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Controllable optical rogue waves in the femtosecond regime
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We derive analytical rogue wave solutions of variable-coefficient higher-order nonlinear Schrödinger equations
describing the femtosecond pulse propagation via a transformation connected with the constant-coefficient
Hirota equation. Then we discuss the propagation behaviors of controllable rogue waves, including recurrence,
annihilation, and sustainment in a periodic distributed fiber system and an exponential dispersion decreasing
fiber. Finally, we investigate nonlinear tunneling effects for rogue waves.
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I. INTRODUCTION

Rogue waves (or freak waves), single ocean waves with
amplitudes significantly larger (two, three, or more times
higher) than the surrounding average wave crests, were
considered mysterious until recorded for the first time by
scientific measurements during an encounter at the Draupner
oil platform in the North Sea [1]. These rogue waves have been
considered myths for a long time. Although they are elusive
and intrinsically difficult to monitor due to their fleeting exis-
tences, as the theoretical and experimental research continues,
rogue waves have been observed in many fields, and massive
effort has been devoted to study them [2–6].

Good agreement with an approximate dynamical-statistical
theory has been found [2]. A statistical model has been
developed that predicts for a given mean sea state the
probability of occurrence of extreme events [3]. Peregrine
identified the key role of the modulational instability (MI) in
the formation of patterns resembling freak waves; in particular,
as early as 1983 he attracted attention to algebraic breather
(also called Peregrine soliton) solutions of the nonlinear
Schrödinger equation (NLSE), which can serve as a weakly
nonlinear prototype of a freak-wave [4]. So far two main
generic mechanisms have been identified in the absence of
wave-current interaction: the Benjamin-Feir (BF) [4,5] or
modulational instability [6] and an essentially linear space-
time focusing [7].

Interestingly enough, the NLSE not only gives a suitable
description of rogue water waves, but it is also the governing
equation for light pulse propagation in nonlinear optical fibers
and matter waves in Bose-Einstein condensates (BECs). Thus,
nonlinear optical fibers and BECs provide a good test bed for
the study of rogue waves [8–15]. In nonlinear optics, Solli
et al. [8] have made considerable progress by observing a
randomly created optical rogue wave in a photonic crystal fiber
and coined the term “optical rogue waves,” based on striking
phenomenological and physical similarities between the ex-
treme events of the optical system and oceanic rogue waves.
Thus from phenomena, we can consider exceptionally high-
amplitude optical pulses as optical rogue waves. Kasparian
et al. [9] experimentally observed optical rogue wave statistics
during high-power femtosecond pulse filamentation in air.
Akhmediev’s breather theory [10] and MI were also linked
experimentally in nonlinear optical fibers [11]. Moreover,

Erkintalo et al. [12] experimentally studied the characteristics
of optical rogue waves in supercontinuum generation in the
femtosecond regime. More recently, the optical rogue waves
observed initially grow from noise, and it is possible to control
both the spectral extent and, most importantly, the noise in
the supercontinuum [13]. Discrete rogue waves have also
been demonstrated [14]. Until now, only randomly created
rogue waves have been observed experimentally [8,9,11–13].
Moreover, Ankiewicz et al. [15] also investigated theoretical
rogue waves and rational solutions of the Hirota equation.
Erkintalo et al. [16] experimentally studied the characteristics
of optical rogue waves in supercontinuum generation in
the femtosecond regime. As analyzed in this paper, these
processes involve the restraint, annihilation, postponement,
and sustainment of rogue waves.

Historically, the study of soliton tunneling effects governed
by the variable-coefficient (vc) NLSE began with the pio-
neering work of Serkin et al. [17] since Newell predicted
the tunneling effect that exists in nonlinear media in 1978
[18]. Subsequently, the tunneling effects of solitons governed
by various vcNLSE have been extensively discussed. For
instance, Yang et al. [19] confirmed the compression of
the optical pulse by a nonlinear barrier. Wang et al. [20]
discussed the tunneling effects of spatial similaritons passing
through the nonlinear barrier (or well). Dai et al. [21]
studied the tunneling effects of bright and dark similaritons
in the birefringent fiber. Zhong et al. [22] presented the
nonlinear tunneling effects of spatial solitons in the nonlinear
and diffractive barriers (wells). More recently, enigmas of
optical and matter-wave soliton nonlinear tunneling have also
been uncovered in Ref. [23]. Note that the nonlinear soliton
tunneling effect is a subject of constantly renewed interest.
In femtosecond nonlinear fiber optics, the most intriguing
enigma of optical solitons is connected to the so-called soliton
spectral tunneling effect. This effect is characterized in the
spectral domain by the passage of a femtosecond soliton
through a potential barrierlike spectral inhomogeneity of group
velocity dispersion (GVD), including the forbidden band of
positive GVD [24,25]. However, nonlinear tunneling affects
other localized structures such as rogue waves and has been
hardly investigated until recently.

Rogue waves for the standard NLSE have been extensively
investigated [11–13]. However, the phenomenon of optical
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rogue waves in the femtosecond regime is significantly more
complicated than the one modelled by the simple NLSE.
Even in the one-dimensional case, higher-order terms, such
as third-order dispersion (TOD), self-steepening (SS), and
the delayed nonlinear response effect (DNRE), must be taken
into account. Thus, some interesting issues arise: can optical
rogue waves described by rational solutions be controlled
in the femtosecond regime? What does happen when rogue
waves pass through a dispersion barrier (DB) or dispersion
well (DW)? To answer these problems, we consider the
variable-coefficient higher-order NLSE (vcHNLSE) as follows
[26–31]:

iuz + D2(z)utt + R(z)|u|2u + iD3(z)uttt

+ iα(z)(|u|2u)t + if (z)u(|u|2)t = i�(z)u, (1)

where u(z,t) is the complex envelope of the electrical field and
z and t , respectively, represent the propagation distance and
retarded time. D2(z) and D3(z) represent the group-velocity
dispersion and TOD, respectively. R(z) is the nonlinearity
parameter, and the parameters α(z) and f (z) are, respectively,
related to the SS and DNRE. �(z) denotes the amplification or
absorption coefficient.

The variable-coefficient higher-order NLSE (1) has been
extensively discussed as the governing equation [26–31] for
femtosecond optical soliton control, which is an important
development in the application of solitons after the first soliton
dispersion management experiment in a fiber with hyperbol-
ically decreasing group-velocity dispersion was realized by
Dianov’s group at the General Physics Institute [32]. Then
controlling optical solitons in soliton communication systems
and generating soliton trains were effectively realized as early
as 1991 [33]. The nonlinear Schrödinger-type equation with
variable coefficients has been extensively investigated [34–37].
For vcHNLSE, many solutions, such as dark solitons [26],
bright solitons [27,28], combined solitons [29], soliton trains
[30], and tunneling solitons [31], have been also discussed.
Therefore, a study of the vcHNLSE is significant for the
concept of soliton control. However, to our knowledge, the
control of rogue waves for vcHNLSE, with which this paper
concerns itself, has rarely been studied.

II. GENERAL TRANSFORMATION AND SOLUTIONS

The main idea of the procedure is to transform HNLSE (1)
into the constant-coefficient Hirota equation [15]

iUZ + 1
2UT T + |U |2U − iα3UT T T − i6α3|U |2UT = 0, (2)

where U ≡ U (T ,Z) and T ≡ T (z,t) and Z ≡ Z(z) are two
functions to be determined.

In order to connect the solutions of Eq. (1) with those of
Eq. (2), we will construct the mapping transformation [34]

u(z,t) = A(z)U [T (z,t),Z(z)] exp[iφ(z,t)], (3)

where the amplitude A(z) and the phase φ(z,t) are real
functions. The substitution of Eq. (3) into Eq. (1) leads to

Eq. (2), but now we must have

Az − �A − 3D3Aφtφtt + D2Aφtt = 0, (4)

Tz + 2D2Ttφt − 3D3Ttφ
2
t + D3φttt = 0, (5)

φz + D2φ
2
t + D3φttt − D3φ

3
t = 0, (6)

(D2 − 3D3φt )Ttt − 3D3Ttφtt = 0, Ttt = 0, (7)

(R − αφt )A
2 = Zz, 2(D2 − 3D3φt )T

2
t = Zz, (8)

D3T
3
t + α3Zz = 0, (2f + 3α)A2Tt + 6α3Zz = 0. (9)

After our calculations, the mapping variable, effective
propagation distance, amplitude, and phase of the pulse read

T = k

[
t + p

(
k

α3
− 3p

) ∫ z

0
D3(s)ds

]
+ t0, (10)

Z = − k3

α3

∫ z

0
D3(s)ds, (11)

A = A0 exp

[∫ z

0
�(s)ds

]
, (12)

φ = p

[
t + p

(
k

2α3
− 2p

) ∫ z

0
D3(s)ds

]
+ φ0, (13)

where the subscript 0 denotes the initial values of the
corresponding parameters at z = 0. Note that the TOD
parameter D3(z) influences the form of the phase and effective
propagation distance.

Furthermore, the constraints of the system parameters are
given as

D3(z) : D2(z) : R(z) : f (z) : α(z)

= 1 :

(
3p − k

2α3

)
:

k2(2pα3 − 3k)

3α3A
2
0 exp

[
2
∫ z

0 �(s)ds
]

:
2k2

A2
0 exp

[
2
∫ z

0 �(s)ds
] :

2k2

3A2
0 exp

[
2
∫ z

0 �(s)ds
] . (14)

Thus, we have proven the following result: the substitution

u = A0U

{
k

[
t + p

(
k

α3
− 3p

) ∫ z

0
D3(s)ds

]
+ t0,

− k3

α3

∫ z

0
D3(s)ds

}
exp

[∫ z

0
�(s)ds + iφ

]
, (15)

where φ satisfies Eq. (13), leads to Eq. (2) with the condition
(14). The solutions of Eq. (1) can be obtained from those of
Eq. (2) via the transformation (15).

The one-to-one correspondence (15) admits us to obtain
abundant solutions, such as bright and dark soliton solutions,
W-shaped and M-shaped soliton solutions, and so on. With
the help of the mapping transformation (15), Eq. (1) can
be transformed into the Hirota NLSE (2). Then, by making
the reverse transformation variables and functions, we obtain
the exact solutions for Eq. (1). Here, we focus on rogue wave
solutions. Employing the transformation (3) and the Darboux
transformation [15], one can obtain rogue wave solutions
(rational solutions) for Eq. (1). The first-order (n = 1) and
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second-order (n = 2) rational-like solutions read

un = A0

{
(−1)n + Gn + i(Z − Z0)Hn

Fn

}
exp

[∫ z

0
�(s)ds + i(Z − Z0) + iφ

]
, (16)

where 2G1 = H1 = 8 and F1 = 1 + 4[T + 6α3(Z − Z0)]2 + 4(Z − Z0)2 for a one-rogue wave and

G2 = −192T 4 − 4608T 3α3 (Z − Z0) − 288[4(36α3
2 + 1)(Z − Z0)2 + 1]T 2

− 1152α3 (Z − Z0) [12(12α3
2 + 1)(Z − Z0)2 + 7]T

− 192(1296α3
4 + 216α3

2 + 5) (Z − Z0)4 − 864(44α3
2 + 1) (Z − Z0)2 + 36, (17)

H2 = −384T 4 − 9216α3 (Z − Z0) T 3 − 192[(432 α3
2 + 4)(Z − Z0)2 − 3]T 2

− 2304α3[4(36α3
2 + 1)(Z − Z0)2 + 1](Z − Z0)T

− 384(36α3
2 + 1)2(Z − Z0)4 − 192(180α3

2 + 1)(Z − Z0)2 + 360, (18)

F2 = 64T 6 + 2304α3 (Z − Z0) T 5 + 48[(720α3
2 + 4)(Z − Z0)2 + 1]T 4

+ 384α3 (Z − Z0) [12(60α3
2 + 1)(Z − Z0)2 − 1]T 3

+ 12[16(6480α3
4 + 216α3

2 + 1)(Z − Z0)4 − 24(60α3
2 + 1)(Z − Z0)2 + 9]T 2

+ 144 (Z − Z0) α3[16(36α3
2 + 1)2(Z − Z0)4 + (8 − 864α3

2)(Z − Z0)2 + 17]T

+ 64(36α3
2 + 1)3(Z − Z0)6 − 432(624α3

4 − 40α3
2 − 1)(Z − Z0)4

+ 36(556α3
2 + 11)(Z − Z0)2 + 9, (19)

for a two-rogue wave, where T and Z satisfy Eq. (10), φ is
given by Eq. (13), and Z0 is an arbitrary constant.

III. RECURRENCE, ANNIHILATION, AND SUSTAINMENT
OF ROGUE WAVES

Next we analyze the controllable mechanism of rogue
waves. The crucial point lies in the relation between the
effective propagation distance Z and the original propagation
distance z. To demonstrate controllable rogue waves, we first
consider a soliton management system similar to that of
Ref. [37], i.e., the periodic distributed system [28,29],

D3 = D30 cos(κz), � = �0, (20)

where D30 and κ are related to the TOD and �0 implies a
constant net gain (>0) or loss (<0). Trigonometric functions
are physically relevant because they provide for alternating
regions of positive and negative dispersion and nonlinearity,
indicated in the improved stability of the solitons [11]. On
one hand, from Eq. (10) the effective propagation distance Z

is a periodical function of the original propagation distance
z with Z = −D30k

3

α3κ
sin(κz), indicating that Z changes within

the domain |Z| � Zmax = |D30k
3

α3κ
|. On the other hand, in the

framework of Eq. (2), rogue waves reach their maximum
amplitude when Z = Z0 and then disappear while in the
framework of Eq. (1) the complete excitation of rogue waves
sustains for quite a long distance. If Z < Z0, the pulse
in the framework of Eq. (1) does not have a sufficient
propagation distance to excite rogue waves, and the restraint
(even annihilation) of rogue waves occurs. When Z > Z0 for
the periodic distributed system, rogue waves recur periodically.
Thus, one can control behaviors of rogue waves by modulating
the values of the parameters Zmax and Z0.

For example, if |D30k
3

α3κ
| > Z0, the one-rogue wave is

excited from the initial value u(0,t) = U (0,t) at z =
− arcsin(Z0α3κ

k3D30
)/κ and recurs periodically [cf., Fig. 1(a)].

Figures 1(c) and 1(d) display the recurrence behaviors with and
without gain that can resist the perturbation of 5% white noise,
which is added to the initial value by numerical simulation. As
shown in Fig. 1(c) for constant gain with �0 = 0.001, the
energy of the system is increasing. If we do not consider
gain with �0 = 0, the energy of the system is unchanged
[cf., Fig. 1(d)]. If |D30k

3

α3κ
| < Z0, a rogue wave is restrained

and partly excited [cf., Fig. 1(b)], which looks like a snakelike
bright optical soliton with very small amplitude propagating
stably along the fiber on a nonzero background. Besides
controlling the excitation of rogue waves, the distributed
coefficients will also change the trajectories of optical pulses.
From Eq. (16), it follows that the center of mass of an optical
pulse is tc = 6α3(Z − Z0), implying, in this case, that the
velocity of optical pulse is v = 6α3 and the center of the optical
pulse oscillates periodically for α3 �= 0 [cf., Fig. 1].

Based on the fact that decreasing GVD in a fiber has been
realized [32], as another example, we consider an exponential
dispersion decreasing fiber system [26,27,30] with

D3(z) = D30 exp(−σz), �(z) = �0, (21)

where D30 and σ are the parameters related to the TOD and
�0 denotes the constant net gain or loss. From Eq. (10) the
effective propagation distance Z is related to the original prop-
agation distance z with Z = −D30k

3

α3σ
[1 − exp(−σz)], implying

that when σ < 0, one has Z > z and Z → ∞ with z → ∞;
rogue waves are thus excited at z = −ln[1 + σα3Z0

D30k3 ]/σ and
then vanish quickly. When σ > 0, one has Z < z and Z →
−D30k

3

α3σ
with z → ∞. Moreover, the centers of mass of optical

waves do not change when z is large enough. Therefore,
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FIG. 1. (Color online) (a) Recurrence and (b) annihilation of one-
rogue waves. The parameters are A0 = −D30 = 1, k = p = 1

2 , α3 =
1
5 , �0 = 0.001, t0 = 0, and Z0 = 8 with (a) κ = 1

16 and (b) κ = 1
5 .

(c) and (d) Sectional views of (a) and (b), respectively, at t = −14
with (�0 = 0.001) and without (�0 = 0) gain, respectively.

at first if |D30k
3

α3σ
| > Z0, the excitations of both one-rogue

wave and two-rogue waves are postponed [cf., Figs. 2(a)
and 3(a)], i.e., the complete rogue waves are not excited.
Secondly, if |D30k

3

α3σ
| = Z0, the full excitations of both one-

rogue wave and two-rogue waves can maintain forever [cf.,
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FIG. 2. (Color online) (a) Postponement, (b) sustainment, and
(c) annihilation of one-rogue waves. The parameters are k = 0.565,
p = 1, and �0 = 0.0001 with (a) κ = 0.1, (b) κ = 0.113, and
(c) κ = 0.17. Other parameters are the same as those of Fig. 1.

Figs. 2(b) and 3(b)] as their amplitudes and widths never vary
after a short propagation distance from the initial condition.
Finally, if |D30k

3

α3σ
| < Z0, the thresholds of excitation of both

one-rogue wave and two-rogue waves are never reached, and
their excitations, which look like bright optical solitons and
separated bright soliton pairs with very small amplitudes,
propagating stably along the fiber on a nonzero background,
are restrained or even eliminated [cf., Figs. 2(c) and 3(c)].

In the following, we focus on rogue waves propagating
through a dispersion barrier or dispersion well on an exponen-
tial background [21,22,31]:

D3(z) = D30{re−gz + hsech2[a(z − z0)]}, �(z) = �0, (22)

where h denotes the heights of the DB or DW, respectively.
a is related to the DB or DW width, g is a decaying
(g > 0) or increasing (g < 0) parameter, and z0 represents the
longitudinal coordinates indicating the locations of the DB or
DW. As β(z) > 0, we assume h > −1, where h > 0 indicates
a DB and −1 < h < 0 represents a DW. From Eq. (10)
the maximum of the effective propagation distance Zmax =

016603-4



CONTROLLABLE OPTICAL ROGUE WAVES IN THE . . . PHYSICAL REVIEW E 85, 016603 (2012)

(a)

0
20

40
60

80
100

z

–20–1001020

t

0

2

4
|u|

(b)

0
20

40
60

80
100

z

–15–10–5051015

t

0

2

4

|u|

(c)

0
20

40
60

80
100

z

–5051015

t

2

4

6

|u|

FIG. 3. (Color online) (a) Postponement, (b) sustainment, and
(c) annihilation of two-rogue waves. The parameters are (a) κ = 0.1,
(b) κ = 0.113, and (c) κ = 0.17. Other parameters are the same as
those of Fig. 2.

− k3D30
α3

{ h
a

[1 + tanh(az0)] + r
g
}. Similar to discussion above,

when Zmax > Z0, rogue waves are postponed. If Zmax = Z0,
rogue waves can sustain, and while Zmax < Z0, rogue waves
are restrained or even eliminated. However, the DB and DW
have different effects on the postponement, sustainment, and
annihilation of rogue waves. Figures 4(a) and 5(a) indicate that
when the postponed rogue waves pass through the DB or DW
at z = z0, the amplitude diminishes or magnifies, respectively.
The reverse situation exists for restrained rogue waves, whose
amplitudes increase or decrease propagating through the DB or
DW at z = z0, respectively [cf., Figs. 4(c) and 5(c)]. Moreover,
the amplitudes of maintained rogue waves invariably increase
whatever they pass through, the DB or DW at z = z0

[cf., Figs. 4(b) and 5(b)]. Two-rogue waves have a similar
nonlinear tunneling effect. For the limit of the length, the
corresponding discussions are neglected in our present paper.

At last, it is worth mentioning that a corresponding and very
important problem is the stability of analytical solutions, that
is, how they evolve along distance when they are disturbed
from their analytically given forms. We show through a
mapping transformation that a one-to-one correspondence
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FIG. 4. (Color online) (a) Postponed, (b) sustained, and
(c) annihilated one-rogue waves through the DB. The parameters
are g = 0.05, h = a = 1.2, r = p = 1, and z0 = 130 with (a) D30 =
−0.7, (b) D30 = −0.582, and (c) D30 = −0.4. Other parameters are
the same as those of Fig. 1.

exists between the analytical solutions of vcHNLSE and that
of the constant-coefficient Hirota equation, which is stable
[15]. Although this correspondence guarantees the stability of
the solutions, we perform direct numerical simulations with
initial white noise for Eq. (1) with initial fields coming from
Eq. (16) in some cases. Five examples of such behaviors are
displayed in Fig. 6, which essentially presents a numerical
rerun of Figs. 2(a), 2(b), 3(a), 4(a), and 5(a). Figure 6(a)
shows the comparison of analytical and numerical solutions for
postponed and sustained one-rogue waves in the exponential
dispersion decreasing fiber system of Eq. (21). Figure 6(b)
shows the comparison of analytical and numerical solutions
for postponed two-rogue waves in the exponential dispersion
decreasing fiber system of Eq. (21). From them, one can
find that waves are compressed along propagation distance.
The comparison of analytical and numerical solutions reveals
that no principal differences occur, except for some small
oscillation especially in the edge of waves attached on the
waves. Figures 6(c) and 6(d) display the numerical results of

016603-5



CHAO-QING DAI, GUO-QUAN ZHOU, AND JIE-FANG ZHANG PHYSICAL REVIEW E 85, 016603 (2012)

(a)

0 20 40 60 80 100120140

z–30
–20

–10
0

10
20

t

0.5
1

1.5
2

2.5
3

|u|

(b)

0 20 40 60 80 100120140

z–20

–10

0

10

20

t

1

2

3

|u|

(c)

0 20 40 60 80 100120140

z
–10

0

10

t

1
1.2
1.4
1.6
1.8

2
2.2
2.4

|u|

FIG. 5. (Color online) (a) Postponed, (b) sustained, and
(c) annihilated one-rogue waves through the DW. The parameters
are h = −0.8 with (a) D30 = −0.8, (b) D30 = −0.686, and (c)
D30 = −0.5. Other parameters are the same as those of Fig. 4.

postponed one-rogue waves passing through the DB and DW
of Eq. (22), respectively. From them, no collapses are found;
instead, the stable propagation over tens of dispersion lengths
are observed.

IV. CONCLUSIONS

In summary, we have constructed the relation between the
vcHNLSE, describing the femtosecond pulse propagation and
the constant-coefficient Hirota equation via a transformation.
Based on this transformation, we analytically obtained one-
rogue wave and two-rogue waves for the vcHNLSE. Under the
parameter condition, we discuss the propagation behaviors of
controllable rogue waves, including recurrence, annihilation,
and sustainment in a periodic distributed fiber system and an
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FIG. 6. (Color online) (a) Numerical simulations of (a) postponed
and sustained one-rogue waves from Figs. 2(a) and 2(b) at z = 100
and (b) a postponed two-rogue wave from Fig. 3(a) at z = 100.
(c) and (d) Postponed one-rogue waves passing through the DB and
DW from Figs. 4(a) and 5(b), respectively. (Inset) The corresponding
initial values, given by Eq. (22) with an added 5% white noise. The
parameters are the same as those in the corresponding analytical plots.
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exponential dispersion decreasing fiber. Also, we investigate
nonlinear tunneling effects for rogue waves. These results
obtained in this paper well supplement our comprehension
of the rogue wave, that is, that it “appears from nowhere
and disappears without a trace” [38]; rogue waves can be
controlled as discussed by a similar method in this paper.
Moreover, these results may have potential values for the
generation and sustainment of exceptionally high-amplitude
optical pulses, optical rogue waves. Of course, more practical
implementations of these theoretical results might be an
interesting task.

ACKNOWLEDGMENTS

The first author (C.Q. Dai) thanks Q. Tian and J. D. He for
useful discussions. This work was supported by the National
Natural Science Foundation of China (Grants No. 11005092,
No. 10974179, No. 11072219, and No. 61178016), the
Zhejiang Provincial Natural Science Foundation of China
(Grant No. Y1090073), the Program for Innovative Research
Team of Young Teachers (Grant No. 2009RC01), and the Sci-
entific Research and Developed Fund (Grant No. 2009FK42)
of Zhejiang Agriculture and Forestry University.

[1] W. J. Broad, Rogue Giants at Sea (The New York Times,
New York, 2006).

[2] P. A. E. M. Janssen, J. Phys. Oceanogr. 33, 863 (2003).
[3] N. Mori and P. A. E. M. Janssen, J. Phys. Oceanogr. 36, 1471

(2006).
[4] D. H. Peregrine, J. Aust. Math. Soc. B 25, 16 (1983).
[5] A. I. Dyachenko and V. E. Zakharov, JETP Lett. 81, 255 (2005).
[6] N. Akhmediev and A. Ankiewicz, Phys. Rev. E 83, 046603

(2011).
[7] C. Kharif, E. Pelinovsky, and A. Slyunyaev, Rogue Waves in the

Ocean (Springer, Berlin, 2009).
[8] D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, Nature

(London), 450, 1054 (2007).
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