Notation for the probabilities of the moves used in the text is given.
The move to the left from the boundary site (dashed arrow) is rejected
and contributes to the probability of staying put.

the time step, remain as derived previously for free space
(Fig. 7). Given that assumption, the probabilities entering
Eq. (125), p0→0 and p1→0, can be determined uniquely from
the condition that the probabilities of all moves leaving a given
site (including the move to the same site, j → j) should sum
up to 1 (the normalization condition). In particular, for site 0
we have

p0→0 + p0→1 = 1. (126)

However, p0→1 enters the master equation for site 1, which,
by our assumption, remains the same as in free space, so p0→1

is the same as pj−1→j in free space, which determines

p0→0 = 1 − pj−1→j = pj+1→j + pj→j . (127)

Likewise, for site 1

p1→0 + p1→1 + p1→2 = 1. (128)

Here p1→1 is involved in the equation for site 1 (and thus
equals the “bulk” pj→j) and p1→2 is involved in the equation
for site 2 (thus equals the “bulk” pj−1→j), and so p1→0 is
determined uniquely as

p1→0 = 1 − pj→j − pj−1→j = pj+1→j . (129)

Since we assume throughout the paper that the time step is
the same for all moves, the time step for “boundary” moves
should be the same as for “bulk” moves and is thus uniquely
determined.

Then, for instance, for the algorithm for unbiased diffusion
optimized for accuracy, Eqs. (26)–(28) lead to

p0→0 = 5/6, (130)

p1→0 = 1/6, (131)

p0→1 = 1/6, (132)

τ = a2/6D. (133)

The probability p0→1 is a bulk probability and is given here
for completeness. Note that the probability of moving to the
left from site 1 is the same as from any site with index j + 1 >

1 (p1→0 = pj+1→j). However, the probability of staying put
increases by 1/6. This quantity 1/6 can be interpreted as the
probability of the move to the left from site 0 that is now
forbidden [in fact, this interpretation follows directly from
Eq. (127)]. In other words, the algorithm is as follows: For the
particle in any site, including the boundary site, select the next
move according to the bulk probabilities, but if the boundary
is crossed, reject the move and stay on the same site.

We can check explicitly that using Eqs. (130)–(133) in the
master equation (125) indeed provides the best approximation
of the continuum equation. In 1D, the boundary condition
Eq. (124) becomes

∂n(x,t)

∂x

∣∣∣∣
x=0

= 0. (134)

The general solution of the diffusion equation (6) with this
boundary condition can be written as

n(x,t) =
∫ ∞

0
C(k) cos(kx) exp(−Dk2t)dk, (135)

which is just the general solution in free space Eq. (15)
with the restriction C(−k) = C(k) arising from the reflecting
boundary condition (134) [which, together with the original
condition C(−k) = C∗(k), means that C(k) is real]. Note that
because of broken translational symmetry, generally speaking,
the solution of the discrete master equation can no longer
be written in the same form we used in the bulk Eq. (18).
Therefore, the dispersion relation cannot be introduced and
we have to use the alternative method based on inserting the
integrand of the solution of the continuum equation (135) into
the master equation and requiring that it turns into an identity
as accurately as possible for small k [see Eq. (33) and the
accompanying discussion].

Even though the master equations for the bulk sites involve
only the bulk probabilities that we have already determined
in Sec. II, it is still instructive to sketch the consideration for
these sites using the new form of the solution Eq. (135), as
there are some subtleties compared to Eq. (33). Inserting the
integrand of Eq. (135) into Eq. (17) and dividing both sides by
C(k) exp(−Dk2t), we get

cos(kxj) exp(−Dk2τ)
?	 pj→j cos(kxj)

+pj−1→j cos[k(xj − a)]

+pj+1→j cos[k(xj + a)], (136)

where xj is the position of site j . Note, however, that expanding
straightforwardly in a series in k would not be correct, since xj

can be arbitrarily large. We did not face this problem in Sec. II,
since dividing by exp(ikaj) eliminated all dependence on j .
However, ka can still be assumed to be small, so the correct
approach is expanding cos[k(xj ± a)] in series in ka:

cos[k(xj ± a)] = cos(kxj)(1 − k2a2/2 + k4a4/24 + · · ·)

∓ sin(kxj)(ka − k3a3/6 + · · ·). (137)

016709-15

MYKYTA V. CHUBYNSKY AND GARY W. SLATER PHYSICAL REVIEW E 85, 016709 (2012)

The exponential on the left-hand side of Eq. (136) can be
expanded as normal. This gives

cos(kxj)(1 − Dk2τ + D2k4τ 2/2 + · · ·)
?	 pj→j cos(kxj) + (pj−1→j + pj+1→j)

× cos(kxj)(1 − k2a2/2 + k4a4/24 + · · ·)

+ (pj−1→j − pj+1→j)

× sin(kxj)(ka − k3a3/6 + · · ·). (138)

This should be satisfied for any j , and thus for any xj , which
immediately gives pj−1→j = pj+1→j . Then after dividing
both parts by cos(kxj) the dependence on xj is eliminated,
and we end up with a series in k on both sides. Matching the
coefficients gives the equations for the parameters whose only
solution is given by Eqs. (26)–(28), as expected.

To obtain the probabilities for the boundary site 0, we need
to repeat the same procedure for that site. Note, however,
that in addition to the probabilities, there is one other free
parameter: the distance d from the boundary to site 0. In
free space without boundaries the problem is translationally
invariant, so displacement of all sites by the same amount
does not influence the results, and we assumed, without any
loss of generality, that site 0 had coordinate x0 = 0. However,
now that the translational symmetry of the problem is broken
by the presence of the boundary, the coordinate x0 = d of
site 0 (Fig. 7) is an important parameter. The coordinate of
an arbitrary site j is thus xj = d + aj . Then, inserting the
integrand of Eq. (135) in Eq. (125) and dividing both sides by
C(k) exp(−Dk2t), we get

cos(kd) exp(−Dk2τ)
?	 p0→0 cos(kd) + p1→0 cos[k(d + a)].

(139)

Dividing by cos(kd) and using τ = a2/6D, as in the bulk,

exp(−a2k2/6)
?	 p0→0 + p1→0

cos[k(d + a)]

cos(kd)
. (140)

Note that d 	 a, so kd is small, and the Taylor expansion can
be done normally, without any complications. Expanding up
to O(k4),

1 − a2k2/6 + a4k4/72
?= (p0→0 + p1→0) − p1→0{a2k2(1/2 + d/a)

− (a4k4/12)[1/2 + 2d/a − 4(d/a)3]}. (141)

This equality is only satisfied when the probabilities are given
by Eqs. (130)–(131) and

d = a/2. (142)

The meaning of the result for d and the algorithm as a whole
can be understood as follows. On the one hand, any solution
of the continuum diffusion problem with a boundary is also a
solution of the problem in free space, without a boundary, if
it is continued symmetrically beyond the boundary. On the
other hand, there is a similar correspondence between the
discretizations of these problems as well. Indeed, looking at
the corresponding master equations, the master equations for
the bulk sites Eqs. (17) and (26)–(28) are, of course, identical
for these problems, and the equation for the boundary site

Eqs. (125) and (130)–(133) in the problem with the boundary
is also equivalent to the equation for a bulk site, if we
introduce a fictitious site (numbered −1) to the left of the
boundary (the open square in Fig. 7) and assume that the
mean particle number at that site is always equal to that at the
boundary site (n−1 = n0). This matches the correspondence
between the continuum problems, if the sites 0 and −1 are
located symmetrically with respect to the boundary, which
immediately gives d = a/2. Note also that because of the
equivalence between the master equations for the boundary
and bulk sites, the solution of the system of all master equations
can, in fact, be represented as

nj (t) =
∫ π/a

0
C(k) cos(kaj) exp [−αd (k)t] dk (143)

[same as Eq. (18) with C(k) real], even though, as mentioned,
this is not possible in general for an arbitrary set of parameters
p and d. Here j runs from 0 to ∞; that is, it includes both the
boundary site and the bulk sites. The dispersion relation αd (k)
is, of course, exactly the same as in infinite space.

Another situation of interest is diffusion in a finite interval
bounded by two reflecting walls. Since in the consideration
above for a single wall the effect of that wall on the
algorithm is local, only modifying the probabilities for a single
boundary site, it should be possible to consider the two walls
independently whenever there are at least two sites between
them, with the modifications of the probabilities at each of the
two boundary sites the same as in the case of a single wall.
Indeed, even when there are only two sites, so the incoming
transition for one of the sites is the outgoing transition for the
other site and vice versa, both sites can still be treated just
as regular boundary sites, since the incoming and outgoing
probabilities for boundary sites are equal [see Eqs. (131)
and (132)], so the algorithm remains internally consistent.
Introducing the fictitious sites behind the walls and repeating
the consideration in the previous paragraph leads to the same
result. Of course, this assumes that the distance between the
walls is a multiple of the mesh step a, so that it is possible to
place both boundary sites at distance a/2 from the respective
wall. This restricts the possible choices of a given the distance
between the walls.

B. Two dimensions

In 2D, the situation is more complicated, especially since
diagonal moves (some of which would cross the boundary) are
involved. It is no longer possible to deduce the probabilities
of the moves into the boundary sites based on the normal-
ization conditions for the probabilities alone. We restrict our
consideration to the case of a perfectly flat infinite boundary
parallel to one of the Cartesian axes. By analogy with 1D, the
case of two parallel infinite boundaries, with the motion of
the particle confined to the space between these boundaries,
is easy, as each boundary can be considered independently. A
more complicated and interesting case of finite and/or curved
obstacles and boundaries is touched upon briefly in Sec. VIII.

Consider specifically the case of a planar boundary located
at x = 0 so that the half-space x > 0 is accessible (Fig. 8). The
boundary sites form a column at x = d (the solid squares in
Fig. 8) and have indices (0,l). For a site (j,l), the coordinates

016709-16

OPTIMIZING THE ACCURACY OF LATTICE MONTE . . . PHYSICAL REVIEW E 85, 016709 (2012)

(0, j) (1, j)

(1, j−1)(−1, j−1) (0, j−1)
d= a/2

(−1, j)

(−1, j+1) (0, j+1) (1, j+1)

p +
,+x

y

p
+

,−x
y

p+x
p −

,−x
y

p−x

p
−

,+x
y

p−y
p−y

p + y
p + y

a a

ap0
′

′

′
′

′
′ ′

′

FIG. 8. Treatment of a reflecting boundary in the 2D optimal
LMC algorithm. The diagram only shows the moves to and from one
of the boundary sites [(0,j)]. The inaccessible region is shaded. The
sites closest to the boundary are the boundary sites (solid squares);
all other sites are bulk sites (solid circles). Open squares are fictitious
sites in the inaccessible region useful in the analysis of the algorithm,
as described in the text. The optimal placement of the line of boundary
sites is at the distance d = a/2 from the wall. Only the probabilities of
the moves to the boundary sites (thick arrows) are allowed to change
compared to the bulk. Notation for the probabilities of the moves
used in the text is given. The move to the left from the boundary
site (dotted arrow) is rejected and increases the probability of staying
put, but the diagonal moves across the boundary (dashed arrows) are
projected along the boundary increasing p′

±y compared to p±y .

are xj = d + aj , yl = al (there is still translational symmetry
in the y direction, so we can choose arbitrarily y0 = 0). The
master equations for the boundary sites are

n(0,l)(t + τ) = p′
0n(0,l)(t) + p′

+yn(0,l−1)(t) + p′
−yn(0,l+1)(t)

+p′
−xn(1,l)(t) + p′

−x,+yn(1,l−1)(t)

+p′
−x,−yn(1,l+1)(t), (144)

where the primed probabilities correspond to moves ending
on boundary sites and may differ from the bulk (unprimed)
probabilities, whose values remain as determined in Sec. III.

The boundary condition (134) is still true (except for the
fact that the particle concentration n now depends on y as
well), and the general solution of the diffusion equation with
this boundary condition is

n(x,y,t) =
∫ ∞

kx=0

∫ ∞

ky=−∞
C(kx,ky) cos(kxx)

× exp
[
ikyy − D

(
k2
x + k2

y

)
t
]
dkxdky. (145)

Inserting the integrand in Eq. (144) and remembering that
Eq. (102) for τ should remain valid, we obtain after dividing
by C(kx,ky) cos(kxd) exp[ikyal − D(k2

x + k2
y)t]

exp
[− a2

(
k2
x + k2

y

)
/6

]
?	 p′

0 + p′
+ye

−ikya + p′
−ye

ikya + (p′
−x + p′

−x,+ye
−ikya

+p′
−x,−ye

ikya)
cos[kx(d + a)]

cos(kxd)
. (146)

After expanding up to O(k4) and equating the corresponding
coefficients, we get

for k0,

p′
0 + p′

+y + p′
−y + p′

−x + p′
−x,+y + p′

−x,−y = 1; (147)

for k1
y ,

−ia(p′
+y − p′

−y + p′
−x,+y − p′

−x,−y) = 0; (148)

for k2
y ,

(−a2/2)(p′
+y +p′

−y + p′
−x,+y + p′

−x,−y) = −a2/6; (149)

for k3
y , equivalent to Eq. (148);

for k4
y , equivalent to Eq. (149);

for k2
x ,

−a2(1/2 + d/a)(p′
−x + p′

−x,+y + p′
−x,−y) = −a2/6; (150)

for k2
xky ,

ia3(1/2 + d/a)(p′
−x,+y − p′

−x,−y) = 0; (151)

for k2
xk

2
y ,

(a4/2)(1/2 + d/a)(p′
−x,+y + p′

−x,−y) = a4/36; (152)

for k4
x ,

(a4/12)[1/2 + 2d/a − 4(d/a)3](p′
−x + p′

−x,+y + p′
−x,−y)

= a4/72. (153)

It is convenient (but not necessary) to use the normalization
conditions for the probabilities. For the boundary sites,

p′
0 + p′

+y + p′
−y + p+x,+y + p+x + p+x,−y

= p′
0 + p′

+y + p′
−y + 1/6 = 1; (154)

for their neighbors [sites (1,l)],

p′
−x + p′

−x,+y + p′
−x,−y + p0 + p+x

+p+y + p−y + p+x,+y + p+x,−y

= p′
−x + p′

−x,+y + p′
−x,−y + 5/6 = 1. (155)

Comparing Eqs. (155) and (150), we get d = a/2, as in 1D,
which makes Eq. (153) an identity. Then from Eqs. (151) and
(152),

p′
−x,+y = p′

−x,−y = 1/36, (156)

and from Eq. (155),

p′
−x = 1/9. (157)

016709-17

MYKYTA V. CHUBYNSKY AND GARY W. SLATER PHYSICAL REVIEW E 85, 016709 (2012)

Also using Eq. (156), from Eqs. (148) and (149),

p′
+y = p′

−y = 5/36, (158)

and finally, from either Eq. (147) or Eq. (154),

p′
0 = 5/9. (159)

While

p′
−x = p−x, (160)

p′
−x,+y = p−x,+y, (161)

p′
−x,−y = p−x,−y, (162)

the other three probabilities are different from the bulk values:

p′
+y = p+y + 1/36, (163)

p′
−y = p−y + 1/36, (164)

p′
0 = p0 + 1/9. (165)

Note that not just the probability of staying put changes, so
unlike in 1D, moves into the boundary are not always simply
rejected. In fact, Eqs. (163)–(165) can be rewritten as

p′
+y = p+y + p−x,+y, (166)

p′
−y = p−y + p−x,−y, (167)

p′
0 = p0 + p−x. (168)

Therefore, the correct changes of the probabilities can be
obtained if the moves to the left (−x) from the boundary sites
are rejected, but the moves in the (−x, +y) and (−x, −y)
directions are replaced by the moves in the +y and −y

directions, respectively. In other words, it is as if the moves
into the wall are replaced by their projections along the wall.
We also note that, similarly to 1D, the master equations for
boundary sites become equivalent to those for bulk sites
when a column of fictitious sites behind the boundary is
introduced (open squares in Fig. 8) and the values of the
mean particle numbers at these sites are made equal to
those of the real boundary sites across the boundary (i.e.,
n(−1,l) = n(0,l)). All the probabilities could have been obtained
from this consideration alone. It is also possible to obtain the

2D algorithm with a boundary as the direct product of the 1D
algorithm with a boundary and the 1D algorithm in free space.

C. Three dimensions

We now consider the 3D case. Since we have considered two
different 3D LMC algorithms in free space, the direct product
algorithm with simultaneous moves in three directions and the
unique optimal algorithm without such moves, we show how
to treat a reflective boundary for each of these two algorithms
in turn. We assume that the x = 0 plane serves as the boundary.

1. The direct product algorithm

The extension of the direct product algorithm to the case
when a boundary is present is straightforward and can be
obtained as the direct product of the 1D algorithm with a
boundary and two 1D algorithms (or one 2D algorithm) in
free space. This leaves the probabilities of moves into bulk
sites unchanged compared to the free space algorithm, but the
“primed” probabilities for the moves into boundary sites are
now

p′
−x = 2/27, (169)

p′
±y = p′

±z = 5/54, (170)

p′
−x,±y = p′

−x,±z = 1/54, (171)

p′
±y,±z = 5/216, (172)

p′
−x,±y,±z = 1/216, (173)

p′
0 = 10/27. (174)

2. The algorithm without simultaneous moves in three directions

In this case, the consideration is similar to 2D. Compared to
the 2D case, the master equation has additional terms involving
p′

±z, p′
−x,±z, and p′

±y,±z. The solution of the continuum
equation is obtained from Eq. (145) simply by introducing
the same dependence of the integrand on kz as its dependence
on ky and integrating over kz from −∞ to ∞. The matching
equation (146) becomes

exp
[− a2

(
k2
x + k2

y + k2
z

)
/6

] ?	 p′
0 + p′

+ye
−ikya + p′

−ye
ikya + p′

+ze
−ikza + p′

−ze
ikza + p′

+y,+ze
−ikya−ikza + p′

+y,−ze
−ikya+ikza

+p′
−y,+ze

ikya−ikza + p′
−y,−ze

ikya+ikza + (p′
−x + p′

−x,+ye
−ikya + p′

−x,−ye
ikya

+p′
−x,+ze

−ikza + p′
−x,−ze

ikza)
cos[kx(d + a)]

cos(kxd)
. (175)

First of all, there are new types of terms in the expansion with
no analog in 2D, namely, those involving y and z (kykz, k2

ykz,
kyk

2
z , k2

yk
2
z , k3

ykz, and kyk
3
z). Only four of the resulting equations

are independent and they involve only four probabilities (those
corresponding to simultaneous moves along y and z axes).
Moreover, these equations are the same as they would be for a
site in the bulk, since only moves parallel to the boundary are

involved. Thus the four probabilities involved are the same as
for bulk sites:

p′
+y,+z = p′

+y,−z = p′
−y,+z = p′

−y,−z = 1/36. (176)

Equations (150) and (153) will have the probabilities of
the (−x, ± z) moves added to the sums of the probabilities
entering these equations. The normalization condition

016709-18

OPTIMIZING THE ACCURACY OF LATTICE MONTE . . . PHYSICAL REVIEW E 85, 016709 (2012)

Eq. (155) becomes

p′
−x + p′

−x,+y + p′
−x,−y + p′

−x,+z + p′
−x,−z

+p0 + p+x + p+y + p−y + p+z + p−z

+p+x,+y + p+x,−y + p+x,+z + p+x,−z

+p+y,+z + p+y,−z + p−y,+z + p−y,−z

= p′
−x + p′

−x,+y + p′
−x,−y + p′

−x,+z

+p′
−x,−z + 5/6 = 1. (177)

Just as in 2D, all three equations [the modified Eqs. (150)
and (153) and Eq. (177)] involve the same sums of “primed”
probabilities, which can thus easily be eliminated, and d = a/2
follows naturally. Equations (151) and (152) remain un-
changed, and there will also be analogous equations involving
the z axis instead of the y axis, so

p′
−x,+y = p′

−x,−y = p′
−x,+z = p′

−x,−z = 1/36. (178)

Then from Eq. (177),

p′
−x = 1/18. (179)

Equations (148) and (149) will have the probabilities of
the (±y, ± z) moves added to them in the parentheses [or
subtracted in the case of the (−y, ± z) moves in the first of
these equations]. From these equations,

p′
+y = p′

−y = 1/12. (180)

Equations obtained by matching kz and k2
z terms are analogous

to Eqs. (148) and (149), and from them similarly

p′
+z = p′

−z = 1/12. (181)

Finally, Eq. (147) is modified to include the sum of all “primed”
probabilities, and from it,

p′
0 = 7/18. (182)

All other equations (modified as appropriate) and their analogs
involving the z axis become identities once the above values
are inserted in them.

3. Relations for the probabilities

In analogy to 2D, the probabilities for the boundary sites
can be written (for both algorithms) as

p′
+y = p+y + p−x,+y, (183)

p′
−y = p−y + p−x,−y, (184)

p′
+z = p+z + p−x,+z, (185)

p′
−z = p−z + p−x,−z, (186)

p′
0 = p0 + p−x. (187)

In addition, for the direct product algorithm

p′
+y,+z = p+y,+z + p−x,+y,+z, (188)

p′
+y,−z = p+y,−z + p−x,+y,−z, (189)

p′
−y,+z = p−y,+z + p−x,−y,+z, (190)

p′
−y,−z = p−y,−z + p−x,−y,−z. (191)

All other probabilities remain unchanged compared to the bulk.
Just as in 2D, this can be interpreted as the diagonal moves

across the boundary being projected along the boundary, rather
than rejected. Also, as in 1D and 2D, the equivalence of the
master equations for boundary and bulk sites once fictitious
sites behind the boundary are introduced still holds, again, for
both algorithms.

VI. ABSORBING BOUNDARIES

Another case of practical interest is that of absorbing
boundaries. In this case, particles reaching the boundary are
“absorbed” and disappear from the system. One reason for
the importance of this problem is that the FPT problem can
be reduced to it: The cumulative FPT distribution is equal
to the fraction of absorbed particles as a function of time.
In the continuum diffusion problem, the absorbing boundary
condition is simply

n = 0 (192)

at the boundary. In LMC, since the particle number is no longer
conserved, there will inevitably be a new type of “move” for
particles in sites adjacent to the boundary, during which the
particle simply disappears. The probability of this occurring
does not enter the master equations explicitly (the form of
these equations remains unchanged, although the values of the
probabilities change), but the probabilities of all other moves
will no longer sum up to unity, so the normalization conditions
for boundary sites cannot be used (but those for bulk sites are
still valid).

A. One dimension

The general solution of the continuum diffusion equation
with an absorbing boundary at x = 0 is

n(x,t) =
∫ ∞

0
C(k) sin(kx) exp(−Dk2t)dk, (193)

that is, the same as for the reflecting boundary Eq. (135),
except the cosine is replaced by the sine. In the discrete case,
the master equation for the boundary site is still given by
Eq. (125). Plugging the integrand of Eq. (193) into this master
equation, replacing τ with a2/6D and dividing both parts by
C(k) sin(kd) exp(−Dk2t), we get

exp(−k2a2/6)
?	 p0→0 + p1→0

sin[k(d + a)]

sin(kd)
. (194)

Expanding this up to O(k4), we obtain

1 − k2a2

6
+ k4a4

72
?= p0→0 + p1→0

d + a

d

(
1 − k2

6
a(2d + a)

+ k4

360
(3a4 +12a3d +8a2d2 −8ad3)

)
.

(195)

It is also convenient (but not necessary) to use the condition
that the sum of the probabilities of all moves leaving site 1 is
unity (since this site is not adjacent to the boundary). Given
that two of these moves (1 → 1 and 1 → 2) lead to a bulk site,
their probabilities should coincide with the bulk probabilities
(pj→j = 2/3 and pj−1→j = 1/6, respectively), and therefore
the remaining probability, p1→0, should equal 1/6. Using this

016709-19

MYKYTA V. CHUBYNSKY AND GARY W. SLATER PHYSICAL REVIEW E 85, 016709 (2012)

in Eq. (195) and equating the k2 terms, we get a quadratic
equation for d that has two solutions:

d (1) = a; d (2) = a/2. (196)

Equating the k0 terms and using Eq. (196) and p1→0 = 1/6,
we get

p
(1)
0→0 = 2/3; p

(2)
0→0 = 1/2. (197)

As mentioned, in both cases

p
(1)
1→0 = p

(2)
1→0 = 1/6. (198)

Both of these solutions turn the equation obtained from
equating the k4 terms into an identity; in fact, using that
equation instead of the normalization condition would have
given the same two solutions. Probabilities of moves leading
to sites other than site 0 (i.e., to bulk sites) are the same as the
corresponding free space probabilities Eqs. (26) and (27); in
particular,

p
(1)
0→1 = p

(2)
0→1 = 1/6. (199)

The time step likewise remains the same Eq. (28), which we
have already used in the above derivation. Note that for the
boundary site 0 the normalization condition is not satisfied: the
sum of the outgoing probabilities is 5/6 for the first solution
and 2/3 for the second one. The complements of these sums
to unity,

p
(1)
d = 1/6 and p

(2)
d = 1/3, (200)

respectively, can be interpreted as the probabilities of particle
disappearance (or absorption by the boundary).

Let us now consider the physical interpretation of the
two solutions. Note first of all that the first solution (d = a)
corresponds to the absorption probability of 1/6, which is
the same as the probability of the move to the left from
a bulk site, and the probabilities of all allowed moves are
unchanged compared to the bulk. Therefore, when using the
first algorithm, we can treat the boundary site as a bulk site,
except whenever a move to the left is attempted, the particle
is deleted instead. There is no such simple interpretation
for the second solution (d = a/2). Just as for the reflecting
boundary, we can also analyze the algorithms by looking at the
corresponding master equation. If the first set of parameters
is used in the master equation (125), the resulting equation
coincides with that for bulk sites Eq. (17), if a fictitious site
(numbered −1) is introduced and the mean particle number
at that site is made identically equal to zero. The physical
interpretation of this is clear: If d = a, then site −1 is placed
right at the absorbing boundary (Fig. 9), where the particle
concentration in the continuum problem is indeed exactly zero.
On the other hand, if the second set of parameters is used in
the master equation, the resulting equation will coincide with
that for bulk sites, if n−1 = −n0. Since for d = a/2 the wall
is halfway between sites −1 and 0, we get n = 0 at the wall
simply by interpolating between n0 and n−1.

Of course, similar interpolation can be done for any d; for
the interpolated value at x = 0 to be zero,

n−1 = −a − d

d
n0. (201)

+1pj j

pj j−1 pj j−1

p
0→0 j jp → j jp →

p →01 →

→ →

=d a

a

1 20−1

x0

FIG. 9. One of the two variants of treatment of an absorbing
boundary in the 1D optimal algorithm. The inaccessible region is
shaded. The site closest to the boundary is the boundary site (solid
square); all other sites are bulk sites (solid circles). In this variant,
the placement of the boundary site is at the distance d = a from the
wall. The open square is a fictitious site at the wall useful in the
analysis of the algorithm, as described in the text. The move left
from the boundary site (dashed arrow) leads to the disappearance of
the particle. Only the probabilities of the moves to the boundary site
(thick arrows) are allowed to change in the analysis, but turn out to be
the same as in the bulk for the optimal algorithm. Choosing d = a/2,
as in Fig. 7, is also possible, but leads to different probabilities for the
moves; note that in that case, the simple interpretation of the move to
site −1 as leading to particle disappearance is no longer valid, since
moves from that site to site 0 are also possible, as explained in the
text.

We can use Eq. (201) in Eq. (17) with j = 0 and by comparison
with Eq. (125) obtain

p0→0 = pj→j − pj−1→j

a − d

d
. (202)

All other probabilities remain the same as in the bulk. Note
that this approach is equally justified for all algorithms given
by Eqs. (11)–(13), including both the ordinary and the optimal
algorithm. However, for the ordinary algorithm, pj→j = 0 and
so p0→0 is non-negative and thus physically meaningful only
for d = a (assuming d � a, of course). Thus, there is only
one way of implementing the absorbing boundary condition
within the framework of the ordinary algorithm. Introducing a
nonzero probability of staying put broadens the set of allowed
values of d and thus gives more freedom. In particular, for
pj→j = 2/3 and pj−1→j = 1/6, as in the optimal algorithm,
any d � a/5 is possible. This is yet another advantage of using
the optimal algorithm, or nonzero pj→j in general. Even when
optimality is required, we still have two choices, d = a/2 and
d = a, more than for the ordinary algorithm. Note that for
d = a, p0→0 = pj→j , so the probability that a particle stays
put, which is the only probability of a move that can be different
for the boundary site in this approach, is actually the same as
in the bulk. For all other d, including d = a/2, p0→0 �= pj→j .
This is because, whenever n−1 �= 0, moves from the fictitious
site −1 to the boundary site 0 are possible in the auxiliary
problem with the fictitious site, and these moves correspond
to changing p0→0 in the original boundary problem without
the fictitious site. Another consequence of these moves from
site −1 is that the probability of a move to site −1 from site
0, which in the auxiliary problem is always equal to the bulk
probability pj+1→j , is not equal to the probability of particle
disappearance in the original problem,

pd = 1 − [p0→0 + p0→1] = 1 − [p0→0 + pj−1→j], (203)

016709-20

OPTIMIZING THE ACCURACY OF LATTICE MONTE . . . PHYSICAL REVIEW E 85, 016709 (2012)

since moves from site −1 lead to the “reappearance” of the
particles from behind the wall. In fact, moves from site −1
are “negative”, since n−1 < 0, so this “reappearance” actually
increases the disappearance probability.

Note that the algorithm for arbitrary d � a/5 described
above can be obtained by retaining just the zeroth-order terms
in Eq. (195) and assuming that p1→0 is the same as in the
bulk, which maintains the normalization condition for the
probabilities of moves leaving site 1. This condition makes
physical sense, since site 1 is not adjacent to the wall and so
particles leaving this site should not disappear [and, in fact,
we have used this condition when obtaining Eqs. (196)–(198),
although it was not necessary]. Matching k2 terms in Eq. (195)
as well requires dropping the normalization condition for site
1, which can lead to the unphysical disappearance of particles
from or their creation at that site, unless d = a/2 or d = a.

Given the choice between the two fifth-order algorithms
(with d = a and d = a/2), which one should be preferred?
In principle, the first choice has certain advantages. First,
it follows from the previous discussion that the boundary
condition n = 0 is explicit in the first algorithm, but is obtained
indirectly via interpolation in the second. It is not obvious,
however, that this improves the accuracy of the algorithm
overall, as in both cases the continuum solution satisfies
the respective master equations to the same order [O(k5)].
Second, recalling the correspondence between diffusion with
absorbing boundaries and the FPT problem, we note that it is
the variant with d = a that translates directly into the discrete
FPT problem as considered in Sec. II C: In this case the rate
of reaching a site is equal to the absorption rate when that site
is replaced by an absorbing wall. This means that this variant
of the algorithm will produce two correct moments of the
absorption time distribution; it can be checked that this is not
the case for the other variant, for which even the first moment
(MFPT) is incorrect. On the other hand, one advantage of the
d = a/2 variant is that if we consider bins of width a centered
on the sites, then the bins associated with the boundary sites
extend exactly to the wall; thus, if we assign to the sites the
numbers of particles equal to the particle concentration at the
sites in the continuum case, the total number of particles will
be approximated more accurately than in the d = a case.

B. Two dimensions

As in the case of a reflecting boundary, we assume that
x = 0 is the boundary and x > 0 is the accessible region. We
can derive the parameters of the optimal algorithm using the
same approach as in the reflecting boundary case, by writing
down the continuum solution, which in this case is

n(x,y,t) =
∫ ∞

kx=0

∫ ∞

ky=−∞
C(kx,ky) sin(kxx)

× exp
[
ikyy − D

(
k2
x + k2

y

)
t
]
dkxdky, (204)

plugging the integrand into the master equation (144) and
demanding that the resulting equality be satisfied as accurately
as possible. A much shorter route is obtaining the optimal
algorithm as the direct product of the 1D algorithm with an
absorbing boundary and another one in free space. Since there
are two variants of the optimal 1D algorithm (with d = a

and with d = a/2), we end up with two variants of the 2D
algorithm: variant 1,

d (1) = a, (205)

p
′(1)
0 = 4/9, (206)

p
′(1)
−x = p

′(1)
±y = 1/9, (207)

p
′(1)
−x,±y = 1/36, (208)

and variant 2,

d (2) = a/2, (209)

p
′(2)
0 = 1/3, (210)

p
′(2)
−x = 1/9, (211)

p
′(2)
±y = 1/12, (212)

p
′(2)
−x,±y = 1/36. (213)

The particle disappearance probabilities are 1/6 and 1/3,
respectively, as in 1D. Note that in the first variant all
probabilities are the same as the bulk probabilities. Therefore,
as in 1D, the boundary sites can be treated as the bulk
sites, except moves into the walls are replaced by particle
disappearance. This is not the case for the second variant.
Also, it is still true, as in 1D, that the master equations for
the boundary sites coincide with those for the bulk sites with
n−1,l = 0 for the first variant and n−1,l = −n0,l for the second
variant.

The disadvantage of the direct product approach is that,
strictly speaking, we do not prove that the resulting sets
of parameters are the only possible ones. A much longer
consideration using the first method described above shows
that the two variants of the algorithm we have obtained are
indeed the only sets of parameters turning the master equation
into an identity up to O(k4) when the continuum solution
Eq. (204) is inserted into it.

C. Three dimensions

In 3D, both in free space and with a reflecting boundary, we
considered two algorithms: the direct product algorithm and
the algorithm with moves in one and two directions only. We
now extend these considerations to the case of an absorbing
boundary at x = 0.

1. The direct product algorithm

The direct product algorithm is obtained as the direct
product of the 2D algorithm with an absorbing boundary and
the 1D algorithm in free space. Since there are two variants of
the former, we end up with two variants of the 3D algorithm.
In the first variant,

d (1) = a, (214)

p
′(1)
0 = 8/27, (215)

p
′(1)
−x = p

′(1)
±y = p

′(1)
±z = 2/27, (216)

p
′(1)
−x,±y = p

′(1)
−x,±z = p

′(1)
±y,±z = 1/54, (217)

p
′(1)
−x,±y,±z = 1/216; (218)

016709-21

MYKYTA V. CHUBYNSKY AND GARY W. SLATER PHYSICAL REVIEW E 85, 016709 (2012)

in the second variant,

d (2) = a/2, (219)

p
′(2)
0 = 2/9, (220)

p
′(2)
−x = 2/27, (221)

p
′(2)
±y = p

′(2)
±z = 1/18, (222)

p
′(2)
−x,±y = p

′(2)
−x,±z = 1/54, (223)

p
′(2)
±y,±z = 1/72, (224)

p
′(2)
−x,±y,±z = 1/216. (225)

2. The algorithm without simultaneous moves in three directions

To quickly derive this algorithm, we use an approach based
on the correspondence between the master equations for the
boundary and bulk sites, as described below.

First, we have mentioned when discussing the 1D algo-
rithms in Sec. VI A that for the variant with d = a these
master equations coincide when n−1 is put equal to zero in
the bulk equation. Extending this to 3D, we replace n−1,l,m

with zero for all l and m in the 3D bulk master equation for
the evolution of n0,l0,m0 and compare to the master equation
for a boundary site. The result is that all probabilities remain
as in the bulk [i.e., are given by Eqs. (117)–(119)], except that
moves involving the +x direction are, of course, impossible;
also, the complement of the sum of the probabilities to unity
(which equals 1/6, as in 1D and 2D) is the probability of the
particle disappearance. The same interpretation as in 1D and
2D is still valid: the boundary sites can be treated as bulk sites,
but all attempts to move into the boundary are replaced by
particle disappearance.

On the other hand, for the variant with d = a/2 the 1D
master equations for the boundary and bulk sites coincide
when n−1 = −n0 in the latter. Again, extending this to 3D, we
obtain the following probabilities:

p′
0 = p0 − p+x = 5/18, (226)

p′
−x = p−x = 1/18, (227)

p′
±y = p′

±z = p±y − p+x,±y = p±z − p+x,±z = 1/36, (228)

p′
−x,±y =p′

−x,±z =p′
±y,±z =p−x,±y =p−x,±z =p±y,±z =1/36.

(229)

The sum of all these “primed” probabilities is 2/3, and so the
disappearance probability is 1/3, as in 1D and 2D.

VII. RELATION TO LATTICE
BOLTZMANN ALGORITHMS

One fact worth mentioning is a correspondence between
the optimal LMC algorithms and lattice Boltzmann (LB)
algorithms. The most well-known use of the LB approach
is for mesoscopic fluid simulations [29,30]. LB equations
can be thought of as master equations for particles residing
at the sites of a lattice and moving at each time step to a
predetermined set of nearby sites, as in LMC. However, a

crucial difference is that the mean numbers of particles with
each particular velocity are considered separately and evolve
individually at each site according to the LB equations. The
velocity of a particle determines how that particle moves at the
next time step, and since the set of moves is discrete, the set
of possible velocities in the algorithm is discrete as well. In
different varieties of the LB approach different sets of discrete
velocities (and thus of possible moves) are used. The standard
notation used to distinguish these varieties is DmQs, where
m is the dimensionality of the space and s is the number of
possible velocity vectors.

The most popular LB equation has the form

n
(i)
�r+�ei

(t + τ) = n
(i)
�r (t) − ω

(
n

(i)
�r (t) − n�r (t)f̃ (i)[�V�r (t)]

)
. (230)

Here n
(i)
�r (t) is the mean number of particles with velocity �vi

at the site given by the vector �r , at time t ; �ei is one of the
lattice vectors and is related to �vi by �vi = �ei/τ . The total mean
number of particles at site �r at time t , n�r (t), is given by

n�r (t) =
s∑

i=1

n
(i)
�r (t). (231)

The average velocity at site �r , �V�r (t), is

�V�r (t) =
∑s

i=1 n
(i)
�r (t)�vi

n�r (t)
. (232)

The set of parameters f̃ (i)[�V] is an approximation of the
Maxwell velocity distribution shifted by velocity �V and is dis-
cussed in more detail below. Equation (230) is a discretization
of the Boltzmann kinetic equation for the particle distribution
function in the phase space with the single-relaxation-time or
Bhatnagar-Gross-Krook (BGK) approximation for the colli-
sion operator [31] and is often referred to by the abbreviation
LBGK [29]. Finally, ω is a constant that determines how fast
the relaxation toward the Maxwell distribution occurs and
is called the relaxation parameter. Changing ω changes the
resulting viscosity of the fluid, but by varying the mesh step
and/or the time step simultaneously it is possible to keep the
viscosity the same, so ω can serve as an adjustable parameter
of the algorithm.

An important question in the design of LB algorithms is
finding the best approximation of the equilibrium Maxwell
velocity distribution, f̃ (i)[�V], using a particular set of allowed
discrete velocity vectors �vi . It turns out that for �V = 0, in the
best approximation the fractions of particles with particular
velocities are equal to the probabilities of the corresponding
moves in the optimal LMC algorithm with the same set
of moves. For the D2Q9 LB algorithm [32], this will be
our 2D optimal LMC; for the D3Q19 algorithm [30], our
3D LMC with moves along one and two directions; for the
D3Q27 algorithm [32], our 3D direct product algorithm. This
correspondence is not coincidental. The Maxwell distribution
is a Gaussian distribution, as is the distribution of positions
of particles diffusing in continuum space at a given time after
they started at the same point. Given this, it is easy to see that
the problem of finding the distribution of discrete velocities

016709-22

OPTIMIZING THE ACCURACY OF LATTICE MONTE . . . PHYSICAL REVIEW E 85, 016709 (2012)

approximating the Maxwell distribution is mathematically
equivalent to finding the set of probabilities of moves such
that after a single step starting from the same site the resulting
particle distribution is as close to Gaussian as possible. There
is also a �V -dependent factor in f̃ (i)[�V] that takes into account
the shift of the velocity distribution; the only thing important
for us for the remainder of this section is that it is unity at
�V = 0.

It is less well-known that the LB approach can also be
used for diffusion problems [33–37]. In particular, LBGK
algorithms for unbiased diffusion can be obtained from
Eq. (230) by simply setting �V ≡ 0 regardless of the actual
mean velocity at a particular site [35]. From now on, we will
omit the velocity argument of f̃ (i), since it is always zero. In
analogy to fluid dynamics, varying the relaxation parameter ω

changes the diffusion constant, but by changing the mesh step
and/or the time step at the same time D can be kept constant
[see, e.g., Eq. (239) below].

It is easy to see that for ω = 1 the resulting algorithm with
a particular set of moves is equivalent to the optimal LMC
algorithm with the same set of moves. Indeed, in this case
Eq. (230) becomes

n
(i)
�r+�ei

(t + τ) = n�r (t)f̃ (i), (233)

which can be rewritten as

n
(i)
�r (t + τ) = n�r−�ei

(t)f̃ (i). (234)

As mentioned above, f̃ (i) are equal to the probabilities of LMC
moves; that is,

f̃ (i) = p�ei
, (235)

where p�ei
is the probability of the LMC move by vector �ei .

Summing up both sides of Eq. (234) over i and using Eq. (235),
we get

n�r (t + τ) =
s∑

i=1

n�r−�ei
(t)p�ei

, (236)

which is exactly the LMC master equation in its most
general form. In fact, the equivalence between LBGK with
ω = 1 and the forward time centered space finite-difference

scheme (which is what the LMC master equation is)
has been mentioned in the literature [35]. The fact that
LB algorithms with ω = 1 are fifth-order-accurate can
be inferred from Ref. [37]. Nevertheless, our work an-
swers the following question: If we are restricted to using
LMC algorithms, what parameters of these algorithms are
optimal?

However, this begs the following question: Since LB
algorithms with ω = 1 are as accurate as (in fact, entirely
equivalent to) optimal LMC algorithms, can we do even
better by using LB algorithms with ω �= 1? We note first
that generalizing to ω �= 1 is not entirely trivial: If the
equilibrium distribution f̃ (i) is kept the same, the resulting
algorithm is not optimally accurate (in fact, it is generally only
third-order-accurate). This is perhaps somewhat paradoxical,
given that this distribution is supposed to be the best discrete
representation of the Maxwell distribution and this fact does
not depend on ω. In 1D, the problem of finding the optimal
values of f̃ (i) for arbitrary ω has been solved very recently by
Suga [38]. These optimal values are

f̃ (±) = ω2 − 12ω + 12

6(ω2 − 8ω + 8)
, (237)

f̃ (0) = 1 − 2f̃ (±), (238)

where the first equation corresponds to the moves left and
right and the second one to staying put. Note that there are a
number of typos in equations in Ref. [38]; in particular, the
equation for f̃ (±) has a wrong sign in one of the terms that we
are correcting here. The corresponding time step is

τ = a2(2 − ω)f̃ (±)

Dω
. (239)

The resulting algorithms are indeed fifth-order-accurate for all
allowed values of ω (0 < ω < 6 − 2

√
6 ≈ 1.101). Above the

upper limit, f̃ (±) becomes negative. At ω = 1, these values
become f̃ (±) = 1/6, f̃ (0) = 2/3, τ = a2/6D, corresponding
to the optimal LMC algorithm, as expected.

The first reasonable question to ask is whether the sixth-
order error can be eliminated as well by varying ω. Let us first
obtain the dispersion relation. In 1D, the LB equation (230)
turns into the following set of equations:

n
(0)
j (t + τ) = (1 − ω)n(0)

j (t) + ωf̃ (0)
[
n

(0)
j (t) + n

(+)
j (t) + n

(−)
j (t)

]
, (240)

n
(+)
j (t + τ) = (1 − ω)n(+)

j−1(t) + ωf̃ (+)
[
n

(0)
j−1(t) + n

(+)
j−1(t) + n

(−)
j−1(t)

]
, (241)

n
(−)
j (t + τ) = (1 − ω)n(−)

j+1(t) + ωf̃ (−)
[
n

(0)
j+1(t) + n

(+)
j+1(t) + n

(−)
j+1(t)

]
. (242)

Seeking the solution in the form

n
(0,+,−)
j (t) = C(0,+,−) exp[ikaj − α(k; ω)t], (243)

we obtain the following characteristic equation for λ = exp(−ατ):

det

∣∣∣∣∣∣∣
(1 − ω) + f̃ (0)ω − λ f̃ (0)ω f̃ (0)ω

f̃ (+)ωe−ika [(1 − ω) + f̃ (+)ω]e−ika − λ f̃ (+)ωe−ika

f̃ (−)ωeika f̃ (−)ωeika [(1 − ω) + f̃ (−)ω]eika − λ

∣∣∣∣∣∣∣ = 0. (244)

016709-23

MYKYTA V. CHUBYNSKY AND GARY W. SLATER PHYSICAL REVIEW E 85, 016709 (2012)

This is a cubic equation, so it has three solutions for every
value of k. Two of the values of α(k; ω) remain nonzero in the
limit k → 0 and so decay fast and are irrelevant at long times
(but are relevant at short times, as discussed below). The third
solution should have the form

α(k; ω) = D[k2 − A(ω)a4k6 + O(k8)], (245)

when the optimal parameters given by Eqs. (237)–(239) are
used in Eq. (244). By comparison to Eq. (29), A(1) = 1/540.
For other values of ω, while it is possible to solve Eq. (244)
analytically and expand in k, this is too cumbersome, and it is
easier to put D = 1 and a = 1, obtain the numerical solutions
for several small values of k, and extrapolate the deviation
of α from k2 to k → 0 for each ω of interest. The result is
plotted in Fig. 10(a). Note that A(ω) never reaches zero, so
it is impossible to make the algorithm seventh-order-accurate.

10
-4

10
-2

10
0

10
2

10
4

6t
h

or
de

r
er

ro
r

co
ef

fic
ie

nt
 A

3.54×10−4

1.050

1/540

6−2√6

0 0.5 1
Relaxation parameter ω

0

0.5

1

1.5

2

2.5

S
pe

ed
up

 fa
ct

or
 S

2.30

1.046

(a)

(b)

FIG. 10. For the fifth-order-accurate 1D LBGK algorithm, as
derived by Suga [38]: (a) the numerical prefactor A in the sixth-order
term in the dispersion relation [see Eq. (245)] as a function of the
relaxation parameter ω; (b) the speedup factor S [Eq. (248)] for the
algorithm with the relaxation parameter ω compared to that with
the relaxation parameter equal to unity, assuming that both have the
same accuracy. In both plots, the circles mark the values calculated
numerically and the curves are cubic spline interpolations between
these points. The triangles correspond to the ω = 1 case equivalent
to the optimal LMC.

The lowest value of A(ω) is about 3.54 × 10−4, which is about
a factor of 5.2 lower than A(1), and is reached at ω ≈ 1.050.
Does it make sense to use the LB algorithm with this value
of ω instead of the LMC algorithm? We note that according
to Eq. (245), the algorithms with ω = 1 and with an arbitrary
ω = ω0 are equally accurate at small k when the mesh step in
the latter is a factor of [A(1)/A(ω0)]1/4 = {1/[540A(ω0)]}1/4

larger than in the former, that is,

aω=ω0

aω=1
=

(
1

540A(ω0)

)1/4

. (246)

Since the computational effort per LB iteration is inversely
proportional to the mesh size, we have the speedup factor of
{1/[540A(ω0)]}1/4, which at ω0 = 1.050 is about 1.51. Note
that this is the speedup per time step. However, the time step
τ itself depends on ω, both explicitly and through a [see
Eq. (239)], and the total number of iterations is inversely
proportional to τ , so there is an additional speedup factor
of

τω=ω0

τω=1
= a2

ω=ω0

a2
ω=1

· (2 − ω0)
(
ω2

0 − 12ω0 + 12
)

ω0
(
ω2

0 − 8ω0 + 8
)

=
(

1

540A(ω0)

)1/2 (2 − ω0)
(
ω2

0 − 12ω0 + 12
)

ω0
(
ω2

0 − 8ω0 + 8
) .

(247)

The total speedup factor S(ω0) is

S(ω0) =
(

1

540A(ω0)

)3/4 (2 − ω0)
(
ω2

0 − 12ω0 + 12
)

ω0
(
ω2

0 − 8ω0 + 8
) .

(248)

At ω0 = 1.050, this is about 2.24. The function S(ω0) is plotted
in Fig. 10(b); its maximum is reached at ω0 ≈ 1.046, with the
value not much different from that at 1.050 (≈2.30, to be
precise).

Note, however, that the above calculation refers to the
speedup factor of the LB algorithm at a particular ω compared
to the LB algorithm at ω = 1 (assuming that both calculations
use the same code written for an arbitrary ω). The latter is
equivalent to the optimal LMC algorithm, but much more
computationally costly, both because three equations per site
(instead of just one in the numerically exact LMC) need to
be solved and because of the additional relaxation step. The
expected speedup of at least a factor of three when moving
from LB with ω = 1 to the numerically exact version of LMC
will, of course, more than compensate the speedup factor
of 2.30 achievable by moving to the optimal value of ω.
Therefore, it appears that switching from LMC to LB does
not improve the efficiency if the goal is achieving a particular
precision. (Note also that in terms of memory requirements,
the increase in the mesh step does not compensate the need
to store three values of particle numbers per site instead of
one.) Using LB does give more flexibility, in particular, since
optimal LMC imposes a relation between the time step and the
mesh step Eq. (28), which can be relaxed in LB by varying ω

[see Eq. (239)]. Note, however, that only values of ω below
1.101 are allowed and at the same time, the error increases
extremely rapidly when ω is decreased below unity [note the
logarithmic scale of the y axis in Fig. 10(a)], so the usable

016709-24

OPTIMIZING THE ACCURACY OF LATTICE MONTE . . . PHYSICAL REVIEW E 85, 016709 (2012)

range of ω is probably rather narrow. (This rapid increase of the
error can also be seen in the actual simulation data presented in
Table I in Ref. [38].) In particular, even though it may seem at
first glance from Eq. (239) that the time step can be increased
indefinitely by decreasing ω, this is not true, since, unless one
is content with an enormous loss of accuracy, the mesh step
a has to be decreased as well, which actually leads to a net
decrease of the time step and the resulting loss of efficiency,
as Fig. 10(b) shows. Another problem with choosing small ω

is that the sensitivity to initial conditions (see below) extends
to longer times.

We have also shown that the optimal LMC algorithms are
not only best for modes with small k that are the most important
ones at long times, but also reproduce the fourth moment
of the particle distribution exactly at all times. How do the
optimal LB algorithms with ω �= 1 fare in this respect? An
immediate problem when answering this question is that the
initial condition for the LB algorithm is underdetermined: To
solve the diffusion problem, only the total average number of
particles at each site at t = 0 is required, but the LB algorithm
also requires the knowledge of the number of particles with
each velocity component separately. In effect, instead of one
mode at each value of k, there are as many modes as there are
different velocities [indeed, Eq. (244) for the 1D LB algorithm
has three solutions]. The decay rate of only one of these modes
approaches zero as k → 0, and it is the dispersion relation of
this mode that we have required to reproduce the dispersion
relation of the diffusion equation as accurately as possible. All
other modes decay much faster and thus do not matter in this
limit and, as a consequence, how the particles are distributed
between different velocity components should not matter at
long times. However, it certainly matters at short times. The
question of choosing the initial conditions of the LB algorithms
in an optimal way is a complex one, both for fluid dynamics
[39] and for diffusion problems [40]. Nevertheless, one can
ask: Are there any initial conditions for which the first four
moments of the particle distribution are correct at all times?
It is easy to see that the answer, at least in 1D, is no, unless
ω = 1. Indeed, if all particles start at site 0, then, no matter
how these particles are distributed between the three possible
velocities, after one step they can end up only on sites −1, 0,
and 1, and therefore at this time all moments are necessarily
the same (apart from the factors am), so the ratio of the fourth
and second moments is a2. This ratio is only achieved in the
continuum problem at t = a2/6D [see Eqs. (36) and (37)],
and this fixes the time step of the algorithm to that value.
For fifth-order-accurate algorithms, based on Eqs. (239) and
(237), the time step is only equal to a2/6D when ω satisfies
the following equation:

(2 − ω)(ω2 − 12ω + 12)

ω(ω2 − 8ω + 8)
= 1. (249)

Besides ω = 1, the only other solutions are ω = 5 ± √
13,

which are outside the allowed range 0 < ω < 6 − 2
√

6.
Of course, the above analysis deals with the 1D case and

the shortest-ranged algorithms (D1Q3). It does not rule out the
possibility that in higher dimensions seventh-order-accurate
algorithms exist or the usable range of ω would turn out
to be wider. However, constructing even fifth-order-accurate

algorithms in higher dimensions is most likely very tedious
(unlike LMC and standard LB using approximations to the
Maxwell distribution as f̃ , there is no reason to expect that
the optimal f̃ can be obtained simply as the direct product of
the optimal 1D values). The same applies to algorithms with
longer-ranged moves [41–43]. Also, we have only considered
free space diffusion; however, we suspect that, if anything, the
presence of boundaries and obstacles can make the case for
LMC stronger: For instance, while in free space it is possible
to use a larger mesh step in LB than in LMC while keeping the
same precision, this may not be possible with boundaries since
the coarser mesh may not reproduce them as accurately. All in
all, while we cannot rule out that there may be cases where use
of LB for simulating diffusion is justified, LMC algorithms
certainly have many advantages and, given this, the question
of optimizing their accuracy arises, which is precisely the
question this paper addresses.

VIII. DISCUSSION

In this paper, we have obtained the sets of parameters (the
transition probabilities and the time step) of LMC algorithms
for particle diffusion problems that optimize their accuracy.
The problem was solved by demanding that the solutions of
the master equation of the LMC algorithm approximate those
of the continuum diffusion equation as accurately as possible.
The matching between the continuum equations and the
discrete master equations was done using the general solution
of the continuum equation written as a Fourier expansion in
space where each component decays exponentially in time.
The general solution of the master equation written in a similar
form can also be used, in which case the goal is to make
the decay rates of the Fourier modes as close as possible in
the continuum and discrete equations. However, having the
solution of the master equation is not necessary: For example,
we did not use it in Secs. V and VI, where we considered
the treatment of boundaries. In that case, the solution of
the continuum equation was simply inserted into the master
equation and the parameters of the latter adjusted to satisfy
the resulting equality as accurately as possible. Having the
solution of the master equation, while not necessary, allowed
the illustrative comparison between the dispersion relations
presented in Fig. 2.

Since LMC simulations are generally carried out in order to
study long length and long time scale diffusion processes, all
expressions are expanded in the wave number k and terms of
the lowest order are matched. Matching the dispersion relations
up to O(k2) (producing third-order-accurate algorithms, since
third-order terms are automatically zero, as are all other
odd-order terms) guarantees that the average velocity (equal
to zero in the unbiased case) and the diffusion constant are
reproduced correctly by the algorithm. In other words, both
the mean displacement (the first moment of the distribution
for particles starting at a particular site; again, equal to zero)
and the mean-square displacement (the second moment) are
correct not only in the long-time limit, but, in fact, at all
times. On the other hand, for all higher-order moments, while
the leading term at large times has the correct coefficient,
these higher moments are, in general, incorrect for shorter
times. The algorithms can also suffer from some artifacts,

016709-25

MYKYTA V. CHUBYNSKY AND GARY W. SLATER PHYSICAL REVIEW E 85, 016709 (2012)

as discussed in Sec. II for the 1D case. Going to O(k4)
(fifth-order-accurate algorithms), which is possible with only
first neighbor moves in 1D and when both first neighbor and
second neighbor (diagonal) moves are included in 2D and 3D,
removes the artifacts and makes the fourth moment, as well as
the subleading terms of all higher moments, correct, too. We
refer to the resulting algorithms as optimal, in the sense that
they achieve the best accuracy given the chosen set of moves,
although they are not optimal in terms of the simulation speed
if accuracy is not a concern. The latter fact is due, in particular,
to a distinctive feature of the optimal algorithms: a nonzero
probability for a particle not to move during a particular time
step, or a waiting time.

We have also shown for the 1D case that for a particle
starting at a particular point between two boundaries, the
optimal algorithm reproduces correctly the first two moments
of the distribution of the times of first passage to the boundaries
if both the initial point and the boundaries coincide with lattice
sites. In fact, the optimal algorithm can also be obtained based
on the requirement that the first two moments of the FPT are
reproduced correctly or on the requirement that the first four
moments of the particle distribution are correct, instead of
matching the dispersion relations. We have also studied the
full distributions of the FPTs comparing them to the exact
continuum result. We have shown that the optimal algorithm
converges much faster to the exact result than the ordinary
algorithm without a waiting time as the mesh step decreases,
so if a particular accuracy is required, a much coarser mesh
can be used with the optimal algorithm, which provides a
speedup that in the end more than compensates for the loss
of computational speed due to the waiting time. In higher
dimensions, the moments of the FPT distribution are no longer
reproduced perfectly (and, in fact, they depend on how exactly
the boundary in the continuum problem is chosen), but, at
least in the case of a square boundary going through rows
and columns of sites in 2D, both the moments and the full
distributions are much more accurate and converge much faster
as the mesh is made finer than for the ordinary algorithm.

In Sec. VII, we discussed the relation between optimal LMC
algorithms and LB algorithms for diffusion. It turns out that
the optimal LMC algorithms are equivalent to a particular class
of LB algorithms, the LBGK algorithms with the relaxation
parameter ω = 1. A natural question is whether replacing
LMC with LB and varying ω can make further improvements
possible within the LMC framework without extending the
range of the moves. We analyzed this issue in 1D and found
that, first of all, varying ω cannot eliminate the sixth-order term
in the dispersion relation. While this term can be decreased,
thus allowing one to increase the mesh step needed to achieve
the same accuracy, this does not compensate the significant
increase in the CPU time per site in the LB algorithm due to
having to keep track of three kinds of particles with different
velocities instead of one. Moreover, we have also shown
that the LBGK algorithm in 1D cannot reproduce both the
second and the fourth moments of the particle distribution
simultaneously at all times, unlike the optimal LMC. On the
other hand, an advantage of LB is that varying ω allows one
to vary the mesh step and the time step independently within
some range, although we also showed that the usable range of
ω is relatively narrow.

We have also considered the treatment of impenetrable
reflecting boundaries (Sec. V). First, for the algorithms to
remain fifth-order-accurate, the sites nearest to the boundaries
need to be located at distance d = a/2 from them, where
a is the mesh step. Second, often in MC algorithms, if an
attempted move is forbidden, for example, because a particle
would overlap with an obstacle, it is simply rejected. This is
a correct choice in algorithms that only intend to reproduce
equilibrium properties, as it preserves detailed balance, which
is all that matters in that case. However, as we have shown,
this is not the best choice in a dynamical algorithm in a two-
or higher-dimensional space. In that case, the best accuracy is
achieved by replacing forbidden moves across the boundary
with their projections along that boundary. In LB literature,
this is referred to as specular reflection [44]. This result
makes physical sense: If, for example, in 2D all boundaries
are orthogonal to the x direction and are infinitely long in
the y direction, the diffusion in the y direction should not be
affected, which is only possible if the simultaneous moves in
the x and y directions (present in the optimal LMC algorithm)
are projected along the y direction.

Next, we have considered the case of absorbing boundaries
(Sec. VI). It is interesting to note that for each of the optimal
free space algorithms, there are two ways of treating the
boundaries parallel to one of the lattice axes while keeping the
same order of accuracy of the algorithm. The more obvious
one is to destroy the particle whenever it moves into the
wall, but leave all other moves unmodified. This is the best
approximation for a wall that is at the distance equal to the
mesh step from the last row of sites next to the boundary (d = a

using the notation of the paper). However, there is also a second
variant, with rules that do not have a simple interpretation,
which corresponds to the last row of sites being at the distance
from the boundary of half the mesh step (d = a/2). This
second variant (as well as intermediate, nonoptimal choices)
is only possible in algorithms with a waiting time (even if
optimality is not required).

Note that we have only treated the case of infinite, flat
boundaries. In real situations of interest, one deals with finite
and/or curved boundaries (finite obstacles, tortuous pores,
etc.). In the simplest case, the walls consist of flat pieces,
each of which is orthogonal to one of the axes, that are
joined at corners, like those in Fig. 11. An example would
be a rectangular obstacle in 2D with the sides along the axes.
Sites adjacent to the walls that are far from the corners can be
treated as boundary sites next to infinite walls (this assumes
that it is possible to choose the lattice so that the distance d

from the boundary sites to the boundary is as required by the
algorithm everywhere, or else the accuracy will be sacrificed).
However, we still need a way to treat sites next to the corners.
We note, though, that we have assumed throughout that the
particle concentration varies smoothly on the length scale of
the mesh step a, and this implies that any features of the
obstacles and the walls are likewise smooth on this length
scale, so corners should be rare. It does not matter much
then how exactly these rare situations are treated; we will
consider these complications in a separate paper in the future.
However, we can offer some intuitive guidance in some of
these situations. For example, it is intuitively clear how to
deal with absorbing boundaries in the algorithms with d = a

016709-26

OPTIMIZING THE ACCURACY OF LATTICE MONTE . . . PHYSICAL REVIEW E 85, 016709 (2012)

a

a

a/2 a/2

a/2 a/2

(a) (b)

(c) (d)

FIG. 11. 2D examples of different configurations of walls form-
ing corners and different variants of meshes for optimal LMC
algorithms. Forbidden areas are shaded; real sites are black circles and
fictitious sites introduced to facilitate the analysis of the algorithms
are white circles. Cases (a), (b), and (c) can be analyzed, as described
in the text, but in the case (d) there are complications that physically
correspond to the uncertainty about the probabilities of the diagonal
transitions “across the corner” indicated by the arrow.

[Figs. 11(a) and 11(b)]: In these algorithms, all moves into the
wall lead to absorption and all other moves are unchanged,
which generalizes straightforwardly to corners. It is also clear
how to handle the situation with d = a/2 (either absorbing
or reflecting walls), when, for example, in 2D the particle
is allowed to move in one quadrant and the other three are
blocked [Fig. 11(c)]. In this case, fictitious sites are introduced
inside the forbidden area symmetrically with respect to the
boundary to the row of sites nearest to it [Fig. 11(c)], and
the mean particle numbers at these sites are assumed equal to
those at sites nearest to them across the boundary (with the
minus sign in the case of absorption). The generalization to
the case of a corner is straightforward, by assuming that the
fictitious site closest to the corner takes on the value of the real
site closest to the corner (with the plus sign even in the case of
absorption, to ensure antisymmetry with respect to both axes
in that case). However, in the otherwise analogous case when
three quadrants are free and one is blocked [Fig. 11(d)], there
is some ambiguity, as it is not clear which of the three real sites
closest to the corner should give its value to the fictitious site
nearest the corner. This translates into an uncertainty about
the probabilities of the diagonal moves “passing through the
corner” shown in the figure. Of course, in some cases it may
be necessary or convenient to allow values of d not equal to
either a or a/2, in which case further generalization is needed.

Curved boundaries or those not orthogonal to the axes
are even more complicated. Approximating such boundaries
by piecewise flat boundaries with each piece orthogonal
to one of the axes, in such a way that those sites inside

the original boundary are still inside and those outside are
still outside, would in effect produce “jagged” boundaries
with many corners adjacent to each other that need special
treatment. A more accurate approach would be approximating
such boundaries with flat pieces oriented arbitrarily. However,
this also requires a separate consideration. The rules we have
derived cannot be extended straightforwardly to such “tilted”
boundaries, even when they are perfectly flat: for instance,
projecting forbidden moves along the boundary is impossible,
as such a projection would not coincide with any of the
allowed moves. Solving these problems will be a subject
of future work. Considering finite-size hard particles with
arbitrary shapes is a more complicated problem since particle
rotation needs to be taken into account (spherical particles
are an exception). An even more complicated problem is
that of several diffusing hard-core particles that can collide
with each other. Such particles would move independently
between collisions (according to the rules derived in this paper,
if rotation can be ignored), but rules for treating collisions
still need to be worked out. It is worth noting that, given
the close relationship between the LMC and LB algorithms,
extensive literature on boundary conditions for LB algorithms
(e.g., [44–49]) can perhaps be useful.

The preceding discussion may sound as if there is still
some way to go before the algorithms described here become
practically useful. This is not entirely true, however. As
mentioned in Sec. II A, our 1D optimal algorithm is the
zero-field limit of a previously derived algorithm for biased
diffusion [19]. We have recently applied the latter algorithm
to a 1D model of polymer translocation through a nanopore
[50] and showed that this algorithm gives very different
widths of the translocation time distributions compared to the
ordinary algorithm without waiting times, thus demonstrating
the importance of introducing waiting times [51]. It is true,
though, that the utility of the new algorithms will be further
enhanced when the issues described above are taken care
of, as well as when the approach is extended to biased
diffusion in 2D and 3D as well. In general, we expect the
new algorithms to be useful in those problems where the
transient behavior of the system at short times is important.
This includes various first-passage problems (including the
polymer translocation problem mentioned above), as well as
adsorption, aggregation [1], anomalous diffusion [17], and
reaction-diffusion [3] problems. One example of a problem
dealing with transient effects where our approach may be
useful is studying drug release profiles from disordered porous
matrices [14,15]. On the other hand, if only the long-time
behavior is of interest and short-time transient dynamics does
not affect it, then the ordinary algorithms with jumps at every
time step may be just as good and may offer computational
time savings compared to the optimal algorithms. Tests of
the algorithms developed in this paper and their extensions in
various situations of practical interest, as well as comparisons
to other algorithms, will be a subject of future work.

In those cases where discrete-time LMC can be used, there
is also an option to use MC algorithms with continuous space
(off-lattice MC), continuous time (often referred to as kinetic
MC [2,21–23]), or both. Of course, we do not claim that LMC
is always the best option; rather, the goal of this paper is to
suggest that in those cases where the choice in favor of LMC

016709-27

MYKYTA V. CHUBYNSKY AND GARY W. SLATER PHYSICAL REVIEW E 85, 016709 (2012)

is made, one could improve the accuracy of the simulations
by using the LMC modifications described here. We do note,
however, that since the choice between LMC and continuous
MC is often driven by the tradeoff between higher speed of
the former and higher accuracy of the latter, improving the
accuracy of LMC may actually make LMC preferable in some
situations where this would not be the case otherwise.

ACKNOWLEDGMENTS

We are grateful to the anonymous referee for pointing out
the existence of LB algorithms for simulating diffusion and the
connection between these algorithms and our optimal LMC al-
gorithms (see Sec. VII). This research was supported by grants
from NSERC and the NIH (Grant No. 2 R01 HG001970-07
through Stanford University).

APPENDIX: A DERIVATION OF THE LONG-TIME
DEPENDENCE OF THE FIRST-PASSAGE RATE

FOR THE LMC ALGORITHMS

The 1D first-passage problem for LMC algorithms, as
formulated in Sec. II C, can be solved by considering the
master equations (17) for sites from −N + 1 to N − 1 and
fixing

n±N = 0. (A1)

The solution of this system will give the mean numbers of
particles at every site that have not yet reached the walls at sites
±N . This solution can be obtained from the general solution
for the infinite lattice Eq. (18) by picking those modes that
satisfy the boundary conditions Eq. (A1), which gives km =
π (2m + 1)/2Na with m = 0, . . . ,N − 1 and C(−k) = C(k);
thus, the solution is

nj (t) =
N−1∑
m=0

Cm cos[π (2m + 1)j/2N]

× exp{−αd [k = π (2m + 1)/2Na]t}. (A2)

The mean number of particles reaching the walls at a time
step occurring at time t , ν(t), is proportional to the number of
particles at adjacent sites at the previous time step, that is,

ν(t) = pj−1→j nN−1(t − τ) + pj+1→j n−N+1(t − τ). (A3)

This number per unit time (i.e., the rate) is

r(t) = ν(t)

τ
= 2D

a2
nN−1(t − τ), (A4)

where we have used Eq. (11) and the fact that, accord-
ing to Eq. (A2) or simply from symmetry considerations,
n−N+1 = nN−1.

For the optimal algorithm, αd (k) is a monotonically
increasing function (line τ = τmax/3 of Fig. 2); thus, in the
large t limit, only the first term in the sum survives, which
gives

nj (t) 	 C0 cos(πj/2N) exp[−αd (k = π/2Na)t]. (A5)

Then from Eq. (A4),

r(t) 	 2DC0

a2
sin(π/2N) exp[αd (k = π/2Na)τ]

× exp[−αd (k = π/2Na)t]. (A6)

Therefore, the decay rate is

βopt =αd (k=π/2Na)=−6DN2

b2
ln[2/3+ (1/3) cos(π/2N)],

(A7)

where we have used a = b/N and Eq. (19) with p and τ given
by Eqs. (26)–(28). The prefactor is

γopt = 2DC0

a2
sin(π/2N) exp[αd (k = π/2Na)τ]. (A8)

To find C0, we need to expand the initial condition, nj (0) =
δj,0, in the Fourier series,

δj,0 =
N−1∑
m=0

Cm cos[π (2m + 1)j/2N]. (A9)

Since
N∑

j=−N

cos[π (2m1 + 1)j/2N]

× cos[π (2m2 + 1)j/2N] = Nδm1,m2 , (A10)

we get

Cm = 1

N

N∑
j=−N

δj,0 cos[π (2m + 1)j/2N] = 1

N
(A11)

for all m, including 0, and therefore

γopt = 2D

Na2
sin(π/2N) exp[αd (k = π/2Na)τ]

= 2DN sin(π/2N)

b2[2/3 + (1/3) cos(π/2N)]
. (A12)

For the ordinary algorithm, the situation is slightly more
complicated, because Re[αd (k)] is no longer monotonic; as
a result, Re[αd (kN−1)] = Re[αd (k0)] and two terms of equal
magnitude survive at large time:

nj (t) 	 C0 cos

(
πj

2N

)
exp

[
− αd

(
k = π

2Na

)
t

]

+CN−1 cos

(
π (2N − 1)j

2N

)

× exp

[
−αd

(
k = π (2N − 1)

2Na

)
t

]
. (A13)

The first-passage rate is

r(t) 	 2D

Na2
sin

(
π

2N

){
exp

[
− αd

(
k = π

2Na

)
(t − τ)

]

+ (−1)N+1 exp

[
−αd

(
k = π (2N − 1)

2Na

)
(t − τ)

]}
,

(A14)

where we have used Eq. (A11) for Cm (that is still valid for
the ordinary algorithm). According to Eq. (19) with p and τ

016709-28

OPTIMIZING THE ACCURACY OF LATTICE MONTE . . . PHYSICAL REVIEW E 85, 016709 (2012)

given by Eqs. (1)–(3),

ταd

(
k = π

2Na

)
= − ln cos

(
π

2N

)
, (A15)

ταd

(
k = π (2N − 1)

2Na

)
= − ln

[
− cos

(
π

2N

)]

= ταd

(
k = π

2Na

)
− iπ, (A16)

so Eq. (A14) becomes

r(t) 	 2D

Na2
sin

(
π

2N

)
exp

[
− αd

(
k = π

2Na

)
(t − τ)

]
× [1 + (−1)N+M], (A17)

where M is the number of the time step (t = Mτ). The
expression in the rightmost square brackets alternates be-
tween 0 and 2, which represents a familiar feature of the
ordinary algorithm: No particles reach the boundaries at
even steps for odd N and at odd steps for even N . Since
we have decided to ignore these oscillations, we simply
replace this expression with its average value of unity.
Then we immediately obtain for the decay rate and the
prefactor

βord = αd

(
k = π

2Na

)
= −2DN2

b2
ln cos

(
π

2N

)
, (A18)

γord = 2DN

b2
tan

(
π

2N

)
. (A19)

[1] M. Q. López-Salvans, J. Casademunt, G. Iori, and F. Sagués,
Physica D 164, 127 (2002).

[2] M. H. Flamm, S. L. Diamond, and T. Sinno, J. Chem. Phys. 130,
094904 (2009).

[3] D. Bernstein, Phys. Rev. E 71, 041103 (2005).
[4] M. J. Saxton, Biophys. J. 70, 1250 (1996).
[5] Y. Aghababaie, G. I. Menon, and M. Plischke, Phys. Rev. E 59,

2578 (1999).
[6] C. Keller, F. Marquardt, and C. Bruder, Phys. Rev. E 65, 041927

(2002).
[7] M. Saadatfar and M. Sahimi, Phys. Rev. E 65, 036116 (2002).
[8] G. W. Slater and H. L. Guo, Electrophoresis 17, 977 (1996).
[9] J.-F. Mercier and G. W. Slater, J. Chem. Phys. 113, 9109 (2000).

[10] J.-F. Mercier and G. W. Slater, Macromolecules 34, 3437
(2001).

[11] J.-F. Mercier, F. Tessier, and G. W. Slater, Electrophoresis 22,
2631 (2001).

[12] M. G. Gauthier and G. W. Slater, J. Chem. Phys. 117, 6745
(2002).

[13] M. G. Gauthier and G. W. Slater, Electrophoresis 24, 441 (2003).
[14] S. Casault, M. Kenward, and G. W. Slater, Int. J. Pharm. 339, 91

(2007).
[15] K. Kosmidis, P. Argyrakis, and P. Macheras, Pharm. Res. 20,

988 (2003).
[16] F. A. Torres, M. G. Gauthier, and G. W. Slater, Phys. Rev. E 78,

065701(R) (2008).
[17] C. C. Fritsch and J. Langowski, J. Chem. Phys. 133, 025101

(2010).
[18] M. E. J. Newman and G. T. Barkema, Monte Carlo Methods in

Statistical Physics, Chap. 3 (Clarendon, Oxford, 1999).
[19] M. G. Gauthier and G. W. Slater, Phys. Rev. E 70, 015103(R)

(2004).
[20] J.-F. Mercier, G. W. Slater, and H. L. Guo, J. Chem. Phys. 110,

6050 (1999).
[21] C. C. Battaile and D. J. Srolovitz, Annu. Rev. Mater. Res. 32,

297 (2002).
[22] A. F. Voter, in Radiation Effects in Solids, NATO Science Series

II: Mathematics, Physics and Chemistry, Vol. 235 (Springer,
Dordrecht, The Netherlands, 2007), p. 1.

[23] A. Chatterjee and D. G. Vlachos, J. Comput.-Aided Mater. Des.
14, 253 (2007).

[24] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, Numerical Recipes in Fortran 77: The Art of Scientific
Computing, Chap. 19 (Cambridge University Press, Cambridge,
1992).

[25] S. Redner, A Guide to First-Passage Processes (Cambridge
University Press, Cambridge, 2001).

[26] E. W. Montroll and G. H. Weiss, J. Math. Phys. 6, 167
(1965).

[27] A. Nagar and P. Pradhan, Physica A 320, 141 (2003).
[28] Also, as noted above, some additional moments of the

particle distribution are correct for the direct product
algorithm.

[29] C. K. Aidun and J. R. Clausen, Annu. Rev. Fluid Mech. 42, 439
(2010).

[30] B. Dünweg and A. J. C. Ladd, Advanced Computer Simulation
Approaches for Soft Matter Sciences III, Advances in Polymer
Science, Vol. 221 (Springer-Verlag, Berlin, Heidelberg, 2009),
p. 89.

[31] P. Bhatnagar, E. P. Gross, and M. K. Krook, Phys. Rev. 94, 511
(1954).

[32] X. He and L.-S. Luo, Phys. Rev. E 56, 6811 (1997).
[33] S. Ponce Dawson, S. Chen, and G. D. Doolen, J. Chem. Phys.

98, 1514 (1993).
[34] D. Wolf-Gladrow, J. Stat. Phys. 79, 1023 (1995).
[35] R. G. M. van der Sman and M. H. Ernst, J. Comput. Phys. 160,

766 (2000).
[36] X. Zhang, A. G. Bengough, L. K. Deeks, J. W. Crawford, and

I. M. Young, Water Resour. Res. 38, 1167 (2002).
[37] I. Ginzburg, Adv. Water Resour. 28, 1171 (2005).
[38] S. Suga, J. Stat. Phys. 140, 494 (2010).
[39] R. Mei, L.-S. Luo, P. Lallemand, and D. d’Humières, Comput.

Fluids 35, 855 (2006).
[40] P. van Leemput, W. Vanroose, and D. Roose, Multiscale Model.

Simul. 6, 1234 (2008).
[41] P. C. Philippi, L. A. Hegele Jr., L. O. E. dos Santos, and

R. Surmas, Phys. Rev. E 73, 056702 (2006).
[42] S. S. Chikatamarla and I. V. Karlin, Phys. Rev. E 79, 046701

(2009).
[43] X. Shan, Phys. Rev. E 81, 036702 (2010).
[44] R. Cornubert, D. d’Humières, and D. Levermore, Physica D 47,

241 (1991).

016709-29

http://dx.doi.org/10.1016/S0167-2789(01)00387-6
http://dx.doi.org/10.1063/1.3078518
http://dx.doi.org/10.1063/1.3078518
http://dx.doi.org/10.1103/PhysRevE.71.041103
http://dx.doi.org/10.1016/S0006-3495(96)79682-0
http://dx.doi.org/10.1103/PhysRevE.59.2578
http://dx.doi.org/10.1103/PhysRevE.59.2578
http://dx.doi.org/10.1103/PhysRevE.65.041927
http://dx.doi.org/10.1103/PhysRevE.65.041927
http://dx.doi.org/10.1103/PhysRevE.65.036116
http://dx.doi.org/10.1002/elps.1150170604
http://dx.doi.org/10.1063/1.1319655
http://dx.doi.org/10.1021/ma001544o
http://dx.doi.org/10.1021/ma001544o
http://dx.doi.org/10.1002/1522-2683(200108)22:13<2631::AID-ELPS2631>3.0.CO;2-3
http://dx.doi.org/10.1002/1522-2683(200108)22:13<2631::AID-ELPS2631>3.0.CO;2-3
http://dx.doi.org/10.1063/1.1505857
http://dx.doi.org/10.1063/1.1505857
http://dx.doi.org/10.1002/elps.200390053
http://dx.doi.org/10.1016/j.ijpharm.2007.02.029
http://dx.doi.org/10.1016/j.ijpharm.2007.02.029
http://dx.doi.org/10.1023/A:1024497920145
http://dx.doi.org/10.1023/A:1024497920145
http://dx.doi.org/10.1103/PhysRevE.78.065701
http://dx.doi.org/10.1103/PhysRevE.78.065701
http://dx.doi.org/10.1063/1.3435345
http://dx.doi.org/10.1063/1.3435345
http://dx.doi.org/10.1103/PhysRevE.70.015103
http://dx.doi.org/10.1103/PhysRevE.70.015103
http://dx.doi.org/10.1063/1.478508
http://dx.doi.org/10.1063/1.478508
http://dx.doi.org/10.1146/annurev.matsci.32.012102.110247
http://dx.doi.org/10.1146/annurev.matsci.32.012102.110247
http://dx.doi.org/10.1007/s10820-006-9042-9
http://dx.doi.org/10.1007/s10820-006-9042-9
http://dx.doi.org/10.1063/1.1704269
http://dx.doi.org/10.1063/1.1704269
http://dx.doi.org/10.1016/S0378-4371(02)01651-5
http://dx.doi.org/10.1146/annurev-fluid-121108-145519
http://dx.doi.org/10.1146/annurev-fluid-121108-145519
http://dx.doi.org/10.1103/PhysRev.94.511
http://dx.doi.org/10.1103/PhysRev.94.511
http://dx.doi.org/10.1103/PhysRevE.56.6811
http://dx.doi.org/10.1063/1.464316
http://dx.doi.org/10.1063/1.464316
http://dx.doi.org/10.1007/BF02181215
http://dx.doi.org/10.1006/jcph.2000.6491
http://dx.doi.org/10.1006/jcph.2000.6491
http://dx.doi.org/10.1029/2001WR000982
http://dx.doi.org/10.1016/j.advwatres.2005.03.004
http://dx.doi.org/10.1007/s10955-010-0004-y
http://dx.doi.org/10.1016/j.compfluid.2005.08.008
http://dx.doi.org/10.1016/j.compfluid.2005.08.008
http://dx.doi.org/10.1137/07069403X
http://dx.doi.org/10.1137/07069403X
http://dx.doi.org/10.1103/PhysRevE.73.056702
http://dx.doi.org/10.1103/PhysRevE.79.046701
http://dx.doi.org/10.1103/PhysRevE.79.046701
http://dx.doi.org/10.1103/PhysRevE.81.036702
http://dx.doi.org/10.1016/0167-2789(91)90295-K
http://dx.doi.org/10.1016/0167-2789(91)90295-K

MYKYTA V. CHUBYNSKY AND GARY W. SLATER PHYSICAL REVIEW E 85, 016709 (2012)

[45] Z. Guo, C. Zheng, and B. Shi, Phys. Fluids 14, 2007 (2002).
[46] X. Zhang, J. W. Crawford, A. G. Bengough, and I. M. Young,

Adv. Water Resour. 25, 601 (2002).
[47] I. Ginzburg, Adv. Water Resour. 28, 1196 (2005).
[48] C. Pan, L.-S. Luo, and C. T. Miller, Comput. Fluids 35, 898

(2006).

[49] J. Latt, B. Chopard, O. Malaspinas, M. Deville, and A. Michler,
Phys. Rev. E 77, 056703 (2008).

[50] M. G. Gauthier and G. W. Slater, J. Chem. Phys. 128, 065103
(2008).

[51] H. W. de Haan, M. G. Gauthier, M. V. Chubynsky, and G. W.
Slater, Comput. Phys. Commun. 182, 29 (2011).

016709-30

http://dx.doi.org/10.1063/1.1471914
http://dx.doi.org/10.1016/S0309-1708(02)00027-1
http://dx.doi.org/10.1016/j.advwatres.2005.03.009
http://dx.doi.org/10.1016/j.compfluid.2005.03.008
http://dx.doi.org/10.1016/j.compfluid.2005.03.008
http://dx.doi.org/10.1103/PhysRevE.77.056703
http://dx.doi.org/10.1063/1.2826339
http://dx.doi.org/10.1063/1.2826339
http://dx.doi.org/10.1016/j.cpc.2010.07.045

