
PHYSICAL REVIEW E 85, 016706 (2012)

Taming hypersingular integrals using dimensional continuation

Zehao Li1 and L. R. Ram-Mohan2

1Department of Physics, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
2Departments of Physics, Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA

(Received 25 March 2011; revised manuscript received 13 December 2011; published 9 January 2012)

We use the method of dimensional continuation to isolate singularities in integrals containing products of
Green’s functions or their derivatives. Rules for the extraction of the finite part of so-called hypersingular
integrals are developed, which should be useful in methods based on boundary integral techniques in science and
engineering. In applications to potential theory, electromagnetic scattering, and crack dynamics in continuum
mechanics, boundary integrals now can be readily evaluated using computational techniques without recourse
to complex analysis or contour distortions since the hypersingularities occurring in intermediate steps of the
computations can be isolated and ignored while taking the finite parts of the integrals into account in a consistent
manner. We have also identified new forms of the Dirac δ function in D dimensions, which are useful and
convenient in the calculations. A summary of the integrable singular integrals is given in tabular form. We extend
the considerations to a wider class of Green’s functions and present a theorem, with additional results arising from
it, that shows that hypersingular integrals associated with three-dimensional potential problems can be reduced
to one-dimensional finite integrals rather than two-dimensional integrals, again leading to direct evaluations in
such cases. These calculations are compared with existing results to show the efficacy of the approach.
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I. INTRODUCTION

The properties of Green’s functions and other generalized
functions are defined [1] by the “company they keep,” in the
sense that their behavior is determined by an integration of such
functions multiplied by well-behaved functions [2]. However,
frequently in physical calculations in science and engineering
we encounter derivatives of Green’s functions as in the bound-
ary integral method or its numerical implementation in the
boundary element method (BEM). This leads to nonintegrable
singularities that require careful attention in treating them.

In quantum field theory (QFT), we have an analogous
situation in which products of Green’s functions appearing in
loop diagrams lead to infinities. Particularly lucid comments
on this issue of the need to define new rules for the evaluation of
products of singular functions have been given by Bogoliubov
and Shirkov [3]. The method of analytic continuation in spatial
dimension D of the integrals, to isolate the singular part and
to identify the relevant finite values of the integrals, is used in
relativistic field theory in perturbative evaluations of physically
relevant quantities. In QFT the nature of the divergences
requires “dimensional regularization” by which the infinities
are absorbed into physically observable parameters through
the process of renormalization [4].

Fortunately, in potential theory, electromagnetic field com-
putations, and the theory of crack dynamics and continuum
mechanics, the singularities occurring in intermediate stages
of the calculations can be shown to cancel out. Thus, while
renormalization is not an issue in this case, managing the
infinities in the theory and performing numerical analysis is
an issue, and it can be troublesome, as evinced by the focus
of attention on this in the literature. Several investigations in
the literature refer to the integrals appearing in the integral
representation of potentials and fields and in their evaluation
by the BEM as hypersingular integrals [5–8].

In all the reports in the literature dealing with hypersin-
gular integrals, the approach for calculating them is to use

either a distorted surface (two-dimensional [2D]) or contour
(one-dimensional [1D]) to directly address the issue of the
singularity. The presence of the hypersingularities typically
reduces the numerical accuracy attained in the integrals, and
the separation of the finite and infinite parts is a particularly
lengthy procedure. Transformation of variables and complex
analysis to evaluate the integrals are also employed in these
papers. We cite a recent cross section of typical articles in this
area in Refs. [9–16].

There are a few analytic methods to solve the problem of
singular integrals, such as the Galerkin approximation using
local polynomials (as in the finite element method) [9–11],
the Cauchy principle value technique to obtain the finite part
in integration [12–14], or complex analysis through contour
deformation [15]. These techniques usually consider a local
coordinate system around the singularity. The approaches dif-
fer only in the details of the evaluation of the singular integrals
to separate the finite and infinite parts. However, all these
earlier methods require very lengthy procedures due to the
arbitrary shape of the discretized elements, such as triangles,
and generally such discretized elements lack symmetry needed
to simplify the integrals. The same complicated procedure has
to be applied to each new type of Green’s function that is
appropriate to the problem, such as for Laplace problems [9],
elasticity problems [10,11], or in fracture analysis [13].

Here we wish to present a new, independent method for
the evaluation of the hypersingular integrals, whereby a more
universal approach can be implemented. We propose the use
of dimensional continuation in the evaluation of integrals of
the well-known Green’s functions. Since the singularities of
Green’s functions and their derivatives can be tamed by the
radial part of the Jacobian, rD−1, arising in D dimensions,
we arrive at a closed-form expression for the integrals at high
enough values of D. On returning to the dimension of interest
by analytic continuation, the singularity there can be explicitly
isolated and shown to cancel out in all applications. This is the
essence of the method of dimensional continuation.
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TABLE I. Comparison between the 2D calculations based on the final analytic expressions given by Fata et al. [18] and the results from
our 1D reduction of the ISI using the theorem in Sec. IV.

Singular integrals 2D analytic results [18] Present 1D calculations

I1 7.161 515 826 913 852 (Nonsingular)

I 1
1 1.373 374 685 494 244 1.373 374 685 494 246

I 1
3 1.549 306 788 877 796 1.549 306 788 877 799

I1 − I 11
3 3.484 787 720 187 224 3.484 787 720 187 223

I 12
3 0.125 979 758 603 789 0.125 979 758 603 789

I3 − 3 I 11
5 3.412 616 456 100 593 3.412 616 456 100 595

I 12
5 0.978 715 205 225 059 0.978 715 205 225 061

We identify the rules for obtaining consistent results
through the use of such methods for the hypersingular integrals
occurring in the BEM [17]. We provide a systematic approach
to the treatment of the singularities in typical integrals using the
standard example of the Poisson equation in Sec. II and show
in Sec. II B how to isolate them using the dimensional contin-
uation method. Further, we define integrable singular integrals
that typically occur in physical applications in Sec. II C. These
results are then used in deriving new expressions for the Dirac
δ functions in D dimensions in Sec. II D; such expressions
help resolve the singularity in the derivative of the solution of
the Poisson equation over the infinite domain. In Sec. III we
derive further results for a general class of Green’s functions on
the integrability of their derivatives and show how integrals
can be performed over a general shape in the discretized
region around the singularity. In Sec. IV we prove that the
hypersingular integrals appearing in potential theory can be
reduced by one more dimension; in other words, the boundary
integral method that uses Green’s theorem and reduces the
dimensionality of the problem from three dimensions to two
can have its singular integrals reduced by yet one more
dimension. This is demonstrated for the Poisson’s equation,
and the results are compared in Table I with extant 2D
evaluations in the literature [18,19]. Examples of such integrals
occurring in electromagnetic scattering are considered in
Sec. V, with the example of fracture analysis presented in
Appendix B. A summary of the integrable singular integrals is
reported in tabular form in Tables II, III, and IV in Appendix C.
Concluding remarks are given in Sec. VI.

It is hoped that the present approach will provide an
effective, powerful, and practical method of evaluating the
so-called hypersingular integrals in computational science
and engineering applications, with an automated approach to
accounting for these issues in a direct manner.

II. POISSON’S EQUATION
IN AN INFINITE DOMAIN

We consider the usual three-dimensional (3D) Laplace’s
equation with an inhomogeneous term in order to iden-
tify the problem of singular integrals and illustrate our
method in resolving this problem. We also obtain a new
generalized expression for the Dirac δ function in arbitrary
dimensions.

A. Poisson’s equation in three dimensions

In the infinite domain, the solution of the Poisson
equation, ∇2ϕ(r) = −4πρ(r), is given by [20] ϕ(r) =∫

ρ(r′)/|r − r′| d3r′. Here the potential is represented by ϕ(r),
and ρ(r) is the charge density. The Green’s function for the
Poisson problem is G(r,r′) = 1/|r − r′|. The potential’s first-
and second-order derivatives are

∂iϕ = −
∫

(ri − r ′
i )ρ(r′)

|r − r′|3 d3r′, (1)

∂i∂jϕ =
∫ [

− δij

|r − r′|3 + 3(ri − r ′
i )(rj − r ′

j )

|r − r′|5
]

ρ(r′) d3r′.

(2)

When i = j , we should have the result

3∑
i=1

∂i∂iϕ(r) = ∇2ϕ(r) = −4πρ(r), (3)

from the standard identity ∇2G(r,r′) = −4πδ(r − r′). Thus
we should be able to carry out the above integral explicitly,
and we expect to have

3∑
i=1

∫ [
− 1

|r − r′|3 + 3(ri − r ′
i )

2

|r − r′|5
]

ρ(r′) d3r′ = −4πρ(r).

(4)

However, the individual integrals are singular as r → r′
because of the factors of 1/|r − r′|3 and 1/|r − r′|5 in the
integrand. In the following we consider the singularities in
detail. Equation (4) also suggests that we can define a new
form of the Dirac δ function, and we will consider this issue
rigorously in Sec. II D.

B. Singular integrals

We classify a set of singular integrals that frequently occur
in integral equations. Consider singular integrals of the form∫

|r|<R

f (r)

|r|d dDr, (5)

where f (r) has a Taylor series expansion around the origin, and
D is the dimension of space that we will take to be continuous.
We introduce a shift in the denominator [8,21] by substituting
|r| ⇒ √

r2 + ε2 in order to easily isolate the infinite part of
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the singular integral. At the end of the calculation, the limit
ε → 0 will be imposed.

1. Basic singular integrals

We first consider a basic singular integral defined as

I0(R; d,δ) =
∫

|r|<R

1

|r|d dDr. (6)

Doing the “angular” integrations in D dimensions, we note
that dDr = AD rD−1 dr, where AD = 2πD/2/�(D/2) is the
surface area of the D-dimensional unit hypersphere. We
change |r| in the denominator to ρ = √

r2 + ε2 to write

I0(R; d,δ) ⇒ AD

∫ R

0
ρ−d rD−1 dr.

To leading order in ε the integral then becomes

I0(R; d,δ)

AD

= εδ �(−δ/2) �(D/2)

2 �(d/2)
+ Rδ

δ
, (7)

where δ = D − d. The details of evaluating this integral are
given in Appendix A. We now consider three limits for the
integral I0:

1. When δ > 0, the first term vanishes when ε → 0. In this
case I0 is not a singular integral.

2. When δ → 0, we have

I0(R; d,δ)

AD

= − �′(d/2)

2 �(d/2)
− γ

2
+ ln

R

ε
+ O(δ), (8)

where γ is Euler’s constant γ = 0.5772 . . .. In this case the
integral has a logarithmic singularity as ε → 0.

3. When δ < 0, we have

I0(R; d,δ)

AD

= Rδ

δ
+ ε−|δ|

[
�(−δ/2) �(D/2)

2 �(d/2)

]
. (9)

In this case we see that the singular integral has an ε−|δ|-type
infinity as ε → 0.

Therefore, we separate the infinite part of the singular
integral I0(R; d,δ) as follows:

I0(R; d,δ)

AD

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Rδ

δ
, for δ > 0, no infinity,

− �′(d/2)
2 �(d/2) − γ

2 + ln R
ε
, for δ = 0, log infinity,

Rδ

δ
+ ε−|δ|[�(−δ/2) �(D/2)

2 �(d/2)

]
, for δ < 0, ε−|δ| infinity.

(10)

Notice that the nature of the infinite part is determined only by
δ = D − d.

2. General singular integrals

The general singular integrals are defined as

Ik

(
R; d,δ,{ni}ki=1

) =
∫

|r|<R

x
n1
1 x

n2
2 · · · xnk

k

|r|d+N
dDr, (11)

where N = ∑k
i=1 ni . Let us first focus on the form

I1(R; d,δ,n) =
∫

|r|<R

xn

|r|d+n
dDr. (12)

The details of the evaluation of these integrals are given in
Appendix A, and we provide only the results here. When n is
odd, this integral vanishes, and when n is even, I1 is given by

I1(R; d,δ,n) = (D − 2)!!(n − 1)!!

(D + n − 2)!!
I0(R; d + n,δ), (13)

where (ni − 1)!! = (ni − 1)(ni − 3) · · · 1, and (−1)!! = 1.
The most commonly occurring nonzero case in typical ap-
plications is when n = 2 [see, for example, Eq. (4)], for which
we obtain

I1(R; d,δ,2) =
∫

|r|<R

x2

|r|d+2
dDr = 1

D
I0(R; d + 2,δ). (14)

Since the type of infinity just depends on δ, I1(R; d,δ,n) has
the same singular behavior as I0(R; d,δ). In fact, the general
singular integrals Ik are always multiples of the above basic

singular integral I0. When all ni are even numbers, Ik is given
by

Ik

(
R; d,δ,{ni}ki=1

) = (D − 2)!!
∏k

i=1(ni−1)!!

(D + n−2)!!
I0(R; d+N,δ),

(15)

and Ik vanishes otherwise. We note that these integrals all have
the same singular behavior as I0.

3. ε-singular integrals

We can have a singular integral that has ε in the numerator.
We assume that ε is a constant when performing the integra-
tion. Hence we will have

I ε
k

(
R; d,δ,{ni}ki=0

) =
∫

|r|<R

εn0x
n1
1 x

n2
2 · · · xnk

k

|r|d+n0+N
dDr

= εn0Ik

(
R; d + n0,δ − n0,{ni}ki=1

)
, (16)

where N = ∑k
i=1 ni . We need consider only the case when all

ni are even, since the integral vanishes otherwise. For nonzero
cases, we have

I ε
k

(
R; d,δ,{ni}ki=0

) = (D − 2)!!
∏k

i=1(ni − 1)!!

(D + N − 2)!!
× εn0I0(R; d + N + n0,δ − n0). (17)
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To simplify the notation we define I ε
0 (R; d,δ,n0) =

εn0I0(R; d + n0,δ − n0), so that

I ε
k

(
R; d,δ,{ni}ki=0

) = (D − 2)!!
∏k

i=1(ni − 1)!!

(D + N − 2)!!
× I ε

0 (R; d + N,δ,n0). (18)

Therefore, I ε
k is transformed to I ε

0 , and hence we need to
discuss the properties of I ε

0 . This is done in the following.

4. Basic ε-singular integrals

With the result for I0 derived above in Eq. (10), we have

I ε
0 (R; d,δ,n0) = εδ

[
�

(
n0−δ

2

)
�

(
D
2

)
2�

(
d+n0

2

)
]

+ εn0

(
Rδ−n0

δ − n0

)
.

(19)

The earlier definitions for I ε
k and I ε

0 are convenient because a
factor of εδ can be pulled out. Because n0 is always greater
than 0, the second term vanishes in the limit ε → 0 if δ �= n0.
When δ = n0, recall that I ε

0 is a multiple of I0, and by Eq. (10)
we have

I ε
0 (R; d,δ,n0) = εn0I0(R; d + n0,δ − n0)

= εn0

{
− �′[(d + n0)/2]

2 �[(d + n0)/2]
− γ

2
+ ln

R

ε

}
→ 0. (20)

Therefore, I ε
0 → 0 as ε → 0 for all δ > 0, even when δ = n0.

In summary, we obtain the following:
1. When δ > 0, we simply get I ε

0 (R; d,δ,n0) = 0.
2. When δ → 0, we have

I ε
0 (R; d,δ,n0) = �

(
n0
2

)
�

(
D
2

)
2�

(
d+n0

2

) + O(d), (21)

which is finite.
3. When δ < 0, we have

I ε
0 (R; d,δ,n0) = ε−|δ|

[
�

(− δ−n0
2

)
�

(
D
2

)
2�

(
d+n0

2

)
]

, (22)

which has a singularity arising from the ε−|δ| factor.

C. Integrable singular integrals

If two singular integrals have the same infinite part
their difference is a finite number. More generally, a linear
combination of singular integrals may sum to a finite number
when their infinite parts cancel. We call such combinations
as integrable singular integrals (ISIs) [22]. As will be shown
below, most of the singular integrals in physics applications
of potential theory and engineering analysis using Green’s
functions are ISIs [23].

For the nonzero cases, the integrals Ik(R; d,δ,{ni}ki=1) are
always a multiple of I0(R; d + N,δ), so that both classes of
integrals have the same type of infinity: logarithmic infinity
when δ = 0 and ε−|δ|-type infinity when δ < 0. Therefore,
we can take the linear combination of Ik(R; d,δ,{ni}ki=1) and
I0(R; d,δ) to cancel the singular parts and obtain ISIs [24].
Such ISIs are given by

I0(R; d,δ) − (d + N − 2)!!

(d − 2)!!
∏k

i=1(ni − 1)!!
Ik

(
R; d,δ,{ni}ki=1

)

=
⎧⎨
⎩

[
1 − (d+N−2)!!(D−2)!!

(D+N−2)!!(d−2)!!

]
AD

δ
Rδ, for δ < 0,

1
2

[



(
d+N

2

) − 

(

d
2

)]
AD, for δ = 0,

(23)

where all ni are even, and 
(x) = �′(x)/�(x) is the digamma
function. 
[(d + N )/2] − 
(d/2) can be written as




(
d + N

2

)
− 


(
d

2

)
= 2

d
+ 2

d + 2
+ · · · + 2

d + N − 2
.

(24)

Another type of ISI includes I ε
k . Because I ε

k can always
be transformed to I ε

0 , we just need to consider I ε
0 . We noted

earlier that I ε
0 is finite when δ = 0, and is integrable. When

δ < 0, we have

I0(R; d,δ) −
[

�
(− δ

2

)
�

(− δ
2 + n0

2

) �
(

d
2 + n0

2

)
�

(
d
2

)
]

I ε
0 (R; d,δ,n0)

= AD

δ
Rδ. (25)

We call the above the fundamental ISIs because all the
other ISIs can be written as linear combinations of them. Some
simple examples of fundamental ISIs are given as follows:

1. By setting k = 1, n1 = 2 in Eq. (23), we obtain the
simplest ISI, which takes the form∫

|r|<R

(
1

|r|d − d
x2

|r|d+2

)
dDr = AD

D
Rδ. (26)

It can be checked that this formula holds for all δ � 0 or δ < 0.
2. By setting n0 = 2 in Eq. (25), we have another ISI

obtained from I0 and I ε
0 , which we call ε2-ISI, for which∫

|r|<R

(
1

|r|d − d

d − D

ε2

|r|d+2

)
dDr = AD

δ
Rδ. (27)

D. The Dirac δ function in ISI

We note that

δ(D)(r) = 1

AD

D∑
i=1

(
1

|r|D − D r2
i

|r|D+2

)
(28)

is a Dirac δ function in the D dimension in the sense that [25]

1

AD

D∑
i=1

∫ [
1

|r − r′|D − D(ri − r ′
i )

2

|r − r′|D+2

]
ρ(r′) dDr′ = ρ(r).

(29)

To verify the above we take a series expansion of ρ(r′):

ρ(r′) = ρ(r) + (r′ − r) · ∇ρ(r) + O[(r′ − r)2]. (30)
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The leading term of the expansion gives

D∑
i=1

∫ [
1

|r − r′|D − D(ri − r ′
i )

2

|r − r′|D+2

]
ρ(r) dDr′

= ρ(r)D
∫ (

1

|s|D − Ds2
i

|s|D+2

)
dDs, (31)

where s = r′ − r. This is the simplest ISI with d = D. So from
Eq. (26) we have

D∑
i=1

∫ [
1

|r − r′|D − D(ri − r ′
i )

2

|r − r′|5
]

ρ(r) dDr′ = ADρ(r).

(32)

We can show that the further terms in the series expansion
are zero. Actually, any integral of the following form can be
expressed as

D∑
i=1

∫
|s|<R

(
1

|s|D − Ds2
i

|s|D+2

) D∏
i=1

s
ai

i dDs = λ I0(R; d,δ), (33)

where d = D − ∑
ai , with ai being the power of si in the

Taylor expansion of ρ(r′), δ = D − d = ∑
ai > 0, and λ is a

constant that is obtained by doing the angular integration and
is given by Eq. (15). Because δ > 0, we know this is a regular
integral with no singularity, and from Eq. (10) we obtain

D∑
i=1

∫
|s|<R

(
1

|s|D − Ds2
i

|s|D+2

) D∏
i=1

s
ai

i dDs = ADλ
Rδ

δ
. (34)

On the other hand, by evaluating the difference between two
such integrals over the ranges |s| < R1 and |s| < R2 with R2 >

R1 we have

D∑
i=1

∫ R2

R1

(
1

|s|D − Ds2
i

|s|D+2

) D∏
i=1

s
ai

i dDs = ADλ
Rδ

2 − Rδ
1

δ
.

(35)

We note that for s �= 0

D∑
i=1

(
1

|s|D − Ds2
i

|s|D+2

)
= D

|s|D − Ds2

|s|D+2
= 0. (36)

Hence the left-hand side of Eq. (35) is zero, so that λ = 0.
Therefore the integral in Eq. (34) vanishes. Combined with
Eq. (32), we reconstruct the relation Eq. (29).

Also, we can write the δ function as a limit:

δ(D)(r) = D

AD

lim
ε→0

[
1

(
√

r2 + ε2)D
− r2

(
√

r2 + ε2)D+2

]

= D

AD

lim
ρ→r+

(
1

ρD
− r2

ρD+2

)
. (37)

This new representation of the Dirac δ function can be used
to directly prove Eq. (4).

III. FURTHER RESULTS ON INTEGRABLE
SINGULAR INTEGRALS

We present here two important additional results that can
further substantially simplify the evaluation of integrable
singular integrals.

A. Singular integrals arising from the derivatives
of Green’s functions

With the formulas obtained from dimensional continuation
above we can prove a general theorem that shows that the
singular integrals coming from the derivative of Green’s
functions must actually be finite.

Theorem: If the Green’s function G(r) can be expressed as
the following series expansion:

G(r) =
∑
M

∑
{ni }

aM,{ni }
r

n1
1 r

n2
2 · · · rnD

D

rM
, (38)

then we have the following equality:∫
r�R

∂G(r)

∂ri

dDr = 1

R

∂

∂R

∫
r�R

ri G(r) dDr, (39)

which is always a finite number. We have relegated the proof
of this theorem to Appendix A. With this theorem we can
show that the integral of the double derivatives of the Green’s
function is also integrable, as shown below. In fact, this implies
that any finite-order derivatives of Green’s functions can be
integrated.

Assume the conditions of the above theorem hold for G(r).
Then the integral of the double derivative of G is also finite,
where we have∫

r�R

∂i∂jG dDr = 1

R

∂

∂R

∫
r�R

ri ∂jG dDr

= 1

R

∂

∂R

∫
r�R

[∂j (ri G) − δij G] dDr

= 1

R

∂

∂R

(
1

R

∂

∂R

∫
r�R

rirj G dDr
)

− δij

1

R

∂

∂R

∫
r�R

GdDr. (40)

B. Singular integrals over a general shape

In practical applications, we usually have singular integrals
over volumes V of any general shape rather than necessarily
spherically symmetric regions. We now generalize our method
to account for this in the following. Assume the conditions in
the above theorem hold for G(r). For an analytic function u(r),
we have∫

r�R

u ∂iG dDr =
∫

r�R

[∂i(uG) − G∂iu] dDr

= 1

R

∂

∂R

∫
r�R

ri uGdDr −
∫

r�R

G ∂iu dDr.

(41)
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We employ the characteristic function (Ref. [26], p. 313)
defined by

χV (r) =
{

1 r ∈ V,

0 r /∈ V.
(42)

[This is a generalization of the usual step function θ (x), which
is zero for x < 0 and unity for x > 0.] Then if we take a large
enough spherical integration range such that it contains V , we
have ∫

r�R

χV ∂iG dDr =
∫

V

∂iG dDr. (43)

By the Stone-Weierstrass theorem (Ref. [26], p. 159), the
characteristic function χV can be approximated closely by
polynomial functions. We can therefore apply this result to
obtain∫

V

∂iG dDr = 1

R

∂

∂R

∫
r�R

ri χV GdDr −
∫

r�R

G ∂iχV dDr

= êi ·
∫

∂V

n(r) G(r) dD−1r, (44)

where ∂V is the boundary of V , n(r) is the (outward directed)
unit normal vector on ∂V at r, and êi is the ith unit basis vector.
The first term in Eq. (44), having ∂/∂R, vanishes because χV

is zero outside V , so the integral does not depend on R. The
derivative of χV will become (the negative of) the δ function
on ∂V , as the derivative of the step function θ (x) is the delta
function δ(x), so the second term becomes an integration on
the boundary.

The above discussion is a physical explanation rather than
a strict mathematical proof. In order to provide a rigorous
proof, we need to have several conditions for V , such as the
requirement for compactness and convexity, and by saying
that χV can be approximated by polynomials we actually
mean a uniform convergence as stated by the Stone-Weierstrass
theorem. We also note that Eq. (44) can be applied when G

has 0−n singularities inside V ; however, it cannot be applied
when G has logarithmic singularities.

The formula in Eq. (44) is especially useful in the boundary
integral equation (BIE) method, where we break up the surface
into discrete triangles and have singular integrals of the
forms

∫
�

ρ ∂iG dS and
∫
�

ρ ∂i∂jG dS. In a small triangle �

enclosing the singularity we can assume ρ to be a constant ρ0.
With the above formula, we have

∫
�

∂iG dS =
3∑

k=1

(
êi · nk

∫
lk

G dl

)
, (45)

where the sum over k means that we evaluate the integral over
the three sides of the triangle, thereby reducing the BIE integral
to a sum of one-dimensional integrals.

IV. POISSON PROBLEM IN A FINITE DOMAIN

A. Poisson’s equation in three dimensions

Now we consider the boundary integral approach to a
typical 3D potential problem for which the Poisson Green’s

function is G(x,y) = 1/|x − y|. The boundary integral equa-
tion is given by∫

�

G(x,y)
∂ϕ(y)

∂n
dSy −

∫
�

n(y) · ∇xG(x,y)ϕ(y) dSy=4πϕ(x),

(46)

where ϕ(x) is the potential needed to be solved on the
boundary �, and n(y) is the unit normal vector on � at y. In a
numerical approximation of the boundary integral equation we
divide the surface � into nonoverlapping contiguous triangles,
so the original integration can be expressed by a sum of
2D integrations over flat triangles, and we express ϕ(y) by
polynomial functions in each triangle. In essence this is
the boundary element method. One problem arising in this
calculation is that if x and y lie in the same triangle, the
integration over this triangle will become singular because the
singularity appearing in G(x,y) and its derivative (and in other
examples its higher derivatives). We note that this problem
does not occur if x and y lie in different triangles because they
are separated and their distance will have a lower bound, and
G(x,y) will be a finite number.

In the following, we restrict our attention to the case when
x and y are in the same triangle �, and we define r = x − y.
The class of singular integrals that appear in such calculations
are

I1 =
∫

�

1

r
dS, I i

1 =
∫

�

ri

r
dS,

I i
3 =

∫
�

ri

r3
dS, I

ij

3 =
∫

�

ri rj

r3
dS, (47)

δij I3 − 3 I
ij

5 =
∫

�

(
δij

r3
− 3 ri rj

r5

)
dS.

The analytic results for these integrals have been evaluated
previously by accounting for the singularities through lengthy
procedures in two dimensions [18,19,27]. Here we are using
the notation in Ref. [18] for the integrals. Within our frame-
work, as developed in this report, the analytic expressions can
be obtained more easily because, with the exception of I1

which is a finite integral, the 2D integrals can be transformed
to (1D) line integrals, by employing the result in Sec. III B, as
follows:

I i
1 =

3∑
k=1

(
êi · nk

∫
lk

r dS

)
, I i

3 = −
3∑

k=1

(
êi · nk

∫
lk

1

r
dS

)
,

I
ij

3 = −
∫

�

rj ∂i

1

r
dS = −

3∑
k=1

(
êi · nk

∫
lk

rj

r
dl

)
+ δij I1,

δij I3 − 3 I
ij

5 =
∫

�

∂i∂j

1

r
dS =

3∑
k=1

(
êi · nk

∫
lk

∂j

1

r
dl

)
.

(48)

For the Poisson Green’s function, it can be verified that the
numerical results from the line integration perfectly match
the analytic expressions of the earlier work when they are
evaluated numerically [18]. We have verified that our line
integrals can also be evaluated analytically to obtain the same
expressions. In Table I we give the numerical comparison
between the two methods. We have taken the three vertices

016706-6



TAMING HYPERSINGULAR INTEGRALS USING . . . PHYSICAL REVIEW E 85, 016706 (2012)

of the triangle, shown in Fig. 3, to be (−2, − 1), (2, − 2), and
(1,1) as a general example for obtaining concrete numerical
results.

For more complex Green’s functions, evaluating the ana-
lytic expressions on arbitrary 2D surfaces with singularities
appearing inside them will be very lengthy procedures within
the framework of the methods used in the literature. Analytic
approaches in two dimensions would be more complex than
the 1D analytic approach presented here. Second, if numerical
integrations are performed over the 2D region, the presence
of the singularities reduce accuracy of the integrals in the
intermediate steps of the analysis. The 1D numerical integrals
that one would encounter correspondingly in our method will
not have any reduction in accuracy due to the singularities
since the integrations are on the boundary.

B. Poisson’s equation in two dimensions

For completeness we present a short elaboration of singular
integrals appearing in the 2D boundary integral method, even
though the following integrals are not ISIs. In the 2D Poisson
problem, cast in terms of the boundary integral method, we
have [17]

ϕ(r) = 1

4π

∮
dl′

[
G(r,r′)

∂ϕ(r′)
∂n′ − ϕ(r′)

∂G(r,r′)
∂n′

]
, (49)

where G(r,r′) = −2 ln |r − r′|. We can assume ϕ and ∂n′ϕ to
be constants, as a worst case scenario, over a small line element
from �a to �b, so that we need to evaluate the singular integrals:

B1 =
∫ �b

�a

ln s dl′, B2 =
∫ �b

�a

s · n′

s2
dl′, (50)

where s = r − r′. B1 is a well-defined integrable end-point
singular integral typified by∫ R

0
ln x dx = lim

ε→0
(x ln x − x)

∣∣R
ε

= R ln R − R. (51)

The integral B2 can be evaluated using the point-shifting
technique used earlier. We make use of the geometry displayed
in Fig. 1 and write dl′ = s dθ/cos α = s dθ/ŝ · n′. Then,

B2 =
∫ �b

�a

s · n′

s2

s dθ

ŝ · n′ =
∫ �b

�a

dθ. (52)

This integral in the limit ε → 0 corresponds to an angle
subtended by the contour at the singular point, so that for
a straight contour [see Fig. 2(a)] we have B2 = π , while
for a corner, as shown in Fig. 2(b), we have B2 = 3π/2,
as an exterior angle. Further details can be obtained for 2D
treatments of the boundary integral method in Ref. [17].

V. ISI IN ELECTROMAGNETIC SCATTERING

We illustrate the above considerations with a brief ap-
plication to the evaluation of electromagnetic fields emitted
by a conducting surface [28,29], where again integrable
singularities occur. (An additional example from the field of
fracture dynamics is described briefly in Appendix B.)

FIG. 1. (Color online) The contour used to identify the terms in
the integrand of the boundary integral approach for evaluating the 2D
Poisson potential.

A. 3D scattering

In 3D, the electric field radiated by a conducting surface
takes the form [21,30]

E = −ikZ0

∫
S

[
G(r,r′)J(r′) + 1

k2
∇∇G(r,r′) · J(r′)

]
dS ′,

(53)

where the Green’s function is given by G(r,r′) = eik�/4π�,
with � = |r − r′|, and Z0 = √

μ0/ε0 is the impedance of
free space [28]. The second term in the integral involves a
second derivative of the Green’s function, and therefore the
corresponding integral is a hypersingular integral. It is usual
to discretize the surface into small elements. As a simple
approximation, we may assume that the current J(r′) is a
constant J0 over a suitably small element (in general it can
be taken to be a simple polynomial). We can then write the
second term of the integral explicitly as∫

�S

∇∇G(r,r′) · J0 dS = J0 ·
∑
i,j

�̂i �̂j

∫
�S

Gij dS, (54)

FIG. 2. (Color online) The geometry used in evaluating the 2D
Poisson contour integral in the boundary element method: (a) for a
straight contour and (b) for an angular edge.

016706-7



ZEHAO LI AND L. R. RAM-MOHAN PHYSICAL REVIEW E 85, 016706 (2012)

FIG. 3. (Color online) The 2D triangular region for the evaluation
of the hypersingular integrals in the 3D Poisson problem with a
singularity located at (0,0) is shown. The 2D integrals over the triangle
calculated using the expressions given by Refs. [18,19] are compared
with our 1D line integral along the edges of the triangle in Table I.

where �S is an element containing the singularity and

Gij =
[

(3 − 3ik� − k2�2)�i�j

�5
− δij (1 − ik�)

�3

]
eik�. (55)

The singular integrals in
∫

Gij dS are

K1 =
∫

�S

(
3�2

i

�5
− 1

�3

)
dS, K2 =

∫
�S

�i�j

�5
dS, (i �= j ),

(56)

where we have expanded the exponential exp(ik�) 	 (1 +
ik�) for small � to isolate the singular terms. If we take the
region of integration to be a circle around the singularity, we
find K1 = π/R is the simplest ISI with d = 3,D = 2, and
K2 = 0 as is evident from Eq. (A13). In the full calculation, we
have to take the integral within and outside the circular region
separately; we then note that the integral over the exterior of the
circle is a regular integral and can be computed directly. These
identifications of the finite parts should substantially simplify
the computational modeling of electromagnetic scattering.

B. 2D scattering

In 2D scattering, the Green’s function is given by [28]

G(r,r′) = eik�

√
�

, (57)

where � = |r − r′|. Similarly, the components of ∇∇G are

∂i∂jG = [(
5
4 �− 9

2 − 2ik �− 7
2 − k2 �− 5

2
)
�i�j

+ ( − 1
2 �− 5

2 + ik �− 3
2
)
δij

]
eik�

= 5
4 �i�j �− 9

2 − 1
2 δij�

− 5
2

+ ik
( − 3

4 �i�j �− 7
2 + 1

2 δij�
− 3

2
) + O

(
�− 1

2
)
.

(58)

It can be easily checked that the singular terms in
∫

Gij dS

also sum to ISIs. For example, the leading terms of
∫

Gij dS

given by

K3 =
∫

�<R

(
1

�5/2
− 5

2

�2
i

�9/2

)
dS,

K4 =
∫

�<R

(
1

�3/2
− 3

2

�2
i

�7/2

)
dS, (59)

where K3 = πR−1/2 is the simplest ISI with d = 5/2,D = 2,
and K4 = πR1/2 is the simplest ISI with d = 3/2,D = 2.

VI. CONCLUDING REMARKS

We have used dimensional continuation in the evalua-
tion of integrals of the well-known Green’s functions and
their derivatives. We have identified the rules for obtaining
consistent results through the use of such methods for
the hypersingular integrals occurring in the BEM, potential
theory, electromagnetic scattering, and fracture analysis (see
Appendix B). We have provided a systematic approach to
the identification of the singularities in typical integrals and
shown how to isolate them using the dimensional continuation
method. We have identified new representations for the Dirac
δ function in D dimensions that are not stated in the standard
literature. These results are then used in the calculation of
examples of such integrals occurring in physical applications.
A summary of the integrable singular integrals is given in
tabular form in Appendix C. The theorem presented in Sec. III
shows how the potential problems in three dimensions, which
are reduced to 2D boundary integrals by Green’s theorem
with hypersingularities, can be further reduced to 1D finite
integrals. This provides a concrete example of the strength of
our approach through the further reduction in dimensionality
afforded the application of the theorem.

It is hoped that the present approach will provide an
effective, practical method of evaluating the so-called hyper-
singular integrals in computational science and engineering
applications. Our tabulated ISIs will lead to an automated
computation of the physical quantities of interest without
having to recalculate finite parts of integrals for each specific
occurrence.
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APPENDIX A: CLASSIFICATION OF SINGULAR
INTEGRALS

For convenience, we use the substitutions

ρ2 = r2 + ε2, r = (x1,x2, . . . ,xD),

δ = D − d, AD = 2π
D
2

�
(

D
2

) . (A1)

We will always use d as the order of the singularity of the
integrand, i.e., the power of r in the denominator of the
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integrand, and D as the dimension of the multidimensional
integration. It will be shown below that whether an integral is
singular, and if so the type of the infinite part, is determined by
δ = D − d. Here AD is the surface area of the D-dimensional
unit hypersphere.

1. The basic integral I0(R; d,δ) = ∫
|r|<R

1
|r|d d Dr

Doing the “angular” integrations in D dimensions, we note
that dDr = AD rD−1dr . We change |r| in the denominator to
ρ = √

r2 + ε2 to write

I0(R; d,δ) ⇒ AD

∫ R

0
ρ−d rD−1 dr.

The integral then becomes

I0(R; d,δ)

AD

=
∫ ∞

0
ρ−d rD−1 dr −

∫ ∞

R

ρ−d rD−1 dr. (A2)

The first integral can be expressed in terms of gamma
functions,∫ ∞

0

rD−1

ρd
dr = εδ

[
�(−δ/2) �(D/2)

2 �(d/2)

]
, (A3)

and the second integral can be expressed as a hypergeometric
function,∫ ∞

R

rD−1

ρd
dr = −

(
Rδ

δ

)
2F1

(
d

2
, − δ

2
; 1 − δ

2
; − ε2

R2

)
,

(A4)

where

2F1(a,b; c; z) =
∞∑

n=0

(a)n(b)n
(c)n

zn

n!
,

with (ξ )n = ξ (ξ + 1)(ξ + 2) · · · (ξ + n − 1), (ξ )0 = 1. From
the series expansion of the hypergeometric function, to leading
order in ε, we have∫ ∞

R

rD−1

ρd
dr = −Rδ

δ
[1 + O(ε2)]. (A5)

Therefore,

I0(R; d,δ)

AD

= εδ �(−δ/2) �(D/2)

2 �(d/2)
+ Rδ

δ
. (A6)

2. Integrals of the type I1(R; d,δ,n) = ∫
|r|<R

xn

|r|d+n d Dr

We suppose that the x above coincides with one of the xi

in Eq. (A1). In this case, we make the usual substitution into
hyperspherical coordinates:

x1 = r cos θ1, 0 � θ1 � π,

x2 = r sin θ1 cos θ2, 0 � θ2 � 2π,

...
... (A7)

xD = r sin θ1 sin θ2 · · · sin θD−1

dDr = rD−1 sinD−2 θ1 · · · dr dθ1 · · · dθD−1,

and shift the denominator from |r| to ρ = √
r2 + ε2 (with

x ≡ x1 without loss of generality, and θ1 = θ ) to write

I1(R; d,δ,n) ⇒ AD−1

∫ π

0

∫ R

0

(rn cosn θ )

ρd+n
rD−1 sinD−2 θ dr dθ

= AD−1

∫ R

0
ρ−(d+n) r [(D+n)−1] dr

∫ π

0
cosn θ sinD−2 θ dθ

= I0(R; d + n,δ) · AD−1

AD

∫ π

0
cosn θ sinD−2 θ dθ. (A8)

The angular integrals have been suppressed into AD−1,AD , which are the surface areas of the unit hypersphere in D − 1 and D

dimensions. The last integral in Eq. (A8) is a beta function, and we have

AD−1

AD

∫ π

0
cosn θ sinD−2 θ dθ =

{
0, for n odd,
�( D

2 ) �( n+1
2 )√

π �( D+n
2 )

, for n even.
(A9)

When n is even, the gamma functions can be simplified further to obtain

I1(R; d,δ,n) = (n − 1)(n − 3) · · · 1

(D + n − 2)(D + n − 4) · · · D I0(R; d + n,δ). (A10)

Since the type of infinity just depends on δ, I1(R; d,δ,n) has the same singular behavior as I0(R; d,δ). For example, the most
commonly occurring nonzero case in typical applications is when n = 2, for which we obtain

I1(R; d,δ,2) =
∫

|r|<R

x2

|r|d+2
dDr = 1

D
I0(R; d + 2,δ). (A11)

A. Integrals of the type I2(R; d,δ,m,n) = ∫
|r|<R

xm
1 xn

2
|r|d+m+n d Dr

For such integrals we again make the substitutions into hyperspherical coordinates

x1 = r cos θ1, x2 = r sin θ1 cos θ2, dDr = AD−2r
D−1 sinD−2 θ1 sinD−3 θ2 dr dθ1 dθ2, (A12)
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and as usual change |r| in the denominator to ρ = √
r2 + ε2 to obtain

I2(R; d,δ,m,n) ⇒ AD−2

∫ π

0

∫ π

0

∫ R

0

rm+n cosm θ1 sinn θ1 cosn θ2

ρd+m+n
rD−1 sinD−2 θ1 sinD−3 θ2 dr dθ1 dθ2

= I0(R; d + m + n,δ)
AD−2

AD

∫ π

0
cosm θ1 sinD+n−2 θ1 dθ1

∫ π

0
cosn θ2 sinD−3 θ2 dθ2

= �
(

D
2

)
�

(
m+1

2

)
�

(
n+1

2

)
π �

(
D+m+n

2

) I0(R; d + m + n,δ), (A13)

when both m and n are even, and I2 = 0 otherwise. Thus I2 also has the same singular behavior as I0(R; d,δ).

4. Integrals of the type Ik(R; d,δ,{ni }k
i=1) = ∫

|r|<R
x

n1
1 x

n2
2 ···xnk

k
|r|d+N d Dr; N = ∑k

i=1 ni

Using the same approach as above, we can obtain a general formula

Ik

(
R; d,δ,{ni}ki=1

) =
∫

|r|<R

x
n1
1 x

n2
2 · · · xnk

k

|r|d+N
dDr =

∏k
i=1(ni − 1)!!

(D + N − 2)(D + N − 4) · · · DI0(R; d + N,δ), (A14)

when all ni are even, and Ik = 0 otherwise. Also, (ni − 1)!! = (ni − 1)(ni − 3) · · · 1, and (−1)!! = 1.

5. Integral of the derivative of Green’s function

Theorem. If the Green’s function G(r) can be expressed as the following series expansion:

G(r) =
∑
M

∑
{ni }

aM,{ni }
r

n1
1 r

n2
2 · · · rnD

D

rM
, (A15)

then we have the following equality: ∫
r�R

∂G(r)

∂ri

dDr = 1

R

∂

∂R

∫
r�R

ri G(r) dDr, (A16)

which is always a finite number. Here M is any real number and the ni are non-negative integers.
We can prove this result for each of the terms in G. Let

g = r
n1
1 r

n2
2 · · · rnD

D

rM
, (A17)

and without loss of generality we take its derivative respect to r1 to obtain

∂1g =
(

n1

r1
− Mr1

r2

)
g. (A18)

Its integral is ∫
r�R

∂1g dDr =
∫

r�R

n1

r1
g dDr −

∫
r�R

Mr1

r2
g dDr. (A19)

If n1 is even or any of the other ni is odd, the multidimensional integral vanishes because of symmetry, and the theorem holds
trivially. Otherwise, notice that the two terms on the right-hand side of Eq. (A19) are, respectively, given by

g1 =
∫

r�R

n1

r1
g dDr = n1

∫
r�R

r
n1−1
1 r

n2
2 · · · rnD

D

rM
dDr = n1 ID(R; d,δ,{n1 − 1,n2, . . . ,nD}), (A20)

and

g2 = −
∫

r�R

Mr1

r2
g dDr = −M

∫
r�R

r
n1+1
1 r

n2
2 · · · rnD

D

rM+2
dDr = −M ID(R; d,δ,{n1 + 1,n2, . . . ,nD}), (A21)

where d = M − N + 1, N = ∑D
i=1 ni , and δ = D − d = D − M + N − 1.
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Recalling Eq. (23), we note that it applies to g1 and g2 with k = D, now that we have n1 odd and all other ni even. We then
obtain

g1 + g2 = n1!!
∏D

i=2(ni − 1)!!

D(D + 2) · · · (D + N − 1)
ADRD−M+N−1, (A22)

which holds for all δ and is always a finite number.
From the right-hand side of Eq. (A16) we have∫

r�R

r1 g dDr =
∫

r�R

r
n1+1
1 r

n2
2 · · · rnD

D

rM
dDr = ID(R; d,δ,{n1 + 1,n2 . . . ,nD}) = n1!!

∏D
i=2(ni − 1)!!

D(D + 2) · · · (D + N − 1)
I0(R; M,δ),

(A23)

where d = M − N − 1 and δ = D − M + N + 1. The derivative with respect to R applies only to I0, so that

∂

∂R
I0(R; M,D − M + N + 1) = ADRD−M+N, (A24)

which is a finite number, independent of whether I0 is a singular integral or not. Thus we have∫
r�R

∂g(r)

∂r1
dDr = 1

R

∂

∂R

∫
r�R

r1 g(r) dDr. (A25)

This equation holds if we take linear combination of different g, and we can also change r1 to any ri . Therefore, in general we
have ∫

r�R

∂G(r)

∂ri

dDr = 1

R

∂

∂R

∫
r�R

ri G(r) dDr. (A26)

APPENDIX B: FRACTURE ANALYSIS

It is important to show the generality of our method. The theory of crack energetics again illustrates the issue of resolving
hypersingular integrals using dimensional continuation. For the sake of completeness we briefly describe the relation appearing
in fracture analysis. The relation between surface displacements ui(P ) and tractions τi(P ) for a smooth crack is given by the
integral equation [8,31,32]

uj (P ) = 2
∫

∂C

[Uij (P,Q)τi(Q) − Tij (P,Q)ui(Q)] dsQ, (B1)

where ∂C is the crack surface. A sum over repeated indices is implied. The displacement Uij (P,Q) and traction Tij (P,Q) at the
observation point P due to source point Q are given by Kelvin’s solution,

Uij = 1

16π r (1 − ν) G
[(3 − 4ν)δij + ∂ir ∂j r] (B2)

and

Tij = − 1

8π r2 (1 − ν)

{
[(1 − 2ν) δij + 3 ∂ir ∂j r]

∂r

∂n
+ (1 − 2ν)(nj ∂ir − ni ∂j r)

}
, (B3)

where r = |rP − rQ|, ν is Poisson’s ratio, and G is the shear modulus. With the normal force N = Ni ei , the traction τ is given
by

τi(P ) = G

[
(∂jui + ∂iuj )Nj + 2ν

1 − 2ν
Ni ∂kuk

]
. (B4)

The derivative of ui can be obtained from Eq. (B1) to be substituted here, and we have

τi(P ) = 2GNj

∫
∂C

{[ ∂jUmi(P,Q) + ∂iUmj (P,Q)] τm(Q) − [∂jTmi(P,Q) + ∂iTmj (P,Q)] um(Q) } dsQ

+ 4ν

1 − 2ν
GNi

∫
∂C

[τm(Q) ∂kUmk(P,Q) + um(Q) ∂kTmk(P,Q)] dsQ. (B5)

We assume the boundary condition that the traction τm(Q) = 0 on the crack, so the above integral is simplified to

0 = −2GNj

∫
∂C

[∂jTmi(P,Q) + ∂iTmj (P,Q)] um(Q) dsQ − 4ν

1 − 2ν
GNi

∫
∂C

um(Q) ∂kTmk(P,Q) dsQ, (B6)
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and ∂kTij is given by

∂kTij (P,Q) = 1

8π (1 − ν) r3

{
3(δjk ∂ir + δik ∂j r − 5 ∂ir ∂j r ∂kr)

∂r

∂n
+ 3nk ∂ir ∂j r

+ (1 − 2ν)

[
δijnk − δjkni + δiknj + 3

(
ni ∂j r ∂kr − nj ∂ir ∂kr − δij ∂kr

∂r

∂n

)]}
. (B7)

We will show that the first integral of Eq. (B6) is a singular integral and can be resolved by the ISI method. The same
technique can be applied for the second integral. Invoking the finite element method, we assume the crack surface is flat over
a small element �S, and choose the local coordinate system so that the normal direction of �S is e3. Here �S contains the
singular point, so that P and Q are points in �S. On this element we have n = e3 and the normal force N = N3e3. Hence the
first integral in Eq. (B6) becomes

−2GN3

∫
�S

[∂3Tmi(P,Q) + ∂iTm3(P,Q)] um(Q) dsQ, (B8)

and ∂kTij becomes

∂kTij (P,Q) =
[

1

8π (1 − ν) r3

]
{3(δjk ∂ir + δik ∂j r − 5 ∂ir ∂j r ∂kr) ∂3r + 3δ3k ∂ir ∂j r

+ (1 − 2ν)[δij δ3k − δjkδ3i + δikδ3j + 3(δ3i ∂j r ∂kr − δ3j ∂ir ∂kr − δij ∂kr ∂3r)]}. (B9)

We further assume that um(Q) is a constant um over the small element �S, and consider the integral in Eq. (B6) to be over a
small circle centered at P . We then have the singular integral

Jim = 8π (1 − ν)
∫

r<R

[∂3Tmi(P,Q) + ∂iTm3(P,Q)] dsQ

= δim

∫
r<R

[
(3+12δ3m)(∂3r)2+3(∂mr)2−30(∂3r)2(∂mr)2

r3
+ (1 − 2ν)

2 − 3(∂3r)2 − 3(∂mr)2

r3

]
d2r, (B10)

with no sum over m. Notice that we take the integral to be on the xy plane, and the z direction is actually the direction along
which we shift the origin. We therefore write ∂3r = z/r = ε/r . Since Jim is zero for i �= m, we are left with

Jmm =
∫

r<R

[
3r2

m

r5
+ 3ε2

r5
− 30ε2r2

m

r7
+ (1 − 2ν)

(
2

r3
− 3r2

m

r5
− 3ε2

r5

) ]
d2r, for m �= 3 (B11)

and

J33 =
∫

r<R

[
18ε2

r5
− 30ε4

r7
+ (1 − 2ν)

(
2

r3
− 6ε2

r5

)]
d2r.

(B12)

When m �= 3, Jmm is a linear combination of the integrals

J1 =
∫

r<R

(
1

r3
− 3r2

m

r5

)
dS, J2 =

∫
r<R

(
1

r3
− 3ε2

r5

)
dS, J3 =

∫
r<R

(
1

r5
− 5r2

m

r7

)
dS. (B13)

Here, J1, J2 and J3 are all ISIs with no singularities. In the above, J1 = πR−1 is the simplest ISI with d = 3,D = 2, J2 = −2πR−1

is an ε2-ISI with d = 3,D = 2, and J3 = πR−3 is the simplest ISI with d = 5,D = 2. In fact, we have

Jmm = −J1 + J2 + 6ε2J3 + (1 − 2ν)(J1 + J2) = 2(ν − 2)πR−1. (B14)

Returning to J33 we see that it is a linear combination of J2 and J4 given by

J4 =
∫

r<R

[
1

r5
− 5

3

ε2

r5

]
dS. (B15)
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Here J4 = −(2πR−3/3) is an ε2-ISI with d = 5,D = 2. So
we have

J33 = 18ε2J4 + 2(1 − 2ν)J2 = −4(1 − 2ν)πR−1. (B16)

In all the above integrals the finite parts are explicitly deter-
mined by the ISI method. We thus see again that dimensional
continuation provides a unified approach to all hypersingular
integrals, making it easy to isolate the singularities, which
actually cancel, leaving a well-defined finite part.

APPENDIX C: TABLE OF INTEGRABLE
SINGULAR INTEGRALS

1. A table of the simplest ISI:
∫

r<R( 1
rd − x2 d

rd+2 )d Dr = AD
D R−(d−D)

TABLE II. A table of integrable singular integrals for spatial
dimension D = {1, . . . ,5}, with singular denominators r−d , with
d = {1, . . . ,5,d}.

Integral D d Value

∫
r<R

(
1
r

− x2

r3

)
dx 1 1 2∫

r<R

(
1
r2 − 2x2

r4

)
dx 1 2 2R−1

∫
r<R

(
1
r3 − 3x2

r5

)
dx 1 3 2R−2

∫
r<R

(
1
rd − d x2

rd+2

)
dx 1 d 2R−(d−1)

∫
r<R

(
1
r2 − 2x2

r4

)
dS 2 2 π∫

r<R

(
1
r3 − 3x2

r5

)
dS 2 3 πR−1

∫
r<R

(
1
r4 − 4x2

r6

)
dS 2 4 πR−2

∫
r<R

(
1
rd − d x2

rd+2

)
dS 2 d πR−(d−2)

∫
r<R

(
1
r3 − 3x2

r5

)
dV 3 3 4π/3∫

r<R

(
1
r4 − 4x2

r6

)
dV 3 4 4πR−1/3∫

r<R

(
1
r5 − 5x2

r7

)
dV 3 5 4πR−2/3∫

r<R

(
1
rd − d x2

rd+2

)
dV 3 d 4πR−(d−3)/3∫

r<R

(
1
rd − d x2

rd+2

)
d4r 4 d π 2R−(d−4)/2∫

r<R

(
1
rd − d x2

rd+2

)
d5r 5 d 8π 2R−(d−5)/15∫

r<R

(
1
rd − d x2

rd+2

)
dDr D d ADR−(d−D)/D

2. A table of the integrals:
ε2-ISI

∫
r<R( 1

rd − d
d−D

ε2

rd+2 )d Dr = − AD
d−D R−(d−D)

TABLE III. A table of ε2-integrable singular integrals for spatial
dimension D = {1, . . . ,5}, with singular denominators r−d , with
d = {1, . . . ,5,d}.

Integral D d Value

∫
r<R

(
1
r2 − 2 ε2

r4

)
dx 1 2 −2R−1

∫
r<R

(
1
r3 − 3

2
ε2

r5

)
dx 1 3 −2R−2/2∫

r<R

(
1
r4 − 4

3
ε2

r6

)
dx 1 4 −2R−3/3∫

r<R

(
1
rd − d

d−1
ε2

rd+2

)
dx 1 d −2R−(d−1)/(d − 1)∫

r<R

(
1
r3 − 3 ε2

r5

)
dS 2 3 −2πR−1

∫
r<R

(
1
r4 − 2 ε2

r6

)
dS 2 4 −πR−2

∫
r<R

(
1
r5 − 5

3
ε2

r7

)
dS 2 5 −2πR−3/3∫

r<R

(
1
rd − d

d−2
ε2

rd+2

)
dS 2 d −2πR−(d−2)/(d − 2)∫

r<R

(
1
r4 − 4 ε2

r6

)
dV 3 4 −4πR−1

∫
r<R

(
1
r5 − 5

2
ε2

r7

)
dV 3 5 −2πR−2

∫
r<R

(
1
r6 − 2 ε2

r8

)
dV 3 6 −4πR−3/3∫

r<R

(
1
rd − d

d−3
ε2

rd+2

)
dV 3 d −4πR−(d−3)/(d − 3)∫

r<R

(
1
rd − d

d−4
ε2

rd+2

)
d4r 4 d −2π 2R−(d−4)/(d − 4)∫

r<R

(
1
rd − d

d−5
ε2

rd+2

)
d5r 5 d −8π 2R−(d−5)/3(d − 5)∫

r<R

(
1
rd − d

d−D

ε2

rd+2

)
dDr D d −ADR−(d−D)/(d − D)

3. The Dirac δ function in ISI:
δ(D)(r) = D

AD
limρ→r+ ( 1

ρ D − r2

ρ D+2 ), (ρ2 = r2 + ε2)

TABLE IV. A table of Dirac δ functions in spatial dimension
D = {1, . . . ,4} arising in integrable singular integrals.

Dimension δ function

1 δ(1)(r) = 1
2 limρ→r+

(
1
ρ

− r2

ρ3

)
2 δ(2)(r) = 1

π
limρ→r+

(
1
ρ2 − r2

ρ4

)
3 δ(3)(r) = 3

4π
limρ→r+

(
1
ρ3 − r2

ρ5

)
4 δ(4)(r) = 2

π2 limρ→r+
(

1
ρ4 − r2

ρ6

)
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