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Discrete-element model for the interaction between ocean waves and sea ice
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We present a discrete-element method (DEM) model to simulate the mechanical behavior of sea ice in response
to ocean waves. The interaction of ocean waves and sea ice potentially can lead to the fracture and fragmentation
of sea ice depending on the wave amplitude and period. The fracture behavior of sea ice explicitly is modeled
by a DEM method where sea ice is modeled by densely packed spherical particles with finite sizes. These
particles are bonded together at their contact points through mechanical bonds that can sustain both tensile
and compressive forces and moments. Fracturing naturally can be represented by the sequential breaking of
mechanical bonds. For a given amplitude and period of incident ocean waves, the model provides information
for the spatial distribution and time evolution of stress and microfractures and the fragment size distribution. We
demonstrate that the fraction of broken bonds α increases with increasing wave amplitude. In contrast, the ice
fragment size l decreases with increasing amplitude. This information is important for the understanding of the
breakup of individual ice floes and floe fragment size.
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I. INTRODUCTION

The purpose of this paper is to present a discrete-element
model (DEM) for understanding ocean wave and sea ice
interactions and the mechanical response of sea ice to waves
with various amplitudes and periods. This information is
particularly important in the study of ice margin dynamics in
the marginal ice zone (MIZ), for it helps in the understanding
of how ocean wave and sea ice interactions are related to the
breakup of individual ice floes and in determining the floe size
distribution in the entire MIZ [1,2].

Sea ice may fill inlets and harbors of the Arctic Ocean and
the Antarctic continent [1]. Most ice fields are shielded from
direct interaction with the outer ocean waves and may grow
over many years. The boundary zone between the open and
the ice-covered sea is referred to as the MIZ, which consists
of many individual ice floes with various shapes and types.
Ocean waves play an important role in ice dynamics in the MIZ
because they are the primary energy source that is responsible
for the breakup or fragmentation of sea ice [1].

The effect of ocean waves in ice dynamics is well
documented in the literature [3–5]. In principle, wave energy
propagates in the form of flexural-gravity waves in ice floes
accompanied by the energy loss due to the wave scattering
at imperfections, the ice creep deformation, and the floe
collision that leads to the wave attenuation. The ice floe
could significantly be deformed while the flexural-gravity
wave penetrates into it. Depending on the magnitude and
the frequency of the ocean waves, the fracturing can occur
if the stress or strain induced in the ice is greater than the
ice can sustain. This provides an important mechanism for
the breakup of a vast ice field into many pieces of floes. The
thermodynamics of ice grow, and ice melt can significantly be
changed due to the breakup of ice floes where the ice melting
is accelerated during the summer and the ice formation is
enhanced during the winter [6,7].
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The mechanical behavior of ice is significantly affected
by the nucleation and growth of microfractures. Realistic
and robust models for sea ice should account for these
details at small and large scales. The DEM described in this
paper is an approach to approximate complex materials as
assemblies of independent discrete elements (particles) of
various sizes, shapes, and other properties that interact via
cohesive interactions, repulsive forces, and friction forces. The
macroscopic behavior can be treated as a collective behavior
of many interacting discrete elements.

DEM was introduced by Cundall and co-workers [8–10]
as an alternative to continuum mechanics. It has been applied
extensively to simulations of ball mills [11], the shear flow
of noncohesive granular materials [12], the behavior of
crushable soil agglomerates [13], and the mechanical behavior
of rocks [14]. Recently, Wilchinsky et al. introduced a DEM
model to the study of the effect of wind stresses on the
rupture behavior of an ice pack and the pattern of faults
due to the ice mechanical failure [15,16]. In DEM, both the
grains and the mechanical bonds are deformable, and the
bonds may break when either the tensile or the shear stress
exceeds the critical strength. Similar to other popular particle
methods, such as smoothed particle hydrodynamics [17,18]
and dissipative particle dynamics [18–20], the movement of
each DEM particle, including translation and rotation, can
be calculated from Newton’s second law through explicit
numerical integration in the fashion of molecular dynamics
(MD).

In this paper, we describe a DEM model for modeling the
mechanical behavior of sea ice due to the interaction with
ocean waves of various amplitudes and periods. The fracturing
behavior is expected to be important in this application
and is included naturally in the DEM model. The model
provides important insight for a better understanding of the
breakup of sea ice in the MIZ. This paper is organized as
follows. Section II describes the general DEM, followed by
the parametrization of a DEM model for sea ice in Sec. III and
a DEM model for ocean wave and sea ice interaction in Sec. IV.
Section V provides the numerical results and discussion.
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FIG. 1. A schematic of interaction forces between DEM particles
A and B. The gray square represents the mechanical bond between
particles A and B.

II. DEM

In the standard DEM, the computational domain is dis-
cretized into a collection of circular two-dimensional (2D) or
spherical (3D) particles of various sizes. Each particle has a
finite size and mass, and the particles are kept together by
bonds at their points of contact. The contact forces (normal
and shear force) and moments (in-plane twist and out-of-plane
bending moment) between DEM particles can be calculated
in an incremental fashion or from their relative displacements.
The displacement of each particle, including translation and
rotation, can be calculated from Newton’s second law through
an explicit numerical integration in the fashion of MD.
Dynamic fracturing naturally can be modeled through the
sequential breakup of interparticle bonds.

As shown in Fig. 1, particles have a finite stiffness so that
two particles are allowed to overlap in a small region relative
to their size. The overlap between the particles results in a
contact force. The bond between two particles is treated as
a mechanical element that also has a finite stiffness and can
carry both force and moment. In Fig. 1, the bond (gray area),
connecting particles A and B, can break depending on the
interactions between two particles. To summarize, particles
A and B interact with each other through both the contact
force and the mechanical bond. The total resultant force
and moment due to the interaction between two particles,
therefore, are composed of the contact contribution (Fg) and
the bond contribution (Fb and Mb), namely, the contribution
from the grain-grain interaction and from the mechanical bond,
respectively.

The contact force contribution Fg can be resolved into
the normal (Fn

g ) and shear components (F s
g ) with respect

to the contact plane between particles A and B. A linear
force-displacement law is employed for each component,
where

Fn
g = Knun, (1)

and

�Fs
g,t = −Ks�us

t . (2)

Kn and Ks are the grain normal and shear stiffness, and un

is the displacement along the centerline connecting A and B.
Shear component F s

g,t is computed in an incremental fashion
[Eq. (2)] in the sense that �Fs

g,t , the increment of shear
component F s

g at time t, is computed at each time step based
on the shear displacement increment �us

t (perpendicular to the
centerline). Therefore, the total shear component at the next
time step can be written as

F s
g,t+�t = F s

g,t + �Fs
g,t . (3)

The bond contribution Fb to the total force can be resolved
into normal (Fn

b ) and shear components (F s
b ) in a similar

fashion,

Fn
b = knAun, (4)

and

�Fs
b,t = −ksA�us

t . (5)

Here, kn and ks are the bond normal and shear stiffness per
unit area. A is the area of the bond cross section and is chosen
to be A = πR2, where R = min(R(A),R(B)) is the radius of
the bond chosen to be the smaller size of particles A and B.
The total shear component F s

b,t can be computed as

F s
b,t+�t = F s

b,t + �Fs
b,t . (6)

The bond moment contribution Mb can be resolved into
the bending moment (Ms

b , acting out of the contact plane) and
the twisting moment (Mn

b , acting in the contact plane). Linear
relationships are established between the moments and the
bending and twisting angles,

Ms
b = −ksIθs, (7)

and

Mn
b = −knJ θn, (8)

where I and J are the moment of inertia and the polar moment
of inertia, respectively. θs and θnare the bending and twisting
angles. The maximum normal (σb) and shear stress (τb) in the
cross section of the mechanical bond can easily be calculated
with given contact and bond contributions,

σb = −Fn
b

A
+

∣
∣Ms

b

∣
∣R

I
, (9)

and

τb =
∣
∣F s

b

∣
∣

A
+

∣
∣Mn

b

∣
∣R

J
, (10)

where R is the radius of the bond cross section. The mechanical
bond can break if either normal (σb) or shear stress (τb)
in the bond is beyond its strength (threshold σb > σ MAX

b or
τb > τMAX

b . There still exists grain-grain interaction (contact
force) if two particles come back into contact even after a bond
is broken. In principle, bond strengths σ MAX

b and τMAX
b can

be various numbers for different bonds to mimic the effect

016703-2



DISCRETE-ELEMENT MODEL FOR THE INTERACTION . . . PHYSICAL REVIEW E 85, 016703 (2012)

of random defects. In the current paper, we are using the
same strengths for every bond. At any time step, all bonds
with stresses larger than threshold values are removed from
the model along with all associated forces and moments.
In this manner, the complicated microfractures and fracture
network can be represented by the broken bonds, and the
fracturing process can be modeled as the sequential breakup
of mechanical bonds.

III. PARAMETRIZATION OF THE DEM SEA ICE MODEL

The DEM model parameters can be calculated using the
mechanical properties of sea ice. We use the following material
constants for wave and ice interactions and ice mechanical
properties: the Young’s modulus of ice E = 6 GPa, the Poisson
ratio ν = 0.3, the density of water ρw = 1025(kg/m3), and the
density of ice ρi = 922.5(kg/m3) [1,21]. The ice tensile and
compressive strength have been measured by a number of
researchers [22]. In general, the ice strengths are dependent on
temperature, strain rate, and many other factors. The tensile
strength σt has a wide range from 0.7 to 3.1 MPa, with an
average strength of 1.43 MPa for the temperature range of
−10 ◦C to −20 ◦C. The compressive strength σc ranges from
5 to 25 MPa in the same temperature range [22].

An example of the relationship between the material
modulus and the DEM parameters is provided in Ref. [14].
Input parameters in the DEM sea ice model should be chosen to
match the ice strength. We implement simulations for uniaxial
tests to calibrate DEM model parameters with ice mechanical
properties. The inset of Fig. 2 shows the geometry used in
uniaxial tests with a width of w = 2.5 m and a height of h =
5 m. Periodic boundary conditions were applied to the vertical
boundaries, and both upper and lower horizontal boundaries
were subjected to a constant vertical speed to mimic the
constant strain rate tests. A time step �t = 1.24 × 10−5 was
chosen for explicit integration so that any disturbance cannot
propagate farther than its neighbors in a single step [14].
Figures 2 and 3 show the macroscopic stress-strain curves
for uniaxial tensile and compressive tests obtained directly by
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FIG. 2. (Color online) The stress-strain curve from a DEM
uniaxial tensile simulation with a tensile strength (the maximum
tensile stress) of σt = 2.7 MPa .
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FIG. 3. The stress-strain curve from a DEM uniaxial compressive
simulation with a compressive strength (the maximum compressive
stress) of σt = 9.5 MPa.

DEM simulations with parameters,

Kn = ED and Ks = 0.4ED, (11)

kn = E/D and ks = 0.4E/D, (12)

σ MAX
b = 0.001E and τMAX

b = 0.001E, (13)

where D = 0.1 m is the average diameter of the DEM parti-
cles. As adopted in most DEM simulations, the size of the DEM
particles is assumed to follow a uniform distribution in the
range [0.075–0.125 m] with an average size of D = 0.1 m. A
Poisson ratio of v = 0.25, used for the ice material and prefactor
0.4 in Eqs. (11) and (12), is a direct result of the relationship
between shear and Young’s modulus for isotropic materials
where Ks = Kn/2(1 + ν). The corresponding tensile and
compressive strength of the ice obtained from the DEM
simulations are σt = 2.7 MPa and σc = 9.7 MPa, well within
the range available from the literature [22]. In general, both the
size distribution and the ice strength can have effects on the ice
fragmentation behavior, which can be investigated carefully
by the same simulation methodology but with different DEM
parameters.

In reality, the microstructure of natural sea ice largely
depends on the ice formation processes. For example, the
granular ice forms under dynamic and turbulent conditions,
while the columnar ice forms under static conditions. The real
sea ice is a complex heterogeneous and anisotropic material
depending on the forming process. In the current paper, sea
ice was treated as a homogenous isotropic material in the
current model. However, heterogeneity can be introduced
naturally into the model through the position-dependent
DEM parameters where the effect of heterogeneity on ice
fragmentation can be studied in more detail.

IV. DEM MODEL FOR OCEAN WAVE AND
SEA ICE INTERACTIONS

The set of parameters described in Sec. III was used in
simulations of wave and ice interactions where an ice field
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FIG. 4. The variation in coefficients R and T as functions of wave
period 
 for ice thicknesses of 0.5, 1, 2, and 5 m at 100-m water depth.
(Fox and Squire, J. Geo. Res. 95, 11636, copyright 1990, reproduced
or modified by permission of the AGU) [21].

of length L and a uniform thickness h = 1 m is assumed to
float over ocean water of depth H = 100 m. We considered
the wave and ice interactions through the reflection and
transmission of waves at the edge of sea ice [1,21]. It has been
observed that both reflection and transmission are dependent
on the period 
 of the incident wave, the thickness h of
sea ice, the ice mechanical properties including the Young’s
modulus E and the Poisson ratio v, the sea water density ρw

and ice density ρi , and the water depth H over which the ice is
covering [1,21,23]. Intuitively, a thinner ice permits a greater
transmission, and a thicker ice leads to a larger reflection at the
ice edge. Reflection and transmission coefficients R and T can
be defined in terms of the amplitudes of surface displacement
for incoming, reflecting, and transmitting waves,

R = B1/A1 and T = A2/A1, (14)

where A1 is the amplitude of the incoming displacement
wave φi = A1e

i(k1x−ωt). The reflected wave is given by φr =
B1e

i(k1x−ωt), and the transmitted wave is defined as φt =
A2e

i(k2x−ωt), with B1 and A2 being the amplitudes. k1 and
k2 are wave numbers of incident and transmitted waves.

Fox and Squire [21] proposed a mathematical model for the
reflection and transmission coefficients at the edge of sea ice
where the sea ice is modeled as a continuous thin and elastic
plate of uniform thickness. We use the Bernoulli-Euler theory
for an elastic thin plate to describe the flexural-gravity wave
propagation in sea ice. Through the matching of solutions at the
interface between the open water and the water covered with
sea ice, the model is able to compute R and T with any given
wave period 
. Figure 4 shows the variation of coefficients R

and T with period 
 of the incident wave, a reprint from Fox
and Squire’s paper in Ref. [21].

We use the DEM model to study the interaction between
ocean waves and sea ice. Specifically, we study the effect
of amplitude and period of an ocean wave on the fracturing
of sea ice. In general, an ocean wave with larger amplitude
A2 and smaller wave number k2 has a greater potential to
break the ice floe than a wave with smaller amplitude and a
larger wave number. Furthermore, incident waves with shorter

1m
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x 
y 

FIG. 5. (Color online) The geometry of a model sea ice and the
DEM particle model.

periods result in transmitted waves with smaller transmitted
coefficients T but larger wave number k2.

In the DEM simulations, a 2D ice floe was generated as
shown in Fig. 5. The amplitude A2 and the wave number k2 for
transmitted wave φt are calculated from the incident wave φi

according to Fox and Squire [21] and are used to apply a load
in the DEM model. Implementation of boundary conditions
on complex stationary or moving boundaries is challenging
for particle methods [20]. The phase-field approach [24,25]
is based on the concept of diffuse interface and can be
used to provide an accurate way to represent boundaries for
particle methods. In this paper, difficulties associated with
the boundaries are removed as we do not explicitly model
the interaction between water and ice. In order to generate
a displacement field with the form of u (x,t) = A2 cos(k2x −
ωt) (the real part of φt ), the ice floe first, was deformed slowly
to an initial deformation of u (x) = A2 cos(k2x). A prescribed
velocity v (x,t) = A2ω sin(k2x − ωt) in the y direction was
applied to all DEM particles to deform the ice floe and to
generate the desired displacement field u (x,t).

To summarize, to simulate deformation of the ice due to
wave and ice interaction, a vertical velocity (in the y direction)
v (x,t) = A2ω sin(k2x − ωt) is applied to all DEM particles
forming the ice floe. The amplitude A2 and the wave number
k2 for transmitted wave φt with given period 
 (or angular
frequency ω) are found from the amplitude A1, the wave
number k1, and the period 
 of the incident wave.
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FIG. 6. (Color online) The variation in broken bond fraction α

with dimensionless simulation time τ for seven simulation cases in
simulation set 1.
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TABLE I. List of parameters for fourteen simulation scenarios.

Incident wave φi Transmitted wave φt

Length L (m) Period 
(s) Frequency ω (1/s) Amplitude A1 (m) Wave number k2 (1/m) Amplitude A2 (m)

Case 1-1 3.00 1.00
Case 1-2 2.625 0.875
Case 1-3 2.25 0.750
Case 1-4 104.7 6.28 1 1.875 0.06 0.625
Case 1-5 1.5 0.5
Case 1-6 1.125 0.375
Case 1-7 0.75 0.25
Case 2-1 6.00 0.48
Case 2-2 5.25 0.42
Case 2-3 4.50 0.36
Case 2-4 69.8 3.14 2 3.75 0.09 0.30
Case 2-5 3.00 0.24
Case 2-6 2.25 0.18
Case 2-7 1.50 0.12

We perform two sets of numerical experiments to simulate
the response of the sea ice subjected to incident waves with
different wave periods 
 and amplitudes A1. Each set includes
seven simulations with various wave amplitudes. Table I
summarizes parameters used in all simulations. In the first
set of experiments, the sea ice is subjected to an incident wave
with a longer period than the second set.

V. RESULTS AND DISCUSSION

As shown in Fig. 5, a total number of ∼10 000 DEM
particles with an average size of (D = 0.1 m) are used to model
the ice with a uniform thickness of h = 1 m and a length of
L = 2π/k2. The length L is chosen so that, at least, one entire
wavelength of a transmitted wave can be investigated.

A periodic boundary condition is applied in the x direction,
and a free boundary is used for the top and bottom surfaces
in all numerical simulations. The traveling transmitted wave
is generated in the sea ice structure by prescribing velocity
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FIG. 7. (Color online) The variation in broken bond fraction α

with dimensionless simulation time τ for seven simulation cases in
simulation set 2.

field vi(t) = A2ω sin(k2xi − ωt), where vi is the vertical
velocity of particle i and xi is the x component of the
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FIG. 8. (a) The variation in maximum broken bond fraction αmax

with the amplitude A1 of the incoming wave for all simulation cases.
(b) The variation in average fragment length l with the amplitude A1

of the incoming wave for all simulation cases.
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τ=2.0 

τ=1.5 

τ=1.0 

τ=0.5 

FIG. 9. (Color online) The overall response of sea ice for simu-
lation case 1-1 (an incident wave with 
 = 6.28 s and A1 = 3 m).
Color represents the stress σxx in the x direction normalized by the
ice modulus.

vector position of particle i. This leads to inhomogeneous
deformation and stress fields in the sea ice. The mechanical
bonds between DEM particles are allowed to break where
the local deformation produces stress exceeding the critical
stress of the ice. The passing transmitted wave gives rise to
a complicated and inhomogeneous stress distribution because
the dynamic bond-breaking process can redistribute the stress
field (stress is relaxed near the broken bonds). Redistribution
of the stress field, in turn, affects the bond breaking (the
microfracture distribution) in the ice structure. Eventually, the
sea ice can break apart depending on the amplitude and period
of the incident ocean wave.

We first present the time evolution of the number of broken
bonds that is used to quantitatively describe the extent of
damage in the sea ice. In all four cases, the fraction of broken
bonds α is monitored against the normalized simulation time
τ . The parameters α and τ are defined as

α = Nbroken/Ntotal, (15)

τ = 2t/
, (16)

τ=0.5 

τ=1.0 

τ=1.5 

τ=2.0 

FIG. 10. (Color online) The overall response of sea ice for
simulation case 2-5 (an incident wave with 
 = 3.14 s and A1 =
3 m). Color represents the stress σxx in the x direction normalized by
the ice modulus.

FIG. 11. (Color online) A snapshot at the end of the simulation for
case 1-1 (an incident wave with 
 = 6.28 s and A1 = 3 m) showing
the spatial distribution of microfractures (black arrows) and σxx . Color
represents the stress σxx in the x direction normalized by the ice
modulus.

where 
 is the period of the transmitted wave. Nbroken and
Ntotal denote the number of broken bonds and total bonds
in the DEM model. Figures 6 and 7 show the variation in
α with dimensionless simulation time τ for the simulation
sets 1 and 2, respectively. As expected, α (the fraction of
broken bonds) is monotonically increased to an asymptotic
value, which is reached at τ = 2 when the transmitted wave
travels by one wave period 
 in all simulations. The final value
αmax is significantly different for each case depending on the
incident wave period and amplitude. Figure 8(a) shows the
variation in αmax with input wave amplitudes and periods. In
general, there only is a negligible damage caused in sea ice
by incoming waves with small amplitudes (1.125 m for case
1–6, 0.75 m for case 1–7, 2.25 m for case 2–6, and 1.5 m for
case 2–7). A significant increase in damage will be observed
for waves with larger amplitudes (1.5 m for case 1–5 and 3.0
m for case 2–5). After the initial incubation stage, the damage
parameter αmax is increased almost linearly with the incoming
wave amplitude. For waves with largest amplitudes (3.0 m for
case 1-1 and 6.0 m for case 2-1), α reaches almost 8%. It was
also shown that waves with the same amplitudes but longer
periods cause much more damage than waves with shorter
periods.

If the sea ice is assumed to break apart into fragments with
a uniform length l (the assumption is valid for a traveling
transmitted wave that is periodic in both space and time),
then the relationship l = 10L/(αNtotal) can be obtained, where
10 is the average of broken bonds needed to break the ice
floe in the thickness direction. It is clear that the average
fragment size (l) is inversely proportional to α. Figure 8(b)
shows the dependence of the average fragment size l on

FIG. 12. (Color online) A snapshot at the end of the simulation
for case 1-5 (an incident wave with 
 = 6.28 s and A1 = 1.5 m)
showing the spatial distribution of microfractures (black arrows) and
σxx . Color represents the stress σxx in the x direction normalized by
the ice modulus.
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FIG. 13. (Color online) A snapshot at the end of the simulation for
case 2-5 (an incident wave with 
 = 3.14 s and A1 = 3 m) showing
the spatial distribution of microfractures (black arrows) and σxx . Color
represents the stress σxx in the x direction normalized by the ice
modulus.

the incoming wave amplitudes and periods. In general, l is
decreased with increasing amplitude. A minimum fragment
size l ≈ 0.7 m is obtained with the largest amplitudes for both
sets of simulations.

In order to examine the overall response of the sea ice to
transmitted waves, the deformation patterns for cases 1-1 and
2-5 are shown in Figs. 9 and 10. The snapshots were taken
at times τ = 0.5, 1.0, 1.5, and 2.0. The color scale (online
only) represents the distribution of stress (σxx , normalized by
the ice modulus E) with blue (positive) indicating the region
under tension and red (negative) indicating the region under
compression. In both figures, the generated displacement wave
progressively is propagated from the left to the right side. The
induced stress wave also is propagated continuously through
the entire sea ice structure and subjects the ice to a repeated
bending mode (tensile-compressive-tensile-compressive. . .).
A similar fatigue process was observed in Ref. [2]. Figure 11
shows the stress and fracture distribution, resulting from the
repeated bending for case 1-1 at τ = 2.5 in the entire ice
floe. Figure 11 also shows zoomed-in pictures around the
location with maximum stress. The microfractures (broken
bonds), denoted by small black arrows, are distributed almost
evenly throughout the entire ice floe. The bottom picture in
Fig. 11 clearly indicates that macroscopic cracks are almost
always in the vertical direction due to the tensile failure. The
top picture in Fig. 11 also shows the localized stress due to the
generation of microfractures in more detail where the stress is
relaxed around the microfractures.

The distributions of microfractures and the corresponding
stress distributions for cases 1-5, 2-5, and 2-7 also are shown
in Figs. 12–14. As expected, the microfractures generated in
cases 1-5 and 2-5 are much fewer, and the average distances
between macrocracks are larger than that in case 1-1. As a
result, larger ice fragments can be formed in cases 1-5 and 2-5

FIG. 14. (Color online) A snapshot at the end of the simulation for
case 2-7 (an incident wave wit 
 = 3.14 s and A1 = 1.5 m) showing
the spatial distribution σxx (no microfractures observed for this case).
Color represents the stress σxx in the x direction normalized by the
ice modulus.

relative to case 1-1. Because of the combined effects of the
small amplitude and the large wave number, no microfractures
or broken bonds are observed in case 2-7.

VI. CONCLUSION

A DEM model was used to simulate the mechanical
behavior of sea ice subjected to a passing ocean wave. In the
DEM model, an ice floe is represented by densely packed
circular particles. To simulate the deformation of sea ice
floe due to ocean wave and ice interaction, a velocity field
v(x,t) = A2ω sin(k2x − ωt) is applied to each DEM particle
forming the ice floe. The amplitude A2 and the wave number
k2 are found from the amplitude A1, the wave number k1,
and the period of the incident wave. The fracturing of sea
ice was modeled by computing stresses in bonds connecting
adjacent particles. When stresses exceed critical values, bonds
are removed, and fractures are formed. We demonstrated that
the fraction of broken bonds α increases with increasing
amplitude. In contrast, the ice fragment size l decreases with
increasing amplitude. The expected fragment size l (∝α) is
shown to be highly dependent on the incoming wave period
and the amplitude. For example, an increase in amplitude from
1.5 to 3.0 m leads to a 75% decrease in size l. As an attempt
to apply the DEM model to the wave and ice interaction, our
results show that the DEM model can be used to quantitatively
investigate the interactions between sea ice and ocean waves.
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