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Effectiveness of the statistical potential in the description of fermions in a worm-algorithm
path-integral Monte Carlo simulation of 3He atoms placed on a 4He layer adsorbed on graphite
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We demonstrate the effectiveness of a statistical potential (SP) in the description of fermions in a worm-
algorithm path-integral Monte Carlo simulation of a few 3He atoms floating on a 4He layer adsorbed on graphite.
The SP in this work yields successful results, as manifested by the clusterization of 3He, and by the observation
that the 3He atoms float on the surface of 4He. We display the positions of the particles in 3D coordinate space,
which reveal clusterization of the 3He component. The correlation functions are also presented, which give further
evidence for the clusterization.
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I. INTRODUCTION

The 3He–He II sandwich system [1] and a system of 3He
atoms placed on 4He layers are among the most fascinating He
systems, thanks to their unusual properties. The investigation
of this type of system on graphite is quite rare [2], and
only a few similar studies along the same lines have been
presented, for one component, either 3He or 4He, or their
mixture [2–20]. An investigation involving 3He atoms on a 4He
film adsorbed instead on Nuclepore [17,21] was also presented,
as well as 3He atoms on a superfluid 4He film [14,17]. Several
methods have been applied to explore the latter systems. For
example, path-integral Monte Carlo (PIMC) has been applied
for simulating helium films on a graphite surface [10,22],
variational path-integral (VPI) Monte Carlo to investigate 4He
films adsorbed on alkali metal substrates [16], and diffusion
Monte Carlo (DMC) to compute the ground-state properties
of two-dimensional 4He [8]. Further, variational Monte Carlo
(VMC) was used to explore small mixed clusters of 3He and
4He atoms [23]. Nevertheless, because of the presence of the
fermionic component, the simulation of systems containing
3He using MC methods is not an easy task, although Ceperley
[24] introduced earlier a PIMC method for the simulation of
continuum fermions at nonzero temperature.

In this work, the worm-algorithm path-integral Monte Carlo
(WAPIMC) method [25] is used to compute the thermal
properties of a 3He-4He system where the 3He floats on a 4He
film adsorbed on a graphite substrate. WAPIMC is a powerful
technique, where one can simulate finite systems at finite
temperatures in the grand canonical ensemble. That is, the
exchange of particles with the surrounding particle reservoir
is allowed. The number of particles is therefore allowed to
change during a WAPIMC simulation and is controlled by the
chemical potential. We are thus able to simulate a realistic
situation, where particles can enter and leave the system. The
latter feature is not found in other MC methods and is a big
advantage for WAPIMC. In addition, WAPIMC enables us to
investigate the microscopic properties, such as clusterization
of helium atoms and the structural order. WAPIMC works also
very well at high densities, and it can simulate a large number

of particles N ∼ O(103). In contrast, the standard PIMC
method [26] simulates systems only in the canonical ensemble
at finite temperature and to N ∼ O(102). Whereas VPI and
DMC work only at zero temperature, WAPIMC works at finite
temperatures. One disadvantage of WAPIMC (and therefore
PIMC) is that a simulation in the millikelvin temperature
regime requires substantial computational time, of the order of
a month, on a (for example) Intel Xeon workstation. Therefore
WAPIMC simulations with T approaching zero would take
years of CPU time.

In analytical approaches, previous work calculated the
binding energy of 3He-4He [5] using an analytical variational
procedure, following an ansatz due to Feynman (Ref. [6]
in Gasparini et al. [5]); linear response theory was used to
investigate the excitation spectrum of 3He films adsorbed
on substrates [27]; second order perturbation theory was
applied to evaluate the 3He-4He effective interaction re-
sulting from the exchange of third-sound quanta [6]; and
Fermi-hypernetted-chain techniques were used to obtain the
ground-state properties of a 3He-4He mixture using a wave
function composed of a product of pair correlation functions
[28]. A statistical-mechanical approach was further used to
compute the thermodynamic properties of 3He in thin 3He-4He
films [29], and Krotscheck et al. [12] applied a variational
theory with correlated basis functions to compute the phase
diagram of 3He-4He mixtures in 2D. Although analytical
methods are useful in obtaining macroscopic quantities like the
thermodynamic properties (heat capacity, pressure, entropy,
etc.), they lack the ability to display microscopic many-body
features of the system, such as the structural properties, particle
promotion and demotion between the layers, and the exchange
of particles with a surrounding particle reservoir.

The interactions between helium atoms can usually be
described by the HFDHE2 potential of Aziz et al. [30].
However, in the systems considered here, the 3He component
is initially quite dilute as we begin the simulation with a small
number of 3He atoms. The 3He component can therefore be
approximated by an ideal gas. Such an ideal system can in
turn be described by a Slater determinant composed of nonin-
teracting single-particle wave functions, and consequently the
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exchange of two fermions leads to a change in the sign of the
total wave function. In the case of an interacting system, the
wave function is a many-body wave function combined of a
product of single-particle wave functions and a train of Jastrow
functions

∏
i<j f (rij ). The Jastrow function f (rij ), where rij is

the distance between atoms i and j , describes the interactions
between the particles in the wave function. Therefore, the
Slater determinant includes correlations between the particles,
and no sign change arises when two fermions are swapped.
Although in the current simulations we do not use a Slater
determinant, the presence of fermions causes the well-known
sign problem [31] to arise when two fermions are swapped
in a dilute system. Our purpose in this work is to present a
method to circumvent the sign problem in a worm-algorithm
path-integral Monte Carlo (WAPIMC) [25] simulation of a
3He-4He system, where the MC statistics blow up to infinity if
the partition function goes to zero [32]. We propose to disallow
the swap of fermions and to use instead a so-called statistical
potential (SP) [33]. The SP describes “statistical interactions”
between fermions. Earlier, Anderson and Miller [6] included
the effects of a hard core in the 3He-3He interaction potential
to describe their repulsion.

In this paper, our chief goal is to demonstrate the effec-
tiveness of the SP in a WAPIMC simulation of a few 3He
atoms placed on a layered 4He structure adsorbed on graphite.
We focus mainly on the clusterization of the 3He component
[2,34,35] driven by an effective interaction, resulting from
a combination of interaction potentials in the system. We
therefore present figures displaying the positions of the par-
ticles, which reveal the clusterization of the 3He component.
The correlations between the helium atoms are also explored,
which provide further evidence for clusterization. This paper
reports a sample of results from the current project of a few
3He atoms on a 4He layer adsorbed on graphite. This project is
part of a set of investigations involving a previous examination
of the 3He-4He sandwich system [36] and a future one of 4He
in Vycor.

Our key results are as follows. First, the SP is effective
in describing the fermions in a WAPIMC simulation because
(i) it allows the 3He atoms to “float” on the outer surface of
4He in agreement with experimental observations [2,14]; (ii) it
does not prohibit the clusterization of 3He atoms which display
strong correlations; and (iii) the energies of the 3He atoms are
in line with values reported earlier [5]. Second, the properties
of the system are found to be largely sensitive to the chemical
potential, particularly the final number of 3He atoms that can
be achieved at the end of a simulation. However, it was found
that the error bars of the WAPIMC simulation are somewhat
large at temperatures T < 80 mK, whereas at T � 80 mK
they are small. Further, we would like to draw attention to the
fact that, in the temperature range considered, it was very hard
to obtain a number of 3He atoms of the order ∼O(1). The
simulation always ended up with ∼O(10).

II. METHOD

In what follows, we briefly outline the method. We mod-
ified a previously written WAPIMC code [25,32], originally
developed for the 4He on graphite (used in Ref. [19]) to include
the 3He component, as explained in our previous paper [36].

However, the positioning of the 3He atoms is slightly different
from the sandwich structure [36], as we place the 3He atoms
only on the outer surface of the 4He layer. In addition, we did
not apply the mass-update procedure of a fictitious particle as
in Refs. [36,37]. This is because the 3He atoms floating on the
surface of 4He already have a high mobility. The 3He-4He as
well as the 4He-4He interactions are, as usual, described by
the HFDHE2 potential of Aziz et al. [30]. On the other hand,
the 3He component is dilute and can therefore be considered
an ideal gas. However, there are important 3He interactions
which are statistical in nature. That is, the fermionic nature of
3He enters into play through the SP [33]:

νSP(r) = −kBT ln
[
1 − exp

( − 2πr2
/
λ2

dB

)]
, (1)

r being the distance between a pair of particles, and λdB the
thermal de Broglie wavelength. Yet, the code is very much
the same as in Ref. [36]. The simulations were conducted
in the grand canonical ensemble (GCE) in the millikelvin
temperature regime, with carefully chosen chemical potentials
for which the number of 3He atoms would not “disappear”
later into the surrounding particle reservoir. It was difficult
to find chemical potentials for which the simulations would
simultaneously evolve effectively and stabilize at a reasonable
number of 3He atoms. We found that it was very difficult to
stabilize the number of 3He atoms to O(∼1).

The dimensions of the simulation box were fixed at
19.693 × 17.054 × 26.798 Å3 for all systems, set by a pre-
defined density. Each simulation was initialized with a few
(from 2 to 15) 3He atoms placed on the surface of 72 4He atoms
comprising two layers, adsorbed on the surface of a graphite
substrate. For 2–15 3He atoms, the 3He coverage lies between
0.5 and 4 % and is quite dilute (cf. Ref. [12]). Then it was run
for several weeks of CPU time until thermalization stabilized
the energy within a certain error bar. The time step chosen
was τ = (1/400) K−1, and the temperatures and chemical
potentials used are tabulated in Tables I and II. The values
of μ listed are renormalizated values, by the self-energy of
the interacting particles �, i.e., μ = μ0 + �, where μ0 is an
initial chemical potential of our choice.

In this work we essentially let the chemical potential decide
the number of particles in our system by running it in the GCE.
Consequently, the numbers of 3He and 4He particles, 〈N3〉
and 〈N4〉 respectively, are updated from their initial values
depending on the magnitude of the chemical potential. In
passing, it is interesting to note that the gradual dynamic update
of 〈N3〉 during thermal evolution represents the well-known
adiabatic switching-on process of the 3He interaction [38].
Interestingly enough, this might be an experimental analog to
the Gell-Mann-Low theorem [39].

III. RESULTS AND DISCUSSION

A. Structural properties

We begin with a visualization of the spatial positions of the
3He and 4He atoms for two of our systems in 3D coordinates, so
as to check for clusterization of the 3He component. Figures 1
and 2 display these positions for systems at T = 60, 70,
and 100 mK with μ = −14.392, −14.139, and −11.216 K,
respectively. More details about these systems are found in
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TABLE I. WAPIMC thermal properties of a system of a number of 3He atoms placed on a 4He layer adsorbed on a graphite substrate at
temperatures ranging from T = 60 to 100 mK, labeled a–e, respectively. From left to right: System label, temperature T in mK, chemical
potential μ, average total number of particles 〈N〉, total energy per particle 〈E〉/〈N〉, pressure per particle 〈P 〉/〈N〉, entropy per particle
〈S〉/〈N〉 (unitless), internal energy per particle 〈U〉/〈N〉, and superfluid fraction ρs/ρ. Each thermal property indicated is a thermodynamic
average in units of K, except for the entropy which is unitless.

System T (mK) μ (K) 〈N〉 〈E〉/〈N〉 (K) 〈P 〉/〈N〉 (K) 〈S〉/〈N〉 〈U〉/〈N〉 (K) ρs/ρ (%)

a 60 −14.392 127.24 −47.988 5.507 × 10−2 2473.57 −74.662 1.936
±7.48 ±4.425 ±3.261 × 10−3 ±3.071 ±0.398

b 70 −14.139 125.55 −53.027 5.489 × 10−2 2304.26 −78.679 1.755
±7.07 ±4.948 ±1.609 × 10−2 ±1.886 ±0.544

c 80 −15.397 91.987 −56.575 8.129 × 10−2 1959.80 −92.741 8.426
±2.632 × 10−3 ±0.681 ±9.338 × 10−3 ±0.450 ±0.217

d 90 −9.003 162.27 −44.249 3.775 × 10−2 1398.28 −64.348 3.051
±0.906 ±0.296 ±2.450 × 10−4 ±0.157 ±2.929 × 10−2

e 100 −11.216 133.25 −45.294 5.710 × 10−2 1463.56 −70.411 0.210
±0.614 ±0.809 ±1.696 × 10−3 ±0.491 ±0.105

Tables I and II, which we shall elaborate below. The 3He atoms
are the solid green circles, whereas the 4He atoms are the solid
red triangles. The vertical positions (z) are with respect to
the graphite surface in the xy plane. One can see that there
are two 4He layers, above which a 3He component resides.
In Figs. 1 and 2, a partial clusterization of 3He is observed.
The clusterization of the 3He atoms in a 4He environment was
predicted earlier by Ghassib and Chatterjee [34], as well as
by Ghassib [35]. Nanoclusterization of the 3He fluid in the
same system as ours was observed earlier [2]. In addition,
Krotscheck et al. [12] found that the effective interaction
between 3He impurities in 4He is sufficiently attractive to
generate 3He dimers. One could argue that 3He clusterization
is rather surprising, since the interactions between the 3He
atoms are repulsive, as dictated by the fermionic SP, and
because the 3He atoms have a large zero-point motion. Further,
the 3He atoms at z ∼ 9 Å in Figs. 1 and 2 are located at
positions where they only feel the weak tail of the graphite
potential (Ref. [25] in Corboz et al. [19]), and hence this
effect can largely be excluded for 3He. In contrast, the 3He
atoms strongly feel the 3He-4He interaction at a vertical
distance of ∼3 Å from the second 4He layer. Therefore at
low T , 3He-4He mixing overcomes the repulsive statistics of
the 3He atoms and does not allow them to aggregate into

a separate phase. The 3He-4He interaction further localizes
the 3He atoms on the 4He surface [14,21,40], as it enhances
the effective mass of 3He atoms [3,14,17]. The increase in
the effective mass therefore overcomes the effects of the
large zero-point motion of the 3He atoms. Some 4He atoms
have been promoted (i.e., “evaporated”) to the 3He layers in
the course of the thermalization process. This is an inevitable
consequence of any vacancies introduced into the 3He cloud.
As the temperature is increased, clusterization of 3He ceases to
exist as displayed in Fig. 3 at 100 mK. This is because as one
increases T , the repulsive statistics becomes stronger in Eq. (1)
and begins to overcome the 3He-4He mixing effects. One can
then argue that the SP can account for a larger solubility of
3He into the 4He at low T . One further observes that the 3He
component has separated into a floating phase above the 4He
component, which is also driven by a larger 3He density. Not
one single 3He atom has evaporated into the 3He phase.

It must be mentioned that the finiteness of the system and the
boundary conditions play a decisive role in the clusterization
process of the 3He atoms. As the system becomes more
confined, the 3He atoms approach the 4He atoms which
increases the binding, and therefore 3He clusterization is
enhanced. Next to this, the box-wall boundaries of our
simulation cell cause the matter waves of the 3He atoms to

TABLE II. As in Table I, except for the 3He component of the same systems with the kinetic energy per particle at the end instead of the
superfluid fraction.

System T (mK) μ (K) 〈N3〉 〈E3〉/〈N〉 (K) 〈P3〉/〈N〉 (K) 〈S3〉/〈N〉 〈U3〉/〈N〉 (K) 〈K3〉/〈N〉
a 60 −14.392 40.576 −2.095 4.326 × 10−5 165.37 −4.633 3.595

±5.421 ±1.108 ±8.347 × 10−3 ±0.534 ±0.455
b 70 −14.139 34.308 −1.717 1.674 × 10−4 150.91 −4.263 3.394

±5.766 ±1.224 ±5.463 × 10−3 ±0.638 ±0.447
c 80 −15.397 12.412 −0.888 1.055 × 10−2 539.01 −2.648 2.251

±6.908 × 10−2 ±4.923 × 10−3 ±7.803 × 10−6 ±3.677 × 10−3 ±1.180 × 10−3

d 90 −9.003 76.961 −1.874 2.031 × 10−2 1122.80 −5.451 4.626
±0.881 ±0.083 ±1.312 × 10−4 ±6.661 × 10−2 ±5.769 × 10−3

e 100 −11.216 60.698 −2.344 2.753 × 10−2 1056.12 −4.713 3.634
±0.338 ±0.139 ±7.230 × 10−5 ±6.280 × 10−2 ±6.031 × 10−2
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FIG. 1. (Color online) WAPIMC spatial positions of the atoms
for a system of 3He placed on the surface of a 4He layer adsorbed
on a graphite substrate at T = 60 mK. The total number of particles
is 〈N〉 = 127.24 ± 7.48 and the number of 3He atoms is 〈N3〉 =
40.576 ± 5.421. The chemical potential is fixed at μ = −14.392 K.
Solid red triangles, 4He atoms; solid green circles, 3He atoms. x, y,
and z are in units of Å.

be reflected from the hard walls, and therefore may result in
standing matter waves inside the 3He-4He system.

Importantly, the number of bosons alone plays also an
important role in the clusterization of the fermions. According
to Guardiola and Navarro [23], the clusterization of 3He atoms
in an environment of 4He atoms requires a certain number of
bosons, NB , in order to overcome the effects of zero-point
motion and fermionic repulsion. It was expected [23] that a
small number of bosons NB and a large number of fermions
NF will cause instabilities in the mixture. Further, for only one
4He atom a 3He cluster could only be achieved if NF was above
20. Next to this, bound states of 3He-4He were anticipated for
20 < NF < 30. Peculiarly, the above authors found that two
4He atoms cannot achieve a 3He cluster if 3 < NF < 17.

B. Adequacy of statistical potential

Evidently, the SP used to describe the fermions seems to be
effective, as dictated by the results in Sec. III A, particularly
because it allows the 3He atoms to float on the 4He surface. The
3He pair distances in Figs. 1–3 are r ∼ O(1 Å) and therefore
much smaller than the de Broglie wavelength λdB for 3He
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FIG. 2. (Color online) As in Fig. 1, but for T = 70 mK with
μ = −14.139 K, 〈N〉 = 125.55 ± 7.07, and 〈N3〉 = 34.308 ± 5.766.
x, y, and z are in units of Å.
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FIG. 3. (Color online) As in Fig. 1, but for T = 100 mK with μ =
−11.216 K, 〈N〉 = 133.25 ± 0.614, and 〈N3〉 = 60.698 ± 0.338. x,
y, and z are in units of Å.

atoms, where λdB lies between 41.51 Å at T = 60 mK and
31.87 Å at T = 100 mK. The Fermi-Dirac statistical potential
(1) goes to zero as r/λdB becomes larger than 1, and in our
case r/λdB � 1 for 3He pairs. Thus the SP is adequate for
the description of the 3He atoms in our systems. Further, the
“range” of the SP in the above temperature range is significant,
approximately equal to λdB for the latter temperatures. As the
temperature is increased, the range of the SP decreases, and
its repulsion becomes stronger. Essentially, then, spatial pair
correlations between the 3He atoms are significant.

C. Thermal properties

Next, we present some numerical WAPIMC results for the
thermal properties of this type of system. As such, Table I
displays results for the whole system, i.e., 3He and 4He together
on graphite. From left to right the table lists a system label, the
temperature T in mK, renormalized chemical potential μ, total
number of particles 〈N〉, total energy per particle 〈E〉/〈N〉,
pressure per particle 〈P 〉/〈N〉, entropy per particle 〈S〉/〈N〉
(unitless), internal energy per particle 〈U 〉/〈N〉, and superfluid
fraction ρs/ρ (which is for 4He only). The superfluid fraction
was computed using the winding number approach according
to formula (3.31) in the excellent review of Ceperley [26]:

ρs

ρ
= 〈W2〉

2λβN
, (2)

ρs and ρ being the superfluid and total density, respectively,
λ = h̄2/(2m), β = Mτ , and N the number of particles. W is
the winding number given by

W =
N∑

i=1

M∑

j=1

(ri,j−1 − ri,j ), (3)

where ri,j is the position of the ith particle at the j th time
slice. In essence, we exclude the 3He atoms in the evaluation
of W. Thus, the superfluid density would correspond to the
fraction of 4He atoms which are able to flow without friction
in the higher layers away from the graphite surface. The 4He
layers close to the graphite surface are in the solid phase at
low temperatures. Each thermal property 〈· · ·〉 indicated is the
WAPIMC thermodynamic average in units of K, except for the
entropy and number of particles which are unitless. Table II is
the same as Table I, except that it displays the 3He statistics
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separately, indicated by a subscript “3” in each thermal
property, with the kinetic energy per particle 〈K3〉/〈N〉 in the
last column instead of ρs/ρ. We emphasize that the properties
in Table II include essentially the effects of the 4He as well as
the graphite potential environment. There are five systems at
temperatures ranging from T = 60 to 100 mK, labeled from
a to e, respectively. For 60 and 70 mK, the same systems of
Figs. 1 and 2 are considered, labeled a and b, respectively.
The energies 〈E〉/〈N〉 of the systems are negative, signaling
that they have reached stable configurations. The energy of the
3He component 〈E3〉/〈N〉 (for systems a–e) is also negative,
revealing that it may have formed bound states with the 4He [5].
Further, our 3He energies are in line with those obtained by
Gasparini et al. [5] for 3He on a 4He film of 13 Å thickness.
Being far away from the graphite surface, our 3He atoms
have a much smaller energy per particle |〈E3〉/〈N〉| than the
4He component (|〈E〉 − 〈E3〉|/〈N〉). The 3He energy has a
large kinetic component 〈K3〉/〈N〉, or quantum pressure, as
compared to its internal energy 〈U3〉/〈N〉, but it is small
compared to the total energy of the system. By going to
higher temperatures, such as T � 80 mK, 〈S3〉/〈N〉 rises
substantially as compared to 〈S〉/〈N〉. For example, it may
be easily verified that 〈S3〉/〈S〉 is ∼80 and 70% for d and
e (T > 80 mK), respectively, whereas it is less than 10%
for a and b (T < 80 mK). Therefore, there is a lower order
associated with 3He at T > 80 mK. The small values of ρs/ρ

reveal that the 3He atoms deplete the superfluid substantially.
The pressure in Table I remains of order 10−2 K for all systems,
and is largest for system c which has the largest chemical
potential |μ|. In Table II it is of orders 10−5 and 10−4 K for a

and b, respectively, and for c–e it is order 10−2 K. However,
for a and b the error bar is very large. An interesting WAPIMC
calculation to pursue in the future would be for a system of 3He
atoms placed on a 4He surface without a graphite substrate.

From the tables, one can compute the same quantities
separately for 4He and 3He, such as the energy of 4He per
4He particle, 〈E4〉/〈N4〉, or 3He per 3He particle, 〈E3〉/〈N3〉.
The values have been listed in the tables found in the
Supplementary Material [41]. However, the error bars need
to be carefully computed using common rules for the dif-
ferent mathematical operations on these error bars. Typical
values obtained are 〈E4〉/〈N4〉 = (−67.381 ± 10.589) K and
〈E3〉/〈N3〉 = (−6.570 ± 3.605) K at T = 60 mK. Particu-
larly, the binding energy of 3He, 〈U3〉/〈N3〉, is ∼O(−10) K.

D. Pair correlations

The pair correlation function g(r) provides further infor-
mation about the structure of the systems, where r is the
distance between a pair of particles. Figure 4 displays g(r)
for the systems a (red crosses), b (open green squares), and d

(solid blue squares) listed in Table I. For each temperature, one
observes four peaks: a major one at r ∼ 1 Å, and consecutively
at ∼3, ∼5.9, and ∼8.5 Å, respectively. By referring to the
structure in Figs. 1 and 2, one can understand that the first
peak in Fig. 4 is for the clusterized 3He atoms, since these
display the smallest interparticle distances. The rest of the
peaks are largely associated with the correlations between
the 4He atoms in the layers z ∼ 3 Å and z ∼ 6 Å. That is,
the peak at r ∼ 3 Å is for 4He particles surrounded by their

µ = −9.003 K, T = 90 mK
µ = −14.139 K, T = 70 mK
µ = −14.392 K, T = 60 mK

r (Å)

g
(r
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(̊A
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FIG. 4. (Color online) Correlation function g(r) for systems a

(red crosses), b (open green squares), and d (solid blue squares)
listed in Table I.

first nearest neighbors, the one at r ∼ 5.9 Å for 4He atoms and
their second nearest neighbors, etc. At 90 mK, the correlations
are stronger than at the other temperatures, because system d

has the largest number of helium atoms among the systems
displayed in the tables. The g(r) for T = 60 and 70 mK are
almost identical with little differences.

IV. CONCLUSION

In summary, we have demonstrated the effectiveness of
a repulsive statistical potential (SP) in the description of
fermions in a WAPIMC simulation of a few 3He atoms floating
on a 4He layer adsorbed on a graphite substrate. The use of
this SP yields results in agreement with earlier experimental
observations, where the 3He component preferentially floats on
the outer surface of the 4He layer [2,14], and occupies surface
states [6]. Further, the SP allows the clusterization of the
3He component [2,34,35]. As one increases the temperature,
the clusterization of 3He ceases to exist as the 3He-4He
statistical repulsion becomes stronger, thereby overcoming
3He-4He mixing. Eventually, the 3He component separates
into a floating phase above the 4He surface. We additionally
computed some thermal properties of these systems in the
millikelvin temperature regime. The total energies of these
systems turned out to be negative, indicating that these systems
have reached their thermal equilibrium. The quantum pressure
of the 3He component turns out to be ∼10% of the total energy,
and the disorder in 3He rises sharply beyond T = 80 mK. The
superfluid component in 4He is substantially depleted as a
result of adding 3He. Finally, our 3He energies are in line with
those reported earlier by Gasparini et al. [5].
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