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Lattice-type-dependent momentum-exchange method for moving boundaries
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The conventional momentum-exchange method (CME) is verified to be accurate for the stationary boundary by
Mei et al. [Phys. Rev. E 65, 041203 (2002)], but it might be inaccurate when the boundary is moving in the lattice
Boltzmann simulations. A lattice-type-dependent momentum-exchange method (LME) is presented to evaluate
the hydrodynamic force on moving boundaries, in which the additional momenta induced by the type-changing
lattices are well considered. LME preserves the superior features of CME, such as reliability, simplicity, and
parallelism. Without any interpolation and integration, the algorithm is independent of boundary geometries, and
therefore, efficient in computation and easy to be implemented in both two and three dimensions. A series of
cylinder sedimentations are simulated to illustrate the accuracy and robustness of LME, and the results are in
excellent agreement with those by the arbitrary Lagrangian-Eulerian technique (ALE). The lateral migrations
of a particle are also investigated in the simulations of a neutrally buoyant cylinder in a Poiseuille flow, and
consistent with the Segré-Silberberg effect.
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I. INTRODUCTION

Over the past two decades, the lattice Boltzmann equa-
tion [1–3] has developed into an alternative and promising
numerical scheme for simulating complex fluid flows [4–6]
and is particularly successful in applications involving in-
terfacial dynamics [7–9], microflows [10–12], multiphase
flows [13,14], magnetohydrodynamics [15–17], and complex
boundaries [18–21]. In the numerical stimulation of complex
fluid-solid flow [22–27], force evaluation plays an essential
role to depict exactly the behavior of the moving particle in the
carrier fluid. Many efforts have been contributed to develop and
improve the schemes of calculating the fluid-solid forces, and a
number of algorithms have been proposed. Up to now, the two
most commonly used schemes are the momentum-exchange
method and the stress-integration method, which have been
already successfully used to simulate the problems with
fluid-solid interactions.

A. Force evaluation based on momentum-exchange method

In the numerical simulations of particulate suspensions,
Ladd created the original momentum-exchange model for
evaluating hydrodynamic interactions [22,23]. His pioneer
works promoted the lattice Boltzmann method to become a
popular tool in simulating fluid-solid interaction problems. The
solid particle, in Ladd’s method, was defined by a boundary
surface and all lattices, both inside and outside of the solid
particle, were treated as fluid lattices in an identical fashion.
Ladd laid the particle boundary discretely and approximately
at the middle of the link between a solid node and a fluid
node, namely a fluid-solid link. A momentum item based on
the boundary velocity was added to the distribution functions
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which were bounced back from the particle boundary, and
the momentum-exchange occurred during the streaming step.
As a result, the force exerted on the solid particle by the
fluid was obtained by summing the momentum transfers over
all the fluid-solid links. In Ladd’s method, the population
rearrangements of the distribution functions can only be made
among the pairs of the opposite velocities crossing the particle
boundary.

Aidun et al. [24,25] improved Ladd’s model by directly
representing the solid particle without fluid inside. Arranging
the particle boundary approximately at one-half of the fluid-
solid links the same as Ladd’s method, he extended the halfway
bounce-back rule by adding the momentum item based on the
boundary velocity to the distribution function bounced back
from the particle boundary. An additional term was introduced
in order to conserve the mass of the boundary nodes. The
particle boundary, therefore, can be treated as an impermeable
surface in Aidun’s method. Another improvement in his
method is that, for moving solid particles, the momenta of
the covered and uncovered nodes were involved in the force
evaluation, but their effect was not investigated in detail. Later,
Behrend [28] proposed a relaxed bounce-back method by
combining bounce-back with halfway bounce-back in order
to avoid distribution functions being trapped between two
boundary nodes. Lorenz et al. [29] investigated the effects of
the Lees-Edwards boundary condition and added a correction
term to Ladd’s and Aidun’s methods in order to improve the
accuracy.

Mei et al. [30] introduced the curved boundary condition
[31–33] into the momentum-exchange method so that the
particle geometry could be accurately represented on the grid
level. The distribution functions bounced back from the solid
boundary and the force evaluation were carried out on the
real geometry of the solid particle instead of the previous
stepping edges, and the simulation accuracy was improved
consequently.
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Based on these momentum-exchange methods mentioned
above, Ladd [7,22,23] and Aidun [24,25] simulated the particle
suspension in fluid and provided some detailed analyses. Ladd
[34] studied hydrodynamic screening in sedimentation sus-
pensions of non-Brownian spheres. Qi et al. [26,35] simulated
the nonspherical particle in nonzero Reynolds number flow
and the behaviors of three-dimensional spheroidal particles in
Couette flows. Wan et al. [36] studied the sedimentation of a
single charged circular cylinder in Newtonian fluid. Zhang
et al. [37,38] simulated a charged elliptic cylinder and a
charged elastic dumbbell in Newtonian fluid, respectively.
Basagaoglu et al. [39] simulated the accelerated transport of
dense inert particles flows in smooth-walled and rough-walled
narrow channels in low Reynolds number. In 2002, Mei
et al. [30] compared the momentum-exchange method with
the stress-integration method proposed by He and Doolen [40]
and concluded that the former was simpler, more accurate, and
robust.

B. Force evaluation based on stress-integration method

Another usual scheme for evaluating hydrodynamic forces
is the stress-integration method. He and Doolen [40] proposed
the interpolation-supplemented lattice Boltzmann equation on
a polar-coordinate grid system near the cylinder surface and
evaluated the force by integrating the total stresses on the
surface of the cylinder:

F =
∫

∂�

dAn · [−pI + ρv(∇ · u + u · ∇)], (1)

where ∂� is the particle’s boundary, n the unit outward normal
vector, p the pressure, and I the unit matrix. With the irregular
grid, more lattices can be placed near the body to yield a
reliable velocity gradient. However, the accuracy would be
degraded due to the data conversion from the Cartesian grid to
the curvilinear coordinate.

According to the method proposed by Inamuro et al. [41],
the stress tensor can be calculated as follows:

σij = − 1

6τ
ρδij −

(
1 − 1

2τ

)∑
(eαi − ui)(eαj − uj )fα,

(2)

where δij is the Kronecker delta function and i,j = x,y.
This process avoided using velocity gradients to calculate the
stress tensor. With S denoting a closed surface apart from
the cylinder, the hydrodynamic force could be computed by
integrating the stress tensor and momentum flux on S:

F =
∫

S

{σ · n − ρu [(u − V) · n]} · ds, (3)

where n is the unit outward normal vector of the boundary
and V is the velocity of the mass center of the solid particle.
The integral of Eq. (3) was approximated by the numerical
quadrature of 400 points. Since the circular surface was
represented by the square grids, the diameter of S was chosen
to be 1.16 times the cylinder diameter. As a result, this method
is approximate and very limited in use.

Based on the method presented by Inamuro et al. [41],
Li et al. [42] applied the curved boundary condition to stress
tensor integration and proposed an extrapolation scheme to

obtain the distribution functions of the virtual points which
are evenly scattered on the particle boundary. The fluid-solid
interaction was also computed by Eqs. (2) and (3).

Using these stress-integration methods, He and Doolen [40]
simulated two-dimensional flow around a circular cylinder.
Inamuro et al. [41] studied the motions of single and two-
line cylinders in the flow. Xia et al. [43] investigated the
sedimentation of an elliptical particle. In 2004, Li et al. [42]
compared a series of cylinder sedimentations in Newtonian
fluid with those done by the arbitrary Lagrangian-Eulerian
technique [44] and reached good agreement. They concluded
that the stress-integration method obtained better accuracy
than the momentum-exchange method.

C. Comparison of the two methods for force evaluations

The stress-integration method [42] with the curved bound-
ary condition gets some good results for the force evaluation
of moving boundaries in the lattice Boltzmann simulations.
However, the distribution functions of the virtual points on
the boundary can only be obtained by complex extrapolation
schemes. So the stress-integration method not only is more
noisy and unstable, but also causes much heavier computing
loads than the momentum-exchange method. Furthermore,
as the integration is carried out on the whole boundary, the
stress-integration method encounters especial troubles on the
boundary with complex geometries. For example, how to
distribute the virtual points equably on the curved surface is
not trivial work, especially in three dimensions.

On the contrary, the momentum-exchange method is based
directly on the distribution functions, and the fluid-solid
interaction can be calculated simply by the summation of
the momenta passing through the boundary without any
interpolation or extrapolation procedure. Since the momen-
tum density is immediately defined as the product of the
distribution function and its corresponding discrete velocity,
the implementation of the algorithm is very simple. The
computing locality and the consequent superior parallelism
of the lattice Boltzmann method are fully preserved in the
momentum-exchange method. Furthermore, the momentum-
exchange method is independent of the boundary geometry,
and thus easily applied to the simulations with complex
geometries in both two and three dimensions.

In both Ladd’s and Aidun’s methods, the particle bound-
ary is set at the middle of the fluid-solid links; the real
particle boundary is replaced by a series of stepping edges.
Consequently, the force evaluation based on these methods
has to be approximate even if some correction terms are
considered [29]. In the method proposed by Mei et al. [30],
the particle boundary can be exactly represented by using the
curved boundary condition, thus the approximate result from
the zigzag boundary is improved. Mei et al. verified the con-
ventional momentum exchange [30] by several test cases with
stationary boundaries, including pressure-driven channel flow,
uniform flow past a column of cylinders, flow past a cylinder,
flow past a sphere, and so on, and concluded that it is simple,
accurate, and robust in computing hydrodynamics forces on
curved boundaries. The accuracy of the momentum-exchange
method for the problems involving moving boundaries was not
investigated. In fact, the conventional momentum-exchange
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method [30] is inaccurate when it is applied to the cases with
moving boundaries, which will be illustrated in the following
sections (as shown in Figs. 3 and 5–8).

Consequently, it is meaningful to develop an improved
momentum-exchange method, which not only preserves the
original merits, but also can be used to evaluate accurately the
hydrodynamic force on moving boundary.

D. Scope of the present work

The paper is organized as follows. In Secs. II and III we
briefly describe the lattice Boltzmann method and the curved
boundary conditions. Section IV is devoted to a description
of the lattice-type-dependent momentum-exchange method.
The numerical simulations with the lattice-type-dependent
momentum-exchange method and their comparisons with the
published results are presented in detail in Sec. V. Section VI
concludes the paper.

II. LATTICE BOLTZMANN METHOD

The lattice Boltzmann equation (4) with a single relaxation
time approximation (SRT) is given by

∂fi

∂t
+ ei · ∇fi = − 1

τ

(
fi − f

(eq)
i

)
, (i = 0,1,2, . . . ,N − 1),

(4)

where ei is a discrete velocity vector, fi the particle distribution
function with the velocity ei , f

(eq)
i the corresponding equi-

librium distribution function, N the number of the different
velocities in the model, and τ the relaxation time. Equation (4)
is then discretized, in space x and time t , into

fi(x + eiδt,t + δt) − fi(x,t) = − 1

τ

[
fi(x,t) − f

(eq)
i (x,t)

]
,

(5)

where δt is the time step. In the model on a square lattice
in two dimensions (D2Q9), the discrete velocity set is given by
e = {(0,0),(1,0),(0,1),(−1,0),(0,−1),(1,1),(−1,1),(−1,−1),
(1,−1)}. The particle equilibrium distribution function can be
written as

f
(eq)
i = ρωi

[
1 + 3

c2
(ei · u) + 9

2c4
(ei · u)2 − 3

2c2
u2

]
, (6)

where ω0 = 4/9, ω1,2,3,4 = 1/9, ω5,6,7,8 = 1/36. Based on
this equilibrium distribution function and applying the
Chapman-Enskog expansion, the continuity equation and the
Navier-Stokes equations can be recovered at the second-
order approximation from Eq. (2) if the density variation is
sufficiently small. The macroscopic physics quantities’ density
and momentum density are defined by the distribution function
fi :

ρ =
∑

i

fi, ρu =
∑

i

fiei . (7)

The lattice Boltzmann method applies two essential steps,
namely collision and streaming, to reveal the flow phenomena

FIG. 1. Lay out of the curved boundary.

at the mesoscopic scale. Hence, the corresponding computa-
tions of Eq. (5) are performed as

Collision: f̃i(x,t) − fi(x,t) = − 1

τ

[
fi(x,t) − f

(eq)
i (x,t)

]
,

(8)

Streaming: fi(x + eiδx,t + δt) = f̃i(x,t), (9)

where fi and f̃i denote precollision and postcollision states of
the particle distribution functions, respectively. The dominant
part of the computations, namely the collision step, is com-
pletely local, so the discrete equations are natural to parallelize.

III. BOUNDARY CONDITION
FOR COMPLEX GEOMETRY

Filippova and Hanel [31] presented firstly a curved bound-
ary treatment for the lattice Boltzmann model. Their method
considered a boundary lying between the solid and the fluid
nodes denoted, respectively, by xb and xf as shown in Fig. 1.
The physical boundary intersects the fluid-solid link between
xb and xf at the point xw. ei and eī stand for directions opposite
to each other, which are defined as ei = xb − xf and eī = −ei ,
respectively. The lattice spacing is δx = 1. The fraction of the
intersected link in the fluid region is 
, that is,

� = |xf − xw|/|xf − xb|, 0 � � � 1. (10)

After the collision step, the distribution function f̃ī(xb,t)
must be computed to finish the streaming step. To obtain
a second-order scheme for “slow flow,” Filipova and Hanel
proposed using the following linear interpolation:

f̃ī(xb,t)= (1 − χ )f̃i(xf ,t)+χf
(∗)
i (xb,t) − 2ωiρ

3

c2
(ei · uw),

(11)

where uw is the velocity at xw, χ is the weighting factor, and
f

(∗)
i is a fictitious equilibrium distribution function given by

f
(∗)
i (xb,t)=ρ�i

[
1 + 3

c2
ei · ubf + 9

2c4
(ei · uf )2 − 3

2c2
u2

f

]
,

(12)
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where uf = u(xf ,t) is the fluid velocity, and ubf is the
assumed velocity at xb. Then χ and ubf are given by

ubf =
{

(
 − 1)uf /
, χ = (2
−1)/τ , for 
�0.5

uf , χ = (2
 − 1)/(τ −1), for 
�0.5.

(13)

Mei et al. [32,33] improved the stability of the scheme by
replacing Eq. (13) with

ubf =
{

(1 − 3/2
)uf , χ = (2
−1)/(τ + 0.5), for 
�0.5
uff , χ = (2
−1)/(τ − 2), for 
�0.5.

(14)

where uff is the fluid velocity at fluid node ff shown in Fig. 1.

IV. LATTICE-TYPE-DEPENDENT
MOMENTUM-EXCHANGE METHOD

A. Conventional momentum-exchange method

We analyze firstly how the momentum-exchange is im-
plemented in the lattice Boltzmann method. According to
the lattice Boltzmann equation, the momentum density is
described by Eq. (7), which represents the momentum of the
fluid in a lattice. On the other hand, the lattice’s momentum in
Eq. (7) can be interpreted as the sum of its eight momentum
components based on the principle of vectors superposition.
During the streaming step, the distribution function f̃i at site
x will stream to its neighbor lattice at site x + ei , and the
momentum component ei f̃i will also transfer from the original
lattice to the target lattice.

In the curved boundary condition [31–33], the distribution
functions bounced back from the particle’s surface are calcu-
lated by Eq. (11), in which the boundary positions between
the solid and fluid nodes are under exact treatment. Taking the
consistency into consideration, the bounced-back distribution
functions and their corresponding momenta can be regarded
as that streaming out of the solid nodes.

In the conventional momentum-exchange method [30], the
momentum exchange between the fluid and the solid particle
is obtained on the fluid-solid links. For a fluid-solid link
associated with the velocity ei with the direction from a
fluid node to a solid node, the momentum ei f̃i goes into
the solid particle and contributes a momentum increment
to it. For the reverse direction, eī f̃ī goes out of the solid
particle and contributes a momentum decrement to it. So, the
momentum-exchange value on the fluid-solid link, namely the
force, can be written as [30,42]

F(xb) = ei f̃i(xf ,t) − eī f̃ī(xb,t) = ei[f̃i(xf ,t) + f̃ī(xb,t)],

(15)

where f̃ī(xb,t) is calculated by Eq. (11), xf is a fluid node, xb

is a boundary node, i is the direction from xf to xb, and ī is
the opposite direction. The total hydrodynamic force Fp and
torque Tp acting on the solid particle are evaluated by

Fp =
∑

F(xb), (16)

and

Tp =
∑

(xb − R) × F(xb), (17)

FIG. 2. The nodes’ types are changed when the boundary moves
from the dotted curve to the real curve. Circles denote the fluid and
squares denote the particle. The shaded square a1 in (a) represents a
new solid node changed from a fluid node and the shaded circle a2 in
(b) represents a new fluid node changed from a solid node.

where R is the mass center of the solid particle, and the
summation runs over all the fluid-solid links. It is clear that
all momentum components used in the force evaluation are
always on the fluid-solid links.

B. Lattice-type-dependent momentum-exchange method

For the stationary boundaries, the accuracy of the con-
ventional momentum-exchange method was verified by Mei
et al. [30]. However, when the solid particle moves in a lattice
Boltzmann simulation, it may cover or uncover some lattices,
which lead to the changes of the lattice types. In the conven-
tional method, the momenta of the type-changing lattices are
not well considered, and the corresponding influences on the
hydrodynamic force evaluation are not investigated in detail
yet. In this article, we take the momenta of the type-changing
lattices into account, and establish the lattice-type-dependent
momentum-exchange method based on the curved boundary
condition.

It is obvious that each of the momentum components
passing through the boundary will change the momentum
of the solid particle. When the boundary shifts from the
dotted curve to the real curve in a time step as shown in
Fig. 2(a), the previous fluid node (a1) is devoured by the
solid particle and becomes a new solid node now. Each
of its momentum components goes into the boundary and
contributes a momentum increment to the solid particle. So,
the impulse force caused by the node (a1) can be written as

F(xc) =
∑

i

ei f̃i(xc,t), (18)

where xc is the position of a lattice changing from fluid into
solid and refers to the node (a1) in Fig. 2(a).

In a similar way, when the boundary moves as shown
in Fig. 2(b), the previous solid node (a2) is uncovered and
becomes a new fluid node. Each of its momentum components
goes out of the boundary and contributes a momentum
decrement to the solid particle. The impulse force caused by
the node (a2) can be written as

F(xc) = −
∑

i

ei f̃i(xc,t), (19)
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where xc is the position of a lattice changing from solid into
fluid and refers to the node (a2) in Fig. 2(b).

We add the momenta of the type-changing lattices into
the conventional momentum-exchange method, and then the
hydrodynamic force evaluation should include two parts for the
moving boundary. One is carried out on the fluid-solid links as
in the conventional method, and the other is obtained from the
type-changing lattices with Eqs. (18) and (19). Consequently,
the hydrodynamic force and torque exerted on the solid particle
can be written as

Fp =
∑

F(xb) +
∑

F(xc), (20)

and

Tp =
∑

(xb − R) × F(xb)+
∑

(xc − R) × F(xc), (21)

where the summation of xb runs over all the fluid-solid links
and the summation of xc on all type-changing lattices.

In order to prevent the impulse forces by Eqs. (18) and (19)
from generating the new type-changing lattices in the same
time step, the exertion of these forces can be postponed to
the next time step. With Eqs. (18)–(21), we know that the
force evaluation by the lattice-type-dependent method does
not need to buffer any more data or iterate any more steps
than the conventional method. So, the algorithm is efficient in
both the time complexity and space complexity, and does not
destroy the parallelism of the lattice Boltzmann method.

Because the lattice-type-dependent momentum-exchange
method is only dependent on the existing distribution functions
and independent of the collision step of the lattice Boltzmann
equation, it can be combined with different curved boundary
conditions and used in other lattice Boltzmann models,
such as the multiple-relaxation-time (MRT) [45,46], the two-
relaxation-time (TRT) [47], etc.

C. Distinction of the force evaluations

Figure 3 shows the hydrodynamic forces in the simulations
in Sec. V, which are evaluated by the conventional momentum-
exchange method (CME), lattice-type-dependent momentum-
exchange method (LME), and arbitrary Lagrangian-Eulerian
technique (ALE), respectively. It is clear that the result by

FIG. 3. Time-dependent particle force in the sedimentation
simulation at Re = 8.33.

LME is in excellent agreement with the benchmark from the
arbitrary Lagrangian-Eulerian technique, and that from the
conventional method deviates evidently from the others. This
implies that the momenta of the type-changing lattices, which
are ignored in the conventional method, are significant and the
lattice-type-dependent momentum-exchange method reflects
correctly the momentum-exchange between the solid particle
and its surrounding fluid when the boundaries are moving.

V. SIMULATION RESULTS AND DISCUSSION

The lattice Boltzmann method has been successfully ap-
plied to the simulations of particle suspensions, which play
an important role in many industrial and biological situations
[5,7]. In this section, we conduct some numerical simulations
to verify the proposed method. Section V A investigates the
accuracy of the lattice-type-dependent momentum-exchange
method by comparing to the benchmarks from the arbitrary
Lagrangian-Eulerian technique [44]. Section V B shows that
the proposed method can correctly simulate the Segré-
Silberberg effect [48].

A. Sedimentation of a circular cylinder in a vertical channel

The flow geometry is shown in Fig. 4. A circular cylinder is
deployed away from the channel’s central line in a static fluid
of a vertical channel. Since the mass density of the cylinder is
somewhat bigger than that of the fluid, it descends, rotates,
and translates under gravitational force and hydrodynamic
force. Finally, it reaches an equilibrium state in which the
cylinder goes down at a constant velocity along with the
central line. Hu et al. studied the issue extensively using the
arbitrary Lagrangian-Eulerian technique [44,49]. In a previous
paper [42], Li et al. used the stress-integration method to
evaluate the hydrodynamic force on the circular cylinder
and obtained good agreement with Hu’s results. Although
the conventional momentum-exchange method can describe
roughly the dynamic behavior of the cylinder, there are some
considerable discrepancies in velocities, angular velocities,
and trajectories. In the present paper, we study the same issue
by using the lattice Boltzmann method with the lattice-type-
dependent momentum-exchange method.

The diameter of the cylinder is 0.1 cm and the channel
width is 0.4 cm. The cylinder is released at 0.076 cm away

FIG. 4. Schematic diagram of cylinder sedimentation in a vertical
channel, G is the gravity.
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FIG. 5. Time-dependent particle trajectories at different Reynolds
numbers. The real curves are the numerical results from ALE and the
dotted curves are the results form CME while the symbols are the
simulation results from the lattice Boltzmann method with the present
momentum-exchange method.

from the left wall, and then it settles under the gravity |G| =
980 cm2/s. The fluid density and its kinematic viscosity
are 1 g/cm3 and 0.01 cm2/s, respectively. In the present
lattice Boltzmann simulations, the relaxation time τ is 0.6.
The diameter of the cylinder is d = 26 lattice units. Thus the
channel width is L = 104 lattice units. The channel length is
set as H = 800 lattice units. The cylinder is placed initially at
19.76 lattice units apart from the left wall in the horizontal
direction and at the middle of the channel in the vertical
direction. Zero velocities are applied uniformly at the inlet
and the normal derivative of the velocity is set to zero at the

outlet. The translation of the mass center and the rotation of the
solid particle are updated at each Newtonian dynamics time
step by using a so-called half-step “leap-frog” scheme [42].

We study four cases with different fluid-solid density
ratios, which are 1.0015, 1.003, 1.01, and 1.03, respectively.
The terminal Reynolds numbers of the particles are 0.522,
1.03, 3.23, and 8.33 correspondingly, which is defined as
Re = dup/v, where up is the final velocity of the particle.
The settling trajectories at different Reynolds numbers are
shown in Fig. 5, together with the simulation results from
ALE and CME methods. Figures 6–8 further display the
time-dependent velocities and angular velocities at different
Reynolds numbers. The simulating results of LME agree with
the benchmarks from ALE in a high degree of accuracy, while
those of CME show some evident differences.

We have also performed the simulations of the cylinder
sedimentations on MRT [45,46] with the curved boundary
condition proposed by Lallemand and Luo [20]. The parame-
ters are the same as those used above except that the relaxation
parameters for MRT are set as s0 = 0, s1 = 1.64, s2 = 1.54,
s3 = 0, s4 = 1.9, s5 = 0, s6 = 1.9, s7 = 1/0.6, s8 = 1/0.6 (0.6
is the value of the single relaxation parameter of SRT). The
LME and CME results on MRT are almost identical to their
counterparts on SRT, namely Figs. 3 and 5–8. These illustrate
that LME is independent of a given curved boundary condition
and can be used on different lattice Boltzmann models.

B. Motion of a neutrally buoyant circular cylinder
in a Poiseuille flow

Segré and Silberberg [48] reported in 1962 that neutrally
buoyant particles in a pipe flow would migrate laterally away
from the wall and reach a certain lateral equilibrium position.

FIG. 6. Time-dependent particle velocities in horizontal direction at different Reynolds numbers.
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FIG. 7. Time-dependent particle velocities in vertical direction at different Reynolds numbers.

Karnis et al. [50] performed numerous experiments on the
migrations of various particles, including spheres, rods, and
disks, in a Poiseuille flow within a capillary tube. They verified
that this appeared to be due to an inertia effect of the flow.
Tachibana [51] found experimentally that the phenomenon
was clearer when the ratio of the particle diameter to the
pipe diameter exceeded 0.2. Using the lattice Boltzmann

method, Inamuro et al. [41] and Li et al. [42] investigated
numerically the phenomenon by the integration-stress method,
and the results were consistent with the Segré-Silberberg
effect. Meanwhile, Li et al. [42] reported that the conventional
momentum-exchange method gave false trajectories of the
cylinder. No matter where the cylinder was released in the
tube flow, it always migrated towards the middle and finally

FIG. 8. Time-dependent angular velocities at different Reynolds numbers.
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FIG. 9. Neutrally buoyant circular cylinder floating in Poiseuille
flow.

stayed at the center line of the tube, if the hydrodynamics force
was evaluated by the conventional method.

Figure 9 displays a schematic diagram in our lattice
Boltzmann simulations of a single cylinder in a Poiseuille
flow. The length of the tube is 500 lattice units and the width is
D = 100 lattice units. The diameters of the cylinders are Ds =
0.25D,0.35D respectively. The pressure drop from the inlet to
the outlet is 2
p, where 
p = 2 × 10−4. Pressure boundary
conditions [52] are applied at both the inlet and outlet. The
cylinder is placed initially at the middle of the tube in the
horizontal direction and at yc/D = 0.2,0.25,0.35,0.40,0.45
in the vertical direction, where yc is the vertical position of the
cylinder. The relaxation time is set as τ = 0.75. The flow and
the particle are set at rest at the beginning, and the flow evolutes
and approaches steady state gradually. Then, the particle is
released and moves with the fluid flow, and it reaches the lateral
equilibrium position finally. The terminal Reynolds number of
the Poiseuille flow is 9.6.

Our simulating results with Ds = 25 and Ds = 35 are
plotted in Fig. 10. It is quite obvious that the Segré-Silberberg
effect is well found in our simulations. The final equilibrium
position of the cylinder with Ds = 25 is yc/D = 0.286, which
is similar to the simulated results by Inamuro et al. [41] and
Li et al. [42]. The equilibrium position of the cylinder with
Ds = 35 is yc/D = 0.311, which is closer to the center line
than that with Ds = 25. This is consistent with the observed
results by Karnis et al. [50] and Tachibana [51] that the lateral
migration of spheres in pipe flows depends mainly on the ratio
of the sphere diameter to the pipe diameter, and the larger the
particle is, the closer to the center line it will migrate.

VI. CONCLUSION AND DISCUSSION

We have proposed a lattice-type-dependent momentum-
exchange method to evaluate the hydrodynamic forces on
moving boundaries in the lattice Boltzmann simulations.
Supplementing the momenta of the type-changing lattices
into the conventional approach, the lattice-type-dependent
momentum-exchange method obtains a high degree of accu-
racy in the test cases.

A series of cylinder sedimentations in a vertical tube are
investigated to verify the proposed method, and the results
show that the simulated time-dependent trajectories, forces,
velocities, and angular velocities of the moving particles are
in excellent agreement with the benchmarks from the arbitrary
Lagrangian-Eulerian technique. Compared with CME, by
which the cylinder in a Poiseuille flow always migrates to
the center line in the simulation, the approach presented
here can simulate correctly the lateral migration, and the
results are consistent with the Segré-Silberberg effect as
well as the previous published results. All the numerical
results illustrate that the algorithm presented here can be used
to evaluate accurately the hydrodynamic forces on moving
boundaries.

It is important that the proposed method is independent of
the boundary geometries and is easily implemented in both
two and three dimensions. This offers the ability to evaluate
conveniently the hydrodynamic forces on complex and moving
geometries with a high level of accuracy in lattice Boltzmann
simulations, which are usually hard to handle by the boundary-
integration method. Finally, LME can also utilize other curved
boundary conditions and can be implemented on different
lattice Boltzmann models, such as SRT, MRT, TRT, etc.
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FIG. 10. Lateral migration of a cylinder from different initial positions in a Poiseuille flow with Ds/D = 0.25, 0.35, obtained by lattice
Boltzmann method with the lattice-type-dependent momentum-exchange method at Reynolds number Re = 9.6. The final equilibrium positions
of the cylinders are yc/D = 0.286, 0.311.
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