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The measurement of the escape time of a Josephson junction might be used to detect the presence of a
sinusoidal signal embedded in noise when use of standard signal processing tools can be prohibitive due to the
extreme weakness of the source or to the huge amount of data. In this paper we show that the prescriptions
for the experimental setup and some physical behaviors depend on the detection strategy. More specifically, by
exploitation of the sample mean of escape times to perform detection, two resonant regions are identified. At
low frequencies there is a stochastic resonance or activation phenomenon, while near the plasma frequency
a geometric resonance appears. Furthermore, detection performance in the geometric resonance region is
maximized at the prescribed value of the bias current. The naive sample mean detector is outperformed, in
terms of error probability, by the optimal likelihood ratio test. The latter exhibits only geometric resonance,
showing monotonically increasing performance as the bias current approaches the junction critical current. In this
regime the escape times are vanishingly small and therefore performance is essentially limited by measurement
electronics. The behavior of the likelihood ratio and sample mean detector for different values of incoming signal
to noise ratio is discussed, and a relationship with the error probability is found. Detectors based on the likelihood
ratio test could be employed also to estimate unknown parameters in the applied input signal. As a prototypical
example we study the phase estimation problem of a sinusoidal current, which is accomplished by using the
filter bank approach. Finally we show that for a physically feasible detector the performances are found to be
very close to the Cramer-Rao theoretical bound. Applications might be found, for example, in some astronomical
detection problems (where the all-sky gravitational and/or radio wave search for pulsars requires the analysis
of nearly sinusoidal long-lived waveforms at very low signal-to-noise ratio) or to analyze weak signals in the
subterahertz range (where the traditional electronics counterpart is difficult to implement).
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I. INTRODUCTION

Threshold detection [1,2] is based on the possibility of
ascertaining the presence of a signal via the transition from one
metastable state to another. Thus, the essential ingredients are
(i) a two-state detector, (ii) a switch from one state to the other
induced by the signal, and (iii) the possibility of detecting the
transitions when the detector observable crosses a threshold.
Under such conditions the original signal is transformed into a
series of time intervals, i.e., the residence times in each state.

From the physical point of view, the joint action of the
applied external signal and the fluctuations induces an escape
from a metastable state of the detector. The distribution of
the escapes acquires, under very general assumptions, the
shape of an activation law like the Arrhenius law with an
effective energy barrier that depends upon the fluctuation
spectrum and the signal (or perturbation) shape [3–5]. The
general idea beyond threshold detectors is that, in view of the
exponential character of the activation law, residence times are
very sensitive to small signals. Analysis of escape time series
entails a loss of information with respect to the direct signal
observation. Conversely, it may be useful to reduce the amount
of data to be analyzed. In this perspective, threshold detection
has been examined through the lens of information theory [6]
and/or signal processing [7,8].

In this paper we propose to characterize underdamped
Josephson junctions (JJs) as detectors based on the statistics of
the escape times. It is well known that JJs are superconducting

elements that can operate at extremely low temperatures (as
low as refrigeration allows) and hence they are affected by a
low intrinsic noise. Let us remark that to take advantage of the
speed and low noise features of JJs it is necessary to analyze
escape times, inasmuch as the dynamics of the Josephson
phase is not directly observable. Instead, the escape from the
metastable static solution causes a voltage step, associated with
the average phase derivative, that is actually detectable.

Starting from the pioneering papers of Refs. [9,10], a lot
of experimental work has been performed on the role of noise
in ac-driven JJs to detect the phase of the applied signal [11],
to study quantum computation [12] or ratchet effects [13].
Another remarkable topic is related to employment of a JJ
as a threshold detector to characterize (up to higher-order
moments) weak fluctuations close to the quantum limit [14–17]
(albeit there is also some controversial discussion about the
role of quantum noise in JJs [18]). In the ac-driven quantum
regime [19] the use of JJs is particularly appealing for
signal detection, since ways have been devised to minimize
the environmental disturbances to the unavoidable quantum
level [20].

JJ-based detection schemes are very interesting for the
applications when the source is so weak that an interme-
diate amplification stage can introduce too much undesir-
able noise. Indeed, superconducting quantum interference
devices (SQUIDs) [21] are sensitive to magnetic flux that
is a fraction of the quantum flux, �0 ∼ 10−15 Wb. The
operating frequency range (up to the terahertz time scale)
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is another appealing feature of JJs. In this connection it
can be argued that interesting applications are in the field
of terahertz sensing and in analog processing [22]. Another
remarkable potential application is related to the search for
gravitational wave sources where standard signal processing
techniques (i.e., matched filters), essentially based on the
intensive use of fast Fourier transform (FFT) algorithms,
are computationally prohibitive because applied to a large
amount of data characterized by a very small signal-to-noise
ratio (SNR) [23]. We remark that these examples are merely
suggestive because our analysis is a proof of principle, not a
careful examination of the applications and of the technical
problems.

It should also be noted that a lot of theoretical problems
concerning the proposed dynamical system are currently
under study. Indeed, a resonant behavior, which can further
improve detection, is expected to occur when the time scale
of the external signal matches the fluctuation-induced escape
time [24]. Thus JJs are also a playground for topics of
active research such as stochastic resonance [25] or stochastic
activation [26–28] that could arise in such a scenario.

The purpose of this paper is to provide a characterization of
the JJ as a detector of a periodic signal. The aim is to show that
nonlinear analog processing, for example to apply the signal
to a JJ, might represent a viable alternative. In fact the signal
could be applied and processed at very high frequency (for
JJs are very fast electronic devices) and with very little extra
noise from the nonlinear device (for JJs are superconducting
elements that work also at very low temperatures).

It has been proven that a simple statistical analysis of
JJ output, such as the sample mean (SM) of transition
times, could detect the presence of a sinusoid embedded in
thermal noise [29]. A more effective analysis of the transition
times can be performed by means of appropriate methods of
statistical signal processing [30,31], such as the likelihood
ratio test (LRT). As expected, LRT performances depend
upon a suitable selection of the physical JJ parameters. The
lack of analytical results for the escape time distribution
in the so-called underdamped case compels us to use ex-
tensive numerical simulations in order to search for the JJ
optimal working point in a feasible range of the relevant
parameters.

The paper is organized as follows: In Sec. II we briefly
describe the physical model of the periodically driven JJ
that determines the escape times. In Sec. III we describe the
statistical tools used to analyze the escape times, while some
technical details are deferred to the Appendixes. In Sec. IV
we present numerical results that clarify the effectiveness
of the statistical analysis, for both signal detection and
parameter estimation, namely, the sinusoidal phase. Moreover
we perform the JJ physical parameter optimization in order to
further improve the detection of a perfectly known sinusoidal
signal. Section V is devoted to the conclusions.

II. ESCAPE TIME DISTRIBUTION: PHYSICAL MODEL
AND MOTIVATION

A JJ biased with a sinusoidal signal of amplitude S0 and
corrupted by additive noise ξ (t) is modeled by the Langevin

equation [32]

Ch̄

2e

d2ϕ

dt2
+ h̄

R2e

dϕ

dt
+ Ic sin(ϕ)

= IB + S0 sin(�t + ϕ0) +
√

Dξ (t) +
√

kbT /Rn(t). (1)

Here C and R are the capacitance and the resistance of the JJ,
respectively (we consider the JJ in the underdamped regime,
because the capacitance is not negligible). Furthermore, Ic

denotes the Josephson critical current, while IB is the bias
current, kb denotes the Boltzmann constant, and T is the
JJ temperature. The terms ξ (t) and n(t) are white Gaussian
noise stochastic variables, whose correlators read 〈n(t)n(t ′)〉 =
2δ(t − t ′) and 〈ξ (t)ξ (t ′)〉 = 2δ(t − t ′).

In Eq. (1) thermal fluctuations
√

kbT /R can be neglected
with respect to the signal noise D if T � DR/kb. In fact
JJs can be cooled down to a temperature T much below the
signal noise temperature; thus in the rest of the paper we
will assume that the stochastic component is dominated by
the signal fluctuations of intensity D. The condition allowing
neglect of thermal fluctuations is favored when the junction
resistance is high, i.e., when dissipation is low, for Eq. (1)
is based on a parallel lumped circuit model (see the inset of
Fig. 1). In Sec. IV B we will show that low dissipation also
favors detection, thus reinforcing the advantages of high R.

Introducing the dimensionless time τ = ωj t , normalized
with respect to the characteristic frequency (called the Joseph-
son frequency) ωj = [2eIc/(h̄C)]1/2, and rearranging the
terms, the equation in the aforementioned approximation reads

d2ϕ

dτ 2
+ ωj

RIc

h̄

2e

dϕ

dτ
+ sin(ϕ)

= IB

Ic

+ S0

Ic

sin

(
�

ωj

τ + ϕ0

)
+ SN

Ic

ξ̃ (τ ). (2)

running
state

Jelement

FIG. 1. Schematic of the escape process. The junction switches
over the energy barrier 	U and gives rise to a voltage signal in the
running state. The inset shows the electric circuit model of Eq. (1).
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In Eq. (2) we have defined SN = √
ωjD as the intensity of the

noise current, while the correlator in these normalized units
reads

〈ξ̃ (τ )ξ̃ (τ ′)〉 = 2δ(τ − τ ′). (3)

With the definitions γ = IB/Ic as the normalized bias current,
α = (ωj/RIc)(h̄/2e) as the normalized dissipation, ε = S0/Ic

as the normalized signal amplitude, and εN = (SN/Ic)2 as the
normalized noise intensity, Eq. (2) reads

d2ϕ

dτ 2
+ α

dϕ

dτ
+ sin(ϕ) = γ + ε sin(ωτ + ϕ0) + √

εN ξ̃ (τ ).

(4)

A washboard potential is associated with Eq. (4) that, for
γ < 1, gives rise to a barrier [33]

	U (γ ) = 2[
√

1 − γ 2 − γ cos−1(γ )]. (5)

The schematic of the physics of the device is depicted in
Fig. 1 as a jump over an activation barrier. When the system
overcomes the energy barrier 	U , it switches from the locked
state to a running state that is associated with a finite voltage
[34]; hence it is possible to measure the escape time [35].
For overdamped JJs the voltage step is very smooth, and it is
difficult to define the escape from the local solution. Therefore
the detection efficiency of overdamped JJs drops down.

The main idea of signal detection is to collect the escape
times to discriminate between two situations: (i) the exit is
caused by the presence of pure noise (no signal is present,
S0 = 0); (ii) the exit is caused by the joint action of noise and
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FIG. 2. Distribution of the escape times with (dashed line) and
without (continuous line) the sinusoidal signal. The main effect of
the signal for this range of the parameters is to change the slope of
the distribution. The inset shows the asymptotic fit with exponential
distributions. The resulting decay rate in the presence of (without) the
signal is 0.069 (0.055). Parameters of the simulations are γ = 0.5,
α = 0.05, and εN = 0.07. Moreover, when the signal is present,
ε = 0.1, ϕ0 = 0, and ω = 0.035.
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FIG. 3. Distributions of the escape times with (dashed line) and
without (continuous line) the sinusoidal signal. The main effect of the
signal for this range of the parameters is to introduce oscillations in
the escape time distribution. The inset shows the asymptotic fit with
exponential distributions. The resulting decay rate in the presence of
(without) the signal is 0.066 (0.055). Parameters of the simulations
are γ = 0.5, α = 0.05, and εN = 0.07. Moreover, when the signal is
present, ε = 0.1, ϕ0 = 0, and ω = 0.8.

a sinusoidal excitation (the signal is present, S0 �= 0). Indeed,
escape time distributions are highly sensitive to the signal
amplitude, as shown since the pioneering experiments [10].
Typical escape time probability density functions (PDFs) are
shown in Figs. 2 and 3 for two different sets of parameters. The
random sequence of escape times is obtained by numerical
integration of the stochastic differential equation (4), accu-
mulating the first-passage time to cross the maximum of the
potential barrier (5), and taking into account the corrections of
Ref. [36].

The solid line denotes the escape time without signal
(S0 = 0) and the dashed line denotes the escape aided by
a sinusoidal forcing (S0 �= 0). A possible signal detection
strategy based on the sample mean of the escape times [29]
measures only the average escape time, which is essentially
the slope shown in the inset of Figs. 2 and 3. On the other hand,
Fig. 3 makes it clear that the two distributions (with and without
the sinusoidal signal) are, for some parameter values, very
different in shape, not just in the mean value. This difference
in shape is exploited in Sec. III, where it is shown that a more
refined analysis can lead to better performances for signal
detection. Moreover, in Fig. 4 the effect of the signal (initial)
phase is shown. The drastic change in the distribution form,
while the slope remains almost constant, again demonstrates
the need of a more refined analysis, to achieve signal
phase estimation by using the escape times, as discussed
in Sec. IV C.

The escape time distribution depends not only upon the
signal, but also on the physical JJ features. The JJ parameters
that can be set in experiments to achieve best detection are the
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FIG. 4. Distributions of the escape times with a signal with two
initial phases, ϕ0 = 0 and ϕ0 = π . The inset shows the asymptotic fit
with exponential distributions; it is evident that the exponential decay
rate is almost the same. Indeed the resulting decay rate for φ0 = 0
(φ0 = π ) is 0.067 (0.068). The other parameters of the simulations
are γ = 0.5, α = 0.05, εN = 0.07, ε = 0.1, and ω = 0.8.

electrical characteristics of the physical JJ (C,R,Ic) and the
external bias current IB . Moreover, if the signal is recorded,
the speed at which the recorded signal S(t) is physically
applied is also a tunable parameter. A blind search in such
a multidimensional parameter space would be numerically
prohibitive and of little physical significance; we therefore
discuss in Sec. IV the physical meaning of the parameters
to restrict the plausible region in which to seek for best
performances.

III. STRATEGIES FOR JJ THRESHOLD DETECTION

The JJ activation energy barrier defined in Eq. (5) refers
to an unperturbed junction, i.e., to the case S0 = 0 in Eq. (4).
The addition of a deterministic sinusoidal signal of amplitude
S0 results in an oscillation of the barrier that affects the
average escape time. The deviations of such an average escape
time shown in Figs. 2 and 3 can be used to infer the
presence of a signal. Inspection of Figs. 2 and 3 discloses
an evident exponential decay of the escape time distribution.
This behavior has been previously exploited (see, Ref. [29])
with a straightforward SM detection strategy based on the
mean escape time. Indeed, it can be shown that if the escape
times are exponentially distributed in both cases S0 = 0 and
S0 �= 0, then the SM detection strategy is an optimal strategy
[31]. In the same paper [29] the Kumar-Carrol (KC) index
dKC [37] for different SNRs (we recall that the SNR is related
to the ratio S0/SN = S0/

√
ωjD) has been used as a simple

(heuristic) indicator of the detector performances. We recall
that the index dKC depends upon the operating frequency of
the applied signal and the extrema are influenced by the noise
intensity [11,29], a peculiarity of stochastic resonance [25,38].

When the PDFs are not exponential (and not explicitly
known, as is the case for underdamped JJs), we use an
accurate and fairly common technique to determine a detection
strategy and the related detector, both based on likelihood
maximization. Such a decision criterion, based on the LRT,
is optimal [31] in a sense that is clarified below. Detectors
based on the LRT employ the knowledge of the full probability
distributions of the random escape with and without the signal;
therefore the shape of PDFs can be properly handled to
improve the performances.

Unfortunately, the escape time distributions are not theoret-
ically known for the system described by Eq. (4). Even in the
case S0 = 0 the Arrhenius law is approximately valid for rare
escapes [9] (in the unperturbed oscillator time scale ωj ), while
for fast escapes [39] (which are interesting for signal analysis)
only approximated analytical estimates exist. When the signal
is applied the knowledge of the escape time distributions
is even poorer, and essentially limited to the overdamped
case [40]. Our solution is based on a semianalytical approach,
so that the analytical results are used as a guess for a numerical
procedure. In the following we describe the proposed LRT
embedded in the general framework of statistical decision
theory.

A. Statistical decision theory and LRT detector

To properly define the detection strategies, it is usual to
formalize the problem as a binary hypothesis test:

H0: sinusoidal signal is absent,

H1: sinusoidal signal is present.

For this decision problem two different error probabilities
arise:

(a) the false alarm probability Pf , also called type I error
probability, i.e., the probability to decide for the hypothesis
H1 when H0 is true;

(b) the miss probability Pm, also called type II error
probability, i.e., the probability to decide for the hypothesis
H0 when H1 is true.

We start by considering the case in which the JJ normalized
parameters (α and γ ) and the normalized noise standard
deviation εN are perfectly known and do not depend on
the particular hypothesis in force. We also assume that the
signal parameters (i.e., ε, ω, and ϕ0) are known under the
H1 hypothesis. In this setup the Neyman-Pearson lemma [30]
identifies the LRT as the optimal detection strategy, for it
minimizes, among all possible tests, the miss probability Pm at
a fixed false alarm level Pf . Thus if we collect N escape times
τ = {τi}i∈[1,N], supposed to be independent and identically
distributed, the test statistic can be written as

N∏
i=1

f1(τi)

f0(τi)

H1

>

<

H0

ζ ′, (6)

where f0,1(·) are the PDFs of the escape times under the
hypothesis H0,1, while ζ ′ is a suitable threshold selected to
return a fixed false alarm level. To simplify the computation
of the statistic (6), it is possible to compare the normalized
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natural logarithm of the likelihood ratio with a threshold
ζ = ln(ζ ′)/N :

�(τ ) = 1

N

N∑
i=1

ln

[
f1(τi)

f0(τi)

]H1

>

<

H0

ζ. (7)

The advantage of Eq. (7) is that the statistic �(τ ) can be
computed as the sample mean of the random samples L =
{Li}i∈[1,N] that are obtained from the escape times via the
optimal (in the Neyman-Pearson sense) nonlinearity

Li = ln

[
f1(τi)

f0(τi)

]
. (8)

Equation (8) contains the information about both PDFs f1(·)
and f0(·). Unfortunately, for underdamped JJs, an exact closed
form of these PDFs is still unknown. We have seen in Figs. 2
and 3 that there are regimes in which both the densities follow,
with a good approximation, an exponential law. As anticipated,
in this case the SM detector is nearly optimal. Indeed, it is
straightforward to see that for exponential distributions the
decision statistic in Eq. (7) becomes

A(τ ) = 1

N

N∑
i=1

τi

H1

>

<

H0

ζ. (9)

We note that if the average escape time under hypothesis H0

is larger than the same quantity under H1, the sign in Eq. (9)
should be reversed.

In other regimes we estimate both PDFs f1(·) and f0(·)
using a nonparametric statistical technique such as the kernel
density estimation (KDE) [41]. Thus, by means of a large
number of samples τi (5 × 105 trials), obtained via a Monte
Carlo simulation of the escape process of Eq. (4), in both
cases S0 = 0 and S0 �= 0 we retrieve a tight estimate f̂j (·) of
the unknown PDFs fj (·). Further details about the KDE are
given in Appendix A.

We are now in a position to compute the receiver operator
characteristic (ROC) of the test statistic, that is, the plot of
Pf vs Pm for different values of ζ [42]. A ROC example is
presented in Fig. 5, in which the trade-off between the two
error probabilities is evident. To simplify the performance
analysis of the detector, we consider the intersection between
the ROC and the bisector of the first quadrant angle, which is
very close to the point of the ROC curve with the minimum
distance to the axis origin. At this point Pf = Pm, and we
can unambiguously define the error probability Pe that is
representative of the detector behavior. The main advantage
of this formulation resides in its simplicity and, in many cases,
it is also a good approximation of the minimum Bayesian error
probability when the prior probabilities of the two hypotheses
H0 and H1 are considered equal. The error probability Pe

gives a rigorous assessment of the detector’s performance, and
can be related to the heuristic Kumar-Caroll index dKC by an
inequality, as elucidated in Appendix B.

FIG. 5. Typical ROCs of a JJ-based detector under the hypothesis
of complete parameter knowledge for different values of dKC (i.e.,
of ε). Other relevant simulation parameters are γ = 0.3, α = 0.05,
and εN = 0.07. Moreover, when the signal is present, ϕ0 = 0 and
ω = 0.8.

B. Escape time acquisition strategies

The signal-to-noise mixture can be applied to the JJ in
different ways [29] to acquire the escape time sequence τ =
{τi}Ni=1. Indeed, when the JJ switches to the running state (see
Fig. 1) it is necessary to shield the junction from the signal
to reset the static state and to apply the signal again. There
is a variety of methods to reset the system. If the frequency
of the signal is perfectly known it is in principle possible to
reapply the signal always with the same initial phase. This
acquisition strategy is called coherent detection. Application
again of the signal with the same initial phase involves loss
of some fraction of the signal waiting for the correct time to
restart the process. In fact the correct initial times read

t
(r)
i = 2π

ω

⌈
ωτi

2π

⌉
+ t

(r)
i−1.

With this acquisition method the escape PDF shows a striking
dependence on ϕ0, as elucidated in Fig. 4.

Another possibility, if the frequency is unknown, is to
reapply the signal with any phase it might have after the reset
procedure, and therefore with an essentially random initial
value of ϕ0 (incoherent strategy). The PDF of the escape time
obtained in this case, essentially the average over ϕ0 of the
escape densities computed in the coherent strategy case, loses
much of the information carried by the initial phase.

C. Filter bank strategy and phase estimation

In the detection theory briefly summarized above, the
involved parameters are supposed to be known: the LRT
method can be employed only if the signal is supposed to have
a known phase. Unfortunately in real scenarios this condition
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is rarely fulfilled, and the PDF of the escape times should be
considered a function of an unknown parameter vector θ . It is
necessary to properly manage the lack of information about θ

to contrive a detection rule that minimizes the deterioration of
the performances for unknown parameters. In this section we
show how one can retrieve with a filter bank some information
about the phase of the signal. The main problem arises because
the signal itself might be present or not, and therefore one
cannot employ a simple maximum likelihood procedure to
determine the best guess for the parameter value. Two popular
approaches to the detection with an unknown parameter
are currently used in signal processing: the averaged LRT
(ALRT) and the generalized LRT (GLRT). The ALRT, based
on the Bayesian theory, consists in averaging the likelihood
ratio on the unknown parameters over the density functions
corresponding to all the values of the unknown parameter; the
resulting best guess is then employed in a Neyman-Pearson
criterion to decide the signal presence. The GLRT estimates
the unknown parameters via a maximum likelihood approach
to select a single most likely phase. This phase is substituted
in the PDF expression of the LRT to decide about the signal
presence.

In this paper, as a paradigmatic example, we suppose
that the unknown parameter is the initial phase, i.e., θ =
ϕ0. Without any a priori information, the ALRT approach
is substantially equivalent to application of the incoherent
acquisition strategy. Unfortunately (as is shown below) this
approach loses too much information about the signal pres-
ence. Thus we focus on the GLRT, which can be implemented
via a filter bank (see Fig. 6 for a pictorial scheme). The
filter bank jointly performs the estimation and the detection
of the unknown parameter ϕ0. In a preliminary step we should
determine a sampling of the relevant parameter space {ϕ(i)

0 }Mi=1
such that it suitably covers the interval [−π,π ]. Each detector
of the bank LRTi , tuned on the value ϕ

(i)
0 and designed as

described in Sec. III A, elaborates the sequence of escape times
τ that are acquired with a coherent strategy to obtain a vector
of likelihood ratios {�(τ ,ϕ

(i)
0 )}Mi=1. We recall that the phase

ϕ0, as depicted in Fig. 4, influences the PDF of τ only when
the signal is present. Thus the maximization of the likelihood

FIG. 6. Schematic of the filter bank. The JJ block indicates the
physical device giving the escape time, while the Di blocks represent
the filter bank in which the elements are tuned on different values
of the unknown parameter (in this case the initial phase ϕ0). The
maximization block (MAX) output is compared with a suitable
threshold ζ to perform the decision test while arg max gives the
maximum likelihood phase estimation.

under H1 coincides with maximizing �(τ ,ϕ0), and the test (7)
becomes

max
i=1,...,M

[
�

(
τ ,ϕ

(i)
0

)]H1

>

<

H0

ζ. (10)

The value of ϕ
(i)
0 that maximizes �(·) constitutes an estimate

of the initial phase,

ϕ̂0 = arg max
i=1,...,M

[
�

(
τ ,ϕ

(i)
0

)]
. (11)

To optimize the performance of such a strategy, one should
design the filter bank with the appropriate choice of both the
number M of the detectors and the values ϕ

(i)
0 . We propose to

place the values ϕ
(i)
0 uniformly spaced in [−π,π ] for the sake

of simplicity. Also, we have considered that the JJ behavior
for a particular phase value is not too different from that
for another one [29]. The number M should be determined
recognizing that few detectors offer a poor precision in phase
estimation and in detection effectiveness, while too many
detectors significantly increase the false alarm probability. A
more precise analysis of the bank needed to quantitatively
balance the two sides is out of the scope of this paper.

IV. SIMULATION AND NUMERICAL RESULTS

In this section we present extensive Monte Carlo simula-
tions that show the behavior of a detector based on a JJ. As
evident in Eq. (7), the LRT employs a fixed number N of escape
times and it is optimal (in the Neyman-Pearson sense) under
this condition. On the other hand the time interval Tobs needed
to collect N escape times is random and strongly depends on
both the signal properties and the JJ parameters. Indeed, when
the signal is absent (hypothesis H0), the mean value of the
escape times μ0 = E[τ |H0], which is a function of γ , α, and
εN , reads

E[Tobs|H0] = Nμ0. (12)

We observe that in the presence of small signals also the escape
rate remains roughly unchanged, μ1 = E[τ |H1] 
 μ0.

To perform a fair comparison under different operative
conditions, we fix the mean time interval under the H0

hypothesis and use the corresponding number of escape times,
N . This strategy guarantees a mean duration time of the
acquisition stage in any practical situation (H0 and H1).
Moreover, while the mean time of Tobs increases linearly
with N , its standard deviation is proportional to

√
N , so the

dispersion around the mean value becomes less significant for
increasing values of N .

Equation (12) is strictly true only for incoherent acquisition.
Indeed, in the coherent case we have to add to μ0 the mean
time needed to assure that the incoming signal is applied to
the JJ with the same initial phase. So the approximate relation

E[Tobs|H0] ≈
{

N
(

2π
ω

)
, μ0 � π

ω
,

N
(
μ0 + π

ω

)
, μ0 > π

ω
,

(13)

reveals that the normalized frequency ω also influences the
observation time. We have proven by numerical simulations
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(continuous)

(dashed)

FIG. 7. Detection probability as a function of the applied signal
frequency. Parameters of the system are γ = 0.8, α = 0.05, εN =
0.0175, ε = 0.05, and ϕ0 = 0. The simulations are performed setting
the mean observation time under H0, E[Tobs|H0] = 2000. Inset:
ROCs computed for both the detectors at a frequency close to
geometric resonance, ωres ≈ ω = 0.7.

(not shown here) that this effect is negligible (in the interesting
range of parameters), so we use the simple approximate
Eq. (13) in the remaining part of the paper.

A. LRT performance improvements and signal
frequency analysis

In this section we investigate the dependence of the error
probability Pe as a function of the normalized signal frequency
ω, while in the next section we carefully analyze the depen-
dence of the performance upon the junction parameters. The
distinction is somewhat artificial, inasmuch as the normalized
frequency ω also depends upon the junction parameters:
ω = �/ωj = �/[2eIc/(h̄C)]1/2. However, in view of some
emerging physical and signal detection properties, we prefer
to focus on the analysis of the signal frequency and phase in
this section, and postpone the analysis of the other junction
parameters.

The dependence of the detection properties upon the signal
frequency is shown in Fig. 7, where we compare the SM of
escape times (broken lines) with the more refined LRT (solid
line). We also show in the inset the ROCs of both the tests
at a single frequency. In spite of the approximations used
to obtain Eq. (8) the improvements of the LRT detection
performances are significant. Along the bisector of the inset to
Fig. 7 the probability of dismissal Pm decreases by a factor

102 from the simple average to the LRT. Since the two
curves are computed for the same signal duration, one can also
deduce that the LRT allows for a decrease of 
104 of the signal
length with the same false alarm level. It is also evident from
Fig. 7 that for all driving frequencies the LRT overperforms
the SM detector. Both strategies share a pronounced dip at the

(continuous)

(dashed)
(dotted)

non linear res. (disks)

FIG. 8. Frequency ω where a minimum of Pe occurs as a function
of the bias current γ for LRT detection strategy. Dashed line refers
to a signal with ε = 0.1 and a noise with εN = 0.07, and dotted line
to ε = 0.05 and a noise with εN = 0.0175 (see also Fig. 10). For
the sake of comparison we also show (continuous line) the resonant
frequency of Eq. (14) corresponding to vanishingly small ε and the
nonlinear deterministic resonance curve (circles) in the case ε = 0.05.
Other relevant parameters of the system are α = 0.05 and ϕ0 = 0. The
simulations are performed setting the mean observation time under
H0, E[Tobs|H0] = 2000.

geometric resonance. This frequency is not exactly ωj , for the
tilted washboard potential of Eq. (5) exhibits a dependence of
the resonant frequency upon the bias current of the type [32]

ωres 
 (1 − γ 2)1/4 (14)

that is mirrored in the performances of the detector. The
resonant condition Eq. (14) is obtained through linearization
of Eq. (4) for small signal amplitude ε = S0/Ic. For finite
signal amplitude the oscillations explore the nonlinear part of
the curvature that is not captured by the second-order Taylor
expansion behind Eq. (14). The correction, or rectification
effect, accounts for the deviation from Eq. (14) of the resonant
frequency at finite signal amplitude, ωres = ωres(ε). In Fig. 8
is shown the nonlinear JJ plasma resonance curve [43]; the
higher-order deterministic correction of the plasma frequency
approaches the optimal working frequency for detection. The
displayed nonlinear plasma frequency is the stable branch in
the regime where the resonance curve becomes a multivalued
function of the frequency [44]. As a consequence we speculate
that best detection performances are attained in the strongly
nonlinear distortion regime. In our opinion this result mirrors
the similar findings of Ref. [45] concerning the location of
the best amplification region in the parameter space. It is
noteworthy that such a frequency optimization refinement is
needed to ensure that the detector’s resonance matches the
signal frequency. We conclude the analysis of the geometric
resonance by affirming that both SM and LRT detectors
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exhibit the dependence predicted by Eq. (14); there exists a
suitable neighborhood of ωres that is one of the best regions
for detection purposes, with a small correction for the finite
signal amplitude.

The SM strategy reveals that a second interesting region
occurs at a lower normalized signal frequency, where another
resonance appears. The position of this resonance dip depends
upon the phase and the temperature [29]; see Figs. 7, 9(a),
and 10(a). In fact in Ref. [29] it has been found that a region
of optimal detection is pinpointed if the potential well barrier
(tuned by γ ), the normalized signal frequency ω (the signal
frequency � divided by the Josephson frequency ωj ), and the
noise intensity D are connected by the relation

ωSR = �SR

ωj

= μ0

2πC(ϕ0)
exp

{
2I 2

c

ωjD

[√
1 −

(
IB

Ic

)2

− IB

Ic

cos−1

(
IB

Ic

)]}
. (15)

Below the stochastic resonance frequency the PDFs (in both
hypotheses) are very similar to those reported in Fig. 2,
while above that frequency the PDF (under H1) develops
oscillations similar to those reported in Fig. 3. This explains
the disappearance of stochastic resonance (15) in the LRT
detection framework, for the LRT exploits the PDF oscillations
and does not deteriorate above the frequency (15). Thus the
paradoxical increase of the performances at higher noise level
for the SM is solved by the observation that the improvement
obtained at the ωSR frequency is outperformed by the choice of
a more refined LRT detection strategy that takes into account
the PDF oscillations. In fact (see Fig. 7), the SM detector
performances are always worse than the LRT ones, confirming
the general idea that stochastic resonance is a consequence of a
suboptimal detection scheme [8]. The practical consequence is
that synergetic effects leading to stochastic resonance between
noise and signal in nonlinear devices can only be exploited in
suboptimal strategies, while in optimal detection strategies
noise should be reduced only as much as the experimental
setup allows.

B. Physical considerations on JJ parameter optimization

In this section we study the detector performance as a
function of JJ parameters. Furthermore, we transform the
results obtained with simulations of the normalized Eq. (4)
and analyzed with the methods of Sec. III into prescriptions
for the physical parameters of an actual JJ. The system depends
upon four normalized parameters that can be tuned, with an
appropriate choice of the JJ physical parameters, to obtain the
best performances. The JJ features that can be modified are as
follows:

(1) The Josephson frequency ωj = [2eIc/(h̄C)]1/2 (and
hence the capacitance C and the critical current Ic) selects the
time scale of the device and must be chosen to maximize the
performance of the device. One should compromise between
two different requirements: fast to speed up the detection, but
still slow enough to allow the available electronics to properly
work. The critical current is typically constraint in the range
1 μA � Ic � 10 mA, while the capacitance is in the range
1–1000 pF. The two quantities are not fully independent, for

FIG. 9. Multiple plot of the error probability Pe as a function
of the applied signal frequency ω and the bias current γ . (a) SM
detector; (b) LRT detector. Along the arrow, the bias γ decreases
from 0.9 to 0.4 with step size −0.1. Other relevant parameters of
the system are α = 0.05, εN = 0.0175, ε = 0.05, and ϕ0 = 0. The
simulations are performed setting the mean observation time under
H0, E[Tobs|H0] = 2000.

both depend upon the distance between the superconducting
electrodes and the junction area. The critical current can also
be decreased by an external magnetic field. Typically, the
available range of ωj is about 10–1000 GHz.

(2) The applied physical current IB can be assumed positive
(for the symmetry of the problem a negative bias value would
just invert the phenomena) and below the critical current to
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FIG. 10. Contour plot of the error probability Pe as a function of
the applied signal frequency ω and the bias current γ . (a) SM detector;
(b) LRT detector. Thick line in (b) indicates the location of minimum
Pe probability. Other relevant parameters of the system are α = 0.05,
εN = 0.0175, ε = 0.05, and ϕ0 = 0. The simulations are performed
setting the mean observation time under H0, E[Tobs|H0] = 2000.

have two solutions [see Eq. (5)], 0 � IB � Ic. In normalized
units the interval reads 0 � γ � 1.

(3) The applied signal amplitude S0 cannot be amplified
without introducing a further noise component. It is therefore
convenient to set instead the critical current to have the more
appropriate ε = S0/Ic normalized signal. It is worth noticing
that the normalized intensity of the noise εN = ωjD/I 2

c also

depends upon the critical current Ic, and can therefore also
be tuned, while obviously the SNR, proportional to ε/

√
εN =

S0/
√

ωjD, cannot. As already mentioned the critical current
of a Josephson junction is typically constrained in the range
1 μA � 10 mA, and therefore it is not possible to freely
choose the normalized signal amplitude. Also, it is important
to notice that if the critical current Ic is used to tune the value
of the normalized signal, the system frequency ωj can still be
modified via the capacitance C.

(4) The resistance R sets dissipation through the normal
electron channel, parallel to the tunnel Josephson element.
Dissipation enters in Eq. (4) through the normalized parameter
α = (ωj/RIc)(h̄/2e). The resistance is constrained, inasmuch
as the product IcR depends upon the material: IcR = 	/2e.
The energy gap 	 for type I traditional superconductors is
in the range of meV. The normalized parameter α is limited
in the interval 0 < α < 1. The lower value is due to physical
reasons (all quantities are positive), while the upper value is
necessary to have a so-called hysteretic junction with two states
(detection depends upon the possibility of detecting the switch
between these two states). Actual values for viable JJs are
narrowed in the range 0.001 � α � 0.1, while the range 0.1 �
α � 1 corresponds to the moderately damped regime where
retrapping occurs, making it difficult to detect the escape from
the static solution [46]. Finally, dissipation can be increased
by shunting the junction with an external resistor.

One can interpret the physical parameters R, C, Ic, and IB

and the corresponding normalized parameters α, ω, ε, and γ

in the following way. The normalized frequency ω = �/ωj

can be chosen to drive the JJ with the most appropriate (for
signal detection) frequency, and this sets the ratio of the critical
current Ic and capacitance C. The bias current γ , which can be
varied through the external bias current IB , sets the potential
well of the system [see Eq. (5)], while the resistance R can be
adjusted to have the most appropriate value of dissipation.

As shown in Sec. IV A the normalized frequency plays
a major role in the performance; see Figs. 9(a) and 9(b). A
detector should therefore be optimized through an appropriate
choice of the normalized applied frequency ω. This may be
done by tuning the Josephson angular velocity close to the sig-
nal frequency. Therefore we conclude that signals in the range
of ωj are suitable for detection with JJs, while slower or faster
signals are poorly analyzed with this technique.

Once the system is optimized in frequency, probably the
most easily tunable parameter is the external bias current
IB , which affects the normalized bias γ . In the geometric
resonance neighborhood, as shown in Fig. 10(a), there is a
clear optimal point around γ 
 0.5 for the SM technique. The
physical interpretation is that the average escape time is most
sensitive to the external signal when the bias current γ , and
hence the energy barrier of Eq. (5), is intermediate between
the maximum (γ = 0) and the minimum barrier (γ = 1).
Indeed, in the former case there are few escape events in
the observation time, while in the latter case the escape is
dominated by noise and the average is little affected by the
signal. It is interesting to see that for some high values of γ

the stochastic resonance dip around ωSR performs better than
the geometric resonance close to ωres. The LRT, as expected,
performs better than the SM for all γ values; see Figs. 10(a)
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and 10(b). The LRT detector also shows a different behavior,
namely, the larger the bias current the more accurate the
estimate, as displayed in Figs. 9(b) and 10(b). The qualitative
explanation is as follows: with a more accurate analysis of
the escape times it is possible to recognize the presence of the
signal embedded in the noise even when the average is little
affected by the signal itself, due to the optimal exploitation
of the PDFs information—see Eq. (7). It is important to
notice that practical detectors cannot be realized just by
setting the bias current γ = 1 for several reasons. First, the
metastable state exists only for γ < 1. Second, in the analysis
presented here we assume that the escape time is measured
with an infinite accuracy. In practical detectors the finite error
associated with the measurements is more relevant for shorter
escape times. We conclude that simulations suggest use of a
bias current IB as close to Ic as possible (i.e., γ 
 1), providing
that the resulting escape times are still measurable with good
accuracy. This entails that the limit of the performances is
given by the actual electronics employed.

The critical current might be chosen to change the nor-
malized drive amplitude ε = S0/Ic and the noise intensity
εN = ωjD/I 2

c . As anticipated, the available range of the
critical current is relatively narrow. However, we have found
that a unifying parameter assumes the role of γ (which
depends upon the bias and can therefore be easily tuned)
and εN . Physical intuition suggests that escape time detector
performances are mainly dependent on the potential barrier
	U and the noise intensity εN . A realistic guess could be that
a relevant parameter is the ratio ρ:

ρ = 	U (γ )

εN

= 2[
√

1 − γ 2 − γ cos−1(γ )]

εN

. (16)

The simulations in Fig. 11 (which display the contour level
of error probability as a function of 	U/εN and ω for two
different values of ε keeping the same SNR proportional
to ε/

√
εN ) confirm this conjecture. Despite the nonlinear

character of the system, the two contour plots are qualitatively
similar. The main difference is due to the rectification effect
(see again Fig. 8). We conclude that the analysis of the
parameter ρ leads to the same qualitative optimization recipes
as for parameter γ : for the LRT strategy, the normalized bias
current should be close to unity, while for the SM strategy
optimization requires an intermediate bias value.

Concerning dissipation, simulations with different values
α in the underdamped regime (α � 0.1) lead to the following
result: with reduced dissipation the escape rate is increased,
and therefore more events can be collected in the same time
interval. As a consequence, the lower the dissipation the better
the detector performance. So we conclude that one should try
to use a junction resistance as large as possible to decrease
dissipation. Moreover, our findings (lower dissipation favors
detection) indicate that an external shunt to decrease the
junction resistance might result in worse performance. Let
us summarize the findings of the best JJ parameters for signal
detection:

(1) The normalized frequency ω = �/ωj shows best
performances around the geometrical resonance of Eq. (15),
ω 
 ωres, for both LRT and SM. JJs are therefore best suited
for signals whose frequency can be around 10–1000 GHz. If

FIG. 11. Contour plot of the error probability Pe as a function
of the applied signal frequency ω and the noise-normalized barrier
	U/εN . (a) ε = 0.1 and εN = 0.07; (b) ε = 0.05 and εN = 0.0175.
Other relevant parameters of the system are α = 0.05 and ϕ0 = 0. The
simulations are performed setting the mean observation time under
H0, E[Tobs|H0] = 2000.

the simpler sample mean is employed, a second local optimum
appears at a lower frequency, Eq. (15), a frequency that can
also be much smaller than the geometric resonance.

(2) The bias current for the LRT strategy should be set as
close as possible to γ = IB/Ic = 1 to achieve the lowest value
of 	U ; see Fig. 9(b). For the SM strategy the currents should
be set at an intermediate value that depends on the ratio ρ

between the energy barrier and the signal.
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(3) The normalized signal εN is not an independent variable,
for the relevant parameter is the ratio between the normalized
signal and the energy barrier, Eq. (16). This ratio should be,
for the LRT strategy, as small as possible; this is automatically
set if the bias current condition has been fulfilled.

(4) The normalized dissipation parameter α should be as
low as possible. A low dissipation in fact results in faster
escapes, thus increasing the statistics at a fixed length of the
signal. The other features (in terms of optimization of the
normalized drive frequency, bias current, and signal amplitude)
are independent of dissipation. We do not show the numerical
results for different α, for they are very similar to the displayed
results obtained with α = 0.05.

The search for optimal parameters has led to qualitative
indications (e.g., the indication for high bias and matching
to the nonlinear resonance) for selection of the experimental
setup without actually repeating our numerical work. The
purpose of the previous analysis is to determine the optimal
working point location in the JJ parameter space at a fixed
value of the SNR. On the other hand, the SNR strongly
affects the performance of the detector evaluated through
the error probability. Thus it is interesting to characterize
the relationship between the SNR and the error probability
Pe for both SM and LRT detectors. Our ansatz is that the
performances measured by the KC index follow the power
law

dKC(Y ) ∼ A(Y )

(
ε√
εN

)η(Y )

, (17)

where Y is a general asymptotically Gaussian decision statistic.
In our setup Y is replaced by the average of the sampled
escape times, A(τ ), for the SM detector and by �(τ ) for
the LRT detector, defined in Eqs. (9) and (8), respectively.
Therefore, as described in Appendix B, the error probability
can be expressed as

Pe = 1

2
erfc

[
B(Y )

(
ε√
εN

)η(Y ) ]
. (18)

The behavior for the optimal detection parameters has been
verified via numerical simulation and the results are shown
in Fig. 12(a). It is evident that the model fit in Eq. (18) is
well suited for both SM and LRT detectors. More interesting
is that the scaling law, i.e., the value of η(Y ), is different
for the two detection strategies. Indeed, for the SM detector
we have found η(A) = 1.63 ≈ 3/2 Ref. [29], while the LRT
shows a scaling law ruled by η(�) = 0.97 ≈ 1, which is nearly
optimal, because it is also the behavior of the exponent for the
ideal matched filter [as can be promptly seen in Fig. 12(b)].
This striking difference between the SM and LRT is even
more evident on the basis of the following consideration. The
KC index is roughly proportional to

√
Tobs via the coefficient

B(Y ); hence on lowering the SNR the detection time should
be extended to preserve the same detector performance. To
keep constant the quality of the detection, the observation
time Tobs should increase as (ε/

√
εN )−3 for the SM detector

and as (ε/
√

εN )−2 for the LRT one. Such a different scaling
gives a huge advantage to the LRT in the challenging case
of small SNR. In Fig. 12(b) the comparison between the
proposed LRT detection scheme and matched filter [30] is

(continuous)

(dashed)

Simulation (disks)

FIG. 12. (a) Error probability Pe as a function of ε/
√

εN (related
to the SNR). Disks are obtained by numerical simulations; continuous
lines are computed by fitting the data using the KC approximation in
Eq. (18). The parameters used in the simulations are γ = 0.3, α =
0.05, and εN = 0.07. Moreover, when the signal is present, ϕ0 = 0
and ω = 0.8, close to the optimal detection point ωres. (b) KC index
(reported in dB) of proposed LRT strategy (for different parameters
γ = 0.3, 0.9, and ω near the optimal detection frequency) vs the
same SNR-related parameter compared with the KC index of the
matched filter (best available strategy). Inset: dKC loss with respect
to matched filter (on a dB scale) for γ = 0.9 as a function of εN

(ε/
√

εN is fixed to −20 dB). In all cases simulations are performed
with E[Tobs|H0] = 2000.

further elucidated by using a suitable representation based on
the KC index. In this framework, as anticipated, the η(�)
parameter is readily seen to be of the order of unity for all
displayed curves. Moreover, it is simple to quantify the loss
in decibels (dB) of the detector performance, by mean of the
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straight line intercepts, which for the best case is nearly 4 dB.
Rephrasing of this loss in terms of the ratio between LRT
and matched filter observation time (for continuous signals)
corresponds to a factor ∼2.5. Such a speed-up factor can be
achieved by frequency scaling and/or parallel very-large-scale
integration implementation of the detector, and JJs could turn
out to be competitive in practical applications. In the inset of
Fig. 12(b) the dKC loss is shown with respect to a matched
filter on a decibel scale as a function of the noise parameter
εN . The LRT, as expected, never passes the matched filter. The
minimal loss is reached for reasonably high values of εN that
correspond to the physical limit of negligible escapes toward
the higher local minima. Finally, we have verified that inside
the optimality region this function is substantially independent
of the time window Tobs and of the ratio ε/

√
εN .

C. Unknown phase estimation and signal detection

As anticipated in Sec. III C, an incoherent strategy may
be implemented with an acquisition method that requires a
simpler measurement setup. In Fig. 13 three different ROCs
are displayed to compare the proposed detection strategies.
The figure shows the natural behavior, i.e., that the best
detection performances are obtained with the LRT detector
(solid curve). A filter bank (GLRT coherent strategy shown
as the dashed curve) results in an acceptable deterioration
of the detector performance. As anticipated, due to the huge
reduction of information on the initial phase the incoherent
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FIG. 13. ROCs computed for three different detectors: LRT
detector based on incoherent acquisition of escape times (dot-dashed
line), filter bank coherent acquisition (GLRT) detector (dashed
line), and LRT detector based on coherent data (continuous line).
For all strategies we ensure the same mean observation time
under H0 (i.e., E[Tobs|H0] ≈ 1500). Other relevant parameters are
γ = 0.5, α = 0.05, and εN = 0.07. Moreover, when the signal is
present, ε = 0.1, ϕ0 = 0, and ω = 0.8, close to the optimal detection
point ωres.

FIG. 14. Variance of the maximum likelihood estimate of ϕ0 as a
function of the number N of escape times. Continuous line is obtained
by Monte Carlo method; dashed line is the theoretical Cramer-Rao
lower bound. Inset: A typical probability mass function estimate
(with 105 trials) of the unknown parameter ϕ0 by using only N = 10
samples. The signal is generated with an initial phase ϕ0 = 0. Other
relevant parameters are γ = 0.5, α = 0.05, εN = 0.07, ε = 0.1, and
ω = 0.8, close to the optimal detection point ωres.

strategy outperforms the other strategies. The dependence of
the variance estimate ϕ0 obtained with the GLRT detector
implemented via filter bank is illustrate in Fig. 14. The
M = 100 sampling points are placed in ϕ

(i)
0 = π

M
(2i − 1 − M)

in order to cover the interval [−π,π ]. The sinusoidal signal
with known parameters ε = 0.1, ω = 0.8, and εN = 0.07 is
applied to a JJ with α = 0.05 and γ = 0.5.

The unknown parameter ϕ0 = 0 is chosen in the middle
position between two sampling points, the worst case for the
filter bank performance [47]. Figure 13 also shows (continuous
curve) that the variance is reduced by increase in the number
N of escape times (the acquisition is supposed coherent). In
particular the estimator variance reaches the Cramer-Rao lower
bound relative to the escape time statistics, i.e., the asymptotic
efficiency [31], for N ∼ 50 escapes. The proposed estimator
is therefore able to effectively extract the information about
the initial signal phase ϕ0 carried by the escape times. Of
course, when for very large values of N the expected variance
becomes lower than the discretization error (2π/M)2/12, the
latter dominates and causes a saturation of the performance.

V. CONCLUSIONS

We have investigated a case of detection of sinusoidal sig-
nals by means of a nonlinear device, namely, an underdamped
JJ. Some warnings are in order to clarify the limits of the
approach. First, compared to traditional methods, JJs require
cryogenic facilities to cool the superconducting electrodes.
Second, the best performances are obtained at high frequency,
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thus requiring the handling of microwaves without introducing
distortions or undesirable noise increases. Third, we recall that
a matched filter is the optimal method for signal detection,
and therefore our proposal can be considered only when
such an optimal method is not available because of technical
difficulties. Fourth, we underline that the improvements are
obtained at the price of heavier numerical work, since the
escape time distribution is not theoretically known.

We have shown that the analysis of the escape times, an
experimentally accessible quantity, can be performed through
an intuitive approach, the estimate of the average, or with
a more refined likelihood-based statistic. The latter analysis
leads to a significant improvement of the performance of the
LRT with respect to the SM, greatly reducing the error proba-
bility. The advantages of better detectors could result in solid
improvements in terms of experimental time length and costs.

We have found that the conditions that favor detection
(in terms of frequency, bias current, and dissipation) depend
on the adopted strategy (SM or LRT). Moreover, we have
found that the likelihood ratio test unexpectedly leads to an
optimal scaling law for small SNR. This result is surprising,
because the signal detection has been doubly deteriorated by
the insertion of a nonlinear device and the change of the
observable variable (i.e., escape time instead of the original
signal-noise mixture). We have also shown that the LRT
approach is scalable to detector arrays, thus allowing a signal
phase estimate. However, we believe that the most important
finding is that, in some sense, the experimental setup should
be tailored to the data analysis. Indeed, the two detection
approaches cannot be optimized with the same normalized
frequency and applied bias current. We speculate that the above
results are fairly common to other activation detectors, because
our analysis mostly relies on an Arrhenius-like activation law,
which is independent of the details of the energy barrier. It
is therefore possible that the advantages can be exploited,
generalizing to other systems the methods we present in this
work.

Future research will be devoted to the use of signal
processing tools for thermally induced and quantum-assisted
transition rate discrimination [18]. This difference is partic-
ularly difficult to detect because a microwave source in a
JJ in the macroscopic quantum tunneling regime produces
multiple photon quantum transitions that can be confused with
subharmonic excitations due to nonlinear JJ behavior [48].
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APPENDIX A: KERNEL DENSITY ESTIMATION

The likelihood ratio test, presented in Eq. (6), requires a
complete knowledge of the PDFs f0(·) and f1(·) for both the
hypothesis. As already mentioned, unfortunately there is no
theoretical result that can provide this knowledge. Thus we are
compelled to use an estimated version of these PDFs. A simple
but effective strategy is to use the kernel density estimation

[41]. This technique generalizes the basic idea of histogram
by using a so-called kernel function K(·) that usually is a
symmetric PDF. If there is a random sample X = {Xi}i∈[1,N],
where N is the sample size, the kernel estimator should be

ĝ(x) = 1

Nw

N∑
i=1

K

(
x − Xi

w

)
, (A1)

where the parameter w is the bandwidth (also called the
smoothing parameter). If we apply this framework to escape
times, we immediately encounter a first difficulty. Indeed, the
escape times are by definition positive, i.e., their PDFs, under
the generic hypothesis Hj ,j ∈ {0,1}, have the property

fj (t) = 0, ∀t < 0. (A2)

Equation (A1) leads to an estimated PDF that does not satisfy
the inequality (A2). To deal with this issue, the following
procedure has been applied.

(a) For a fixed hypothesis Hj , the random sample of escape
times τ = {τi}i∈[1,N] is transformed via

X = ln(τ ). (A3)

Thus we deal with the random sample X = {Xi}i∈[1,N] that
can assume every value on the real axis.

(b) By means of Eq. (A1), an estimated PDF ĝj (x) is
computed.

(c) The PDF f̂j (t) is obtained from ĝj (x) via

f̂j (t) = ĝj (ln(t))
t

, t > 0. (A4)

The procedure described above has to be applied twice, i.e.,
under both the hypotheses Hj , to obtain the PDF estimates
f̂0(·) and f̂1(·). Then, when we have to decide about the
presence of a signal via an independently generated random
sample of escape times, we can compute the statistic in Eq. (7)
as

�̂(τ ) = 1

N

N∑
i=1

ln

[
ĝ1(ln(τi))]
ĝ0(ln(τi))

]H1

>

<

H0

ζ. (A5)

The procedure is completely specified if in Eq. (A1) one
chooses both the kernel function and the bandwidth. We have
used the kernel defined by a standard Gaussian density, i.e.,

K(t) = 1√
2π

exp

(
− t2

2

)
.

This kernel is rewarding, for the estimated density is smooth
and there are no subsets on the real axis with zero density.
The latter point is essential in the likelihood ratios to avoid
singularities. The drawback is in a little loss in estimation
performances, which is negligible for the sample size used
(∼5 × 105). The smoothing parameter selection, instead is a
hard task. Indeed, it is known (see, Ref. [41]) that the optimal
choice has the form

w = C(K,f )N−1/5, (A6)

where C(K,f ) is a constant that depends on the used kernel
K(·) and, unfortunately, on the same density f (·) to be
estimated. Thus we have used a simple closed form obtained

016708-13



ADDESSO, FILATRELLA, AND PIERRO PHYSICAL REVIEW E 85, 016708 (2012)

when both K(·) and f (·) are Gaussian, that is,

w = (
4
3

)1/5
σ̂N−1/5, (A7)

where σ̂ is the sample standard deviation of the data set. This
choice is near optimal for unimodal densities, which is the
case when the H0 hypothesis is in force, while it leads to some
oversmoothing for multimodal densities that arise under the
H1 hypothesis. Also in this case the large sample used helps
us make the oversmoothing negligible. Moreover, the slight
oversmoothing introduced under H1 can only worsen the LRT
test performance, because the PDF oscillations, which contain
the largest part of additional information with respect to the
sample mean, are underestimated.

APPENDIX B: KUMAR-CARROL INDEX

In this Appendix we introduce the general concept of the
KC index and its connection with a more effective parameter:
the error probability. In the context of decision theory, the
main purpose is to discriminate between two hypotheses:
signal is present (H1) vs signal is absent (H0). Let Y be
the selected decision statistics, expressed as a function of
the escape time vector τ , which has to be compared with
a suitable threshold ζ . Moreover, suppose that μ1(Y ) and
μ0(Y ) are the averages of the decision statistic under the
two hypotheses (subscripts 1 and 0 refer to the presence and
absence of the signal, respectively) while the corresponding
standard deviations are denoted with σ1(Y ) and σ0(Y ). The KC
index can be accordingly defined as

dKC(Y ) = |μ1(Y ) − μ0(Y )|√
1
2

[
σ 2

1 (Y ) + σ 2
0 (Y )

] . (B1)

In this paper both the decision statistics can be modeled as
the sample mean of a suitable random variable, i.e., τ for

the SM and L for the LRT detector [see Eqs. (9) and (7),
respectively]. In this case both the statistics, for large sample
size, are asymptotically normal due to the central limit theorem
[49]. Therefore the error probability Pe (defined above as the
value of the ROC Pm = Pf ) can be expressed as

Pe = 1

2
erfc

(√
1 + 	(Y )2

4

dKC(Y )

2
√

2

)
, (B2)

where 	(Y ) = 2|σ0(Y ) − σ1(Y )|/|σ0(Y ) + σ1(Y )|. By inspec-
tion it can be shown that Eq. (B2) is a decreasing function of
	, and therefore by neglecting the difference among standard
deviations (if it exists) it is possible to retrieve an upper bound
of Pe that is a function of dKC only, i.e.,

Pe � 1

2
erfc

(
dKC(Y )

2
√

2

)
. (B3)

The inequality (B3) clarifies the heuristic character of the KC
index as an indicator of the detector performance. The concept
introduced above can be applied to SM and LRT detectors,
by setting Y := A(τ ) and Y := �(τ ), respectively. Under the
hypothesis that a power law relationship between the KC index
and the SNR exists, as exemplified by

dKC(Y ) ∼ A(Y )

(
ε√
εN

)η(Y )

, (B4)

the error probability can be expressed as

Pe = 1

2
erfc

[
B(Y )

(
ε√
εN

)η(Y ) ]
, (B5)

where B(Y ) =
√

1 + 	(Y )2

4 A(Y )/(2
√

2). This last equation has
been used to interpret the relationship between Pe and ε/

√
εN

in Sec. IV; see Fig. 12.
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[32] A. Barone and G. Paternò, Physics and Application of Josephson

Effect (John Wiley, New York, 1982).
[33] E. Ben-Jacob and D. J. Bergman, Phys. Rev. A 29, 2021 (1984).
[34] H. Risken, The Fokker-Planck Equation: Methods of Solution

and Applications (Springer, Berlin, 1989).
[35] M. H. Devoret, J. M. Martinis, D. Esteve, and J. Clarke, Phys.

Rev. Lett. 53, 1260 (1984).
[36] R. Mannella, in Stochastic Processes in Physics, Chemistry and

Biology, edited by J. A. Freund and T. Pöschel (Springer, Berlin,
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