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Two-dimensional superfluid flows in inhomogeneous Bose-Einstein condensates
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We report an algorithm of constructing linear and nonlinear potentials in the two-dimensional Gross-Pitaevskii
equation subject to given boundary conditions, which allow for exact analytic solutions. The obtained solutions
represent superfluid flows in inhomogeneous Bose-Einstein condensates. The method is based on the combination
of the similarity reduction of the two-dimensional Gross-Pitaevskii equation to the one-dimensional nonlinear
Schrödinger equation, the latter allowing for exact solutions, with the conformal mapping of the given domain,
where the flow is considered, to a half space. The stability of the obtained flows is addressed. A number of stable
and physically relevant examples are described.
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I. INTRODUCTION

Nowadays one observes rapidly increasing interest in
studying nonlinear Schrödinger (NLS) equations with inhomo-
geneous coefficients and, in particular, in obtaining their exact
analytical solutions for the physically relevant statements.
Starting with the first results on integrable inhomogeneous
models [1], this activity received further development due to its
relevance in nonlinear optics [2] and in the mean-field theory
of Bose-Einstein condensates (BECs) [3,4]. A possibility
of constructing exact solutions was also reported for NLS
equations with inhomogeneous complex-valued coefficients
[5]. However, there are two main limitations of the presently
available results. First, most of them were obtained for one-
dimensional or quasi-one-dimensional statements and only
a few results on multidimensional problems were reported,
so far [4,6]. Second, the most of the models allowing for
construction of exact solutions were posed in the infinite
domains. The first suggestion of an algorithm for constructing
exact solutions of the one-dimensional (1D) NLS equation on
a half line, modeling a BEC interacting with a rigid surface,
was recently reported in Ref. [7].

Here we show that the requirements of one dimensionality
and unboundness of the domain can be removed and exact
analytical solutions can be obtained for models defined on
bounded 2D domains and described by the NLS equation with
inhomogeneous linear, Vext(r), and nonlinear, g(r), potentials
(both being real-valued functions of the spatial coordinates).
Moreover, some of the reported solutions are found to be stable,
and thus having particular physical relevance.

The paper is organized as follows. In Sec. II, we present the
2D physical model and give the conformal mapping to reduce
the 2D physical model subject to given boundary conditions to
the nonlinear ordinary differential equation solved. In Sec. III,
we concentrate on the two simplest representative examples to
illustrate our method. Section IV is devoted to the numerical
simulations for the solutions obtained in the domain D2. In
Sec. V, we study the generalization of the conformal mapping
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and present exact solutions of the 2D physical model. Finally,
the outcomes are summarized in the Conclusion.

II. THE PHYSICAL MODEL AND CONFORMAL MAPPING

To be specific, we deal with the 2D nonlinear physical
model

i∂t�(r,t) = [− 1
2∇2 + Vext(r) + g(r)|�(r,t)|2]�(r,t), (1)

where r ≡ (x,y) ∈ D ⊂ R2, D is an open domain, and ∇ ≡
(∂x,∂y). We are particularly interested in applications of our
results to BEC flows, where �(r,t) is the macroscopic wave
function and model (1) is also termed the Gross-Pitaevskii
(GP) equation [8]. We explore the flexibility of potentials in the
BEC applications, i.e., the possibility of manipulating them by
external electric and/or magnetic fields for the sake of creation
of desirable spatial configurations for the linear potential and
for the scattering length of the two-body interactions (the latter
performed through the Feshbach resonance technique [9]).
We also notice that model (1) has also direct relevance to
the mean-field theory of exciton-polariton condensates [12].
There on the one hand, the 2D statement, i.e., the statement
considered in this paper, is the most typical one. On the other
hand applying the external pump from the free edges of a
specimen one can create different kinds of nonzero conditions
(nonzero currents, as required below in the present paper).

We concentrate on a BEC in a domain D bounded by
impenetrable walls. Respectively, Eq. (1) will be supplied by
the zero conditions given at the boundary of the domain D,
which we denote as ∂D, i.e., we impose �(r) = 0 for all
r ∈ ∂D.

Our goal is to find an algorithm allowing for systematic
constructions of the linear, Vext(r), and nonlinear, g(r),
potentials, for which the formulated Dirichlet problem allows
for exact analytical solutions. To this aim we assume that there
exists a complex analytic function

ζ (r) ≡ η(r) + iϕ(r) = f (z) (2)

of the complex variable z = x + iy ∈ C, which provides the
conformal mapping of the contour ∂D to the imaginary axis
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of ζ (r), i.e., to η(r) = 0, such that the domain D is mapped
into the right half plane in terms of the new variables (η,ϕ):
η(r) > 0. Due to analyticity of the mapping ζ (r) the Cauchy-
Riemann equations on the pair of real-valued functions η(r)
and ϕ(r) hold:

∂xη(r) = ∂yϕ(r), ∂yη(r) = −∂xϕ(r). (3)

Respectively, the following constraints,

∇2η(r) = 0, ∇2ϕ(r) = 0, ∇η(r) · ∇ϕ(r) = 0, (4)

are verified, as well. In other words, η(r) and ϕ(r) are both
2D harmonic functions with orthogonal gradients. Moreover,
on the basis of the Cauchy-Riemann equations we find the
relation |∇η(r)|2 ≡ |∇ϕ(r)|2.

We restrict the consideration to the linear and nonlinear
potentials, which can be represented in terms of η(r) as follows:

Vext(r) ≡ −ε

2
|∇η(r)|2, g(r) ≡ G

2
|∇η(r)|2, (5)

where ε and G are real parameters. Without loss of generality,
we choose G = ±1. The parameter ε determines the pro-
portionality coefficient between the potentials: Vext(r)/g(r) =
−ε/G. Then the change of the dependent variables �(r,t) →
ψ(η,ϕ,t), allows one to reduce Eq. (1) to the 2D form,

i∂tψ = 	(η,ϕ)
(−∂2

η − ∂2
ϕ − ε + G|ψ |2)ψ. (6)

Here 	(η,ϕ) is the positive definite function, defined as
	(η,ϕ) = |∇η|2/2 ≡ |∇ϕ|2/2, where the gradients must be
expressed in terms of η and ϕ (see the examples below). The
obtained equation (6) is considered for η > 0 and has to be
supplied with the zero boundary condition ψ(η = 0,ϕ,t) = 0.

First, we concentrate on time-independent solutions of
Eq. (1): �(r,t) ≡ ψ(η,ϕ), where ψ(η,ϕ) solves the 2D sta-
tionary GP equation with constant coefficients εψ = −(∂2

η +
∂2
ϕ)ψ + G|ψ |2ψ . Particular solutions of this equation can be

represented as

ψ(η,ϕ) = eiνϕφ(η), (7)

where ν is a constant and the real-valued function φ(η) solves
the problem

Eφ(η) = −∂2
ηφ(η) + G|φ(η)|2φ(η), φ(0) = 0, (8)

with E = ε − ν2 and η > 0.
Turning to the physical meaning of the obtained solutions,

we observe that it follows from the Ansatz, ψ(η,ϕ) = eiνϕφ(η),
that ∇ϕ(r) can be identified as the superfluid velocity. Hence
the introduced analytic function f (z) is nothing but the
complex potential of the respective two-dimensional flow. As
it is well known [11] such a potential defines the current, JC

of the fluid through a given contour C ⊂ D, as well as the
circulation �C along C:∫

C

f ′(z)dz = �C + iJC (9)

(the prime stands for the derivative with respect to z). Since
in our case f (z) is analytic, this integral is zero for any closed
contour C bounding a simply connected domain. Thus the
described flow has neither sources nor vorticity in D.

We also observe that if the change of variables implies
growth of |∇ϕ(r)| with r, then the physical meaning might
have only solutions with densities decaying at the infinity
(thus ensuring decaying currents). Whenever one concerns
with finite densities at the infinity, the physically meaningful
solutions would correspond to ν = 0. This last constraint is
assumed in what follows.

Finally, we notice that if the contour ∂D included in the
proposed scheme is closed, this implies that linear and (or)
nonlinear potentials are divergent at some point(s) of the
boundary. This is clear from the nature of the conformal
mapping, since in this case there should be a point of the
boundary, which is mapped into the infinity point. In its turn
such a point gives an origin to the singularity of the linear
and nonlinear potentials. Such cases will be exclude in what
follows, although they still may have physical relevance.

III. EXAMPLES OF EXACT SOLUTIONS

While large diversity of the domains can be considered, here
we concentrate on the two simplest representative examples
for the conformal mapping (2).

A. The quadrant x > | y| with the boundary x = ± y

The first domain considered below, is given by D1 =
{x > |y|} [i.e., D1 is the quadrant of the (x,y) plane] with
the boundary ∂D1 = {x = y, y > 0} ∪ {x = −y,y < 0}. Re-
spectively, the conformal mapping is chosen as f (z) = z2, and
thus η(r) = x2 − y2 and ϕ(r) = 2xy. The linear and nonlinear
potentials are now given by

Vext(r) = −2ε|r|2, g(r) = 2G|r|2, (10)

i.e., they are the linear expulsive parabolic potential and the
parabolic nonlinearity. Now 	(η,ϕ) = 2

√
η2 + ϕ2.

B. The strip 0 < y < π with the boundary y = 0,π

Another domain explored below is a strip D2 = {x ∈
R, 0 < y < π} with the boundary ∂D2 = {x ∈ R, y = 0} ∪
{x ∈ R, y = π}. Now the function performing conformal
mapping to the upper half plane is f (z) = ez and the new vari-
ables are determined as η(r) = ex sin y and ϕ(r) = ex cos y.
The linear and nonlinear potentials allowing for the exact
solutions are now given by

Vext(r) = −2εe2x, g(r) = 2Ge2x, (11)

and 	(η,ϕ) = 1
2 (η2 + ϕ2).

C. Exact solutions

Turning to the exact solutions, below we consider only
the case of repulsive interactions G = 1, as the most natural
candidate to produce stable stationary flows. As the two
simplest solutions of Eq. (1) (see, e.g., Refs. [6,10]) we study,
the “dark soliton” shape

�ds(r) = ψds(η,ϕ) =
√
E tanh

(√
E
2

η(r)

)
eiνϕ(r) (12)
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FIG. 1. (Color online) The profiles for exact solutions given by
Eqs. (12) and (13) and the corresponding velocity fields in the domains
D1 and D2. Left column: Panels (a)–(c) show the velocity field
∇ϕ(r) = (2y,2x), and densities |�ds(r)|2 and |�sn(r)|2 for solutions
given by Eqs. (12) and (13) in the domain D1. Right column:
Panels (d)–(f) show the velocity field ∇ϕ(r) = (ex cos y,ex sin y),
and densities |�ds(r)|2 and |�sn(r)|2 for solutions given by Eqs. (12)
and (13) in the domain D2. The parameters are ε = 2, ν = 0, and
k = 0.8.

and the nonlinear periodic modulation

�sn(r) = ψsn(η,ϕ) = k
√

2E√
1 + k2

sn

( √
E η(r)√
1 + k2

,k

)
eiνϕ(r) (13)

with E = ε − ν2 > 0 and k ∈ (0, 1] being the modulus of the
Jacobi elliptic sn function [notice that ψds(0,ϕ) = ψsn(0,ϕ) =
0, in conformity with the imposed boundary conditions].
These exact solutions given by Eqs. (12) and (13) and the
corresponding velocity fields in the domains D1 and D2 are
illustrated in Fig. 1.

The obtained exact solutions, however, leave several open
questions related to their practical feasibility. First, the stability
of the flows was not investigated, so far. Second, in all
considered cases infinitely growing potentials were used, while
any cutoff (which exists in the real world) may strongly
perturb, and even destroy the solutions. To address these issues
we now turn to direct numerical simulations.

In the case at hand the potentials Vext(r) and g(r) grow with
x, while the density goes asymptotically to (or is bounded by)
a certain constant level. Bearing this in mind we construct a
physical system with bounded potential in the following way.
For x < 0 we consider shifted linear and nonlinear potentials

Vext(r − r0) and g(r − r0), where r0 = (x0,0) with x0 being a
constant shift vector, while Vext(r) and g(r) are given by the
analytical formulas (5). To define the physical potentials at x >

0 we mirror them at x = 0, thus obtaining Vext(−r + r0) and
g(−r + r0). To confine the condensate along the y coordinate
we introduce an additional linear tarp potential as follows:
vadd = 0 for r ∈ D and vadd = V0, where V0 is large enough,
for r /∈ D. For more details see the next chapter where we
discuss the numerical studies of the problem.

IV. DIRECT NUMERICAL SIMULATIONS

Now we can perform direct numerical simulations of Eq. (1)
with the additional confining potential vadd taking the initial
distribution of the field in the form given by the analytical
formulas ψ(r − r0) for x < 0 and ψ(r0 − r) for x > 0. As is
clear, our Ansatz does not satisfy Eq. (1) only along the line x =
0 and in the areas y < 0 and y > π . Since, however, we impose
strong confining potential, we expect that the field is very weak
outside the stripe 0 < y < π and our Ansatz stays sufficiently
close to the real stationary solution of Eq. (1) with the intro-
duced physical potentials. The analytically found solution and
the corresponding potentials are shown in Fig. 2. Within the
areas “1” and “2” the Ansätze used in the numerics as the initial
condition coincides with the analytical solutions. However, on
the boundary between these areas the Ansätze do not satisfy the
equation for stationary fields. The Ansatz does not satisfy the
equation outside the areas either. However, the density of the
condensate is low outside the areas and so there are some rea-
sons to believe that the Ansatz is close to the stationary solution.
Let us remind here that in our numerical simulations to keep
the condensate localized within the stripe we used strong linear
potential; see the distribution of the linear potential along y.
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FIG. 2. (Color online) The Ansatz produced from the solutions
the with parameters ε = 2, ν = 0. In the upper part of the figure the
distribution of the linear potential along y is shown for x = 0. On the
right the distributions of the linear and nonlinear potentials are shown
alongside with the introduced loss for y = 0. In the areas marked by
“1” and “2” the Anzatz exactly coincides with the analytical solution
(neglecting exponentially weak loss).
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FIG. 3. (Color online) Panels (a) and (d) show the initial distri-
bution of the density of the condensates for cases 1 and 2; panels
(b) and (e) show the distributions of the condensate densities at
t = 100; panels (c) and (f) show the differences between the initial
density distributions and the density distributions at t = 100. The
shifts of the initial conditions and the potentials are x0 = −2.5 for
(a)–(c) and x0 = −2 for (d)–(f). The solution parameters are ε = 2,
ν = 0. The field is kept within the stripe by strong repelling linear
potential va = 104 for y < 0 and y > π . The parameters for the linear
losses are γ0 = 5, w0 = 1, xl = 10.

We carried out numerical simulations for the solutions ob-
tained in the domain D2 and found out that some nonstationary
excitations appear but the solution survive and stay rather close
to the initial field distribution. To check the stability of the
solution for longer time we had to get rid of the propagating
excitations. Since we perform numerical simulations in finite
windows the only way to eliminate the propagating excitations
is to introduce losses in the area where initially the density of
the condensate is exponentially weak. To do this we intro-
duce linear losses in the form γ = γ0{exp[−(x − xl)2/w2

0] +
exp[−(x + xl)2]/w2

0}. Then the losses are negligible in the area
where our analytical solution is big and so the solution is prac-
tically unaffected by the artificial losses used in the numerics.
In the same time all the perturbations propagating away are
quickly absorbed. In this case the excitations disappear very
quickly and one can see in Fig. 3 that the surviving solution
is very close to the initial distribution. As it is expected, the
stationary solution deviates from the Ansatz most strongly
around the points (x = 0, y = 0) and (x = 0, y = π ).

In the case of attractive interactions (of a negative scattering
length) the solution appears to be unstable against collapse.

V. THE GENERALIZED CONFORMAL MAPPING

Next we address possibilities of getting more general types
of the potentials, allowing for exact solutions. To this end we
introduce the generalized relations [cf. the Cauchy-Riemann

equations (3)]:

ρ2(η̂)∂xη̂(r) = ∂yϕ̂(r), ρ2(η̂)∂yη̂(r) = −∂xϕ̂(r), (14)

where ρ2(η̂) is a positive-definite function of η̂(r) only [as it is
clear the arguments presented below can be also applied to the
case where ρ2(ϕ̂) is a function of ϕ̂(r) only]. These equations
still define transformation to the orthogonal coordinates (η̂,ϕ̂),
however now satisfying the relations [cf. Eq. (4)]

∇ · [ρ2(η̂)∇η̂] = 0, ∇ · [ρ2(η̂)∇ϕ̂] = 0, ∇η̂ · ∇ϕ̂ = 0.

(15)

Moreover, now we have that |∇ϕ̂(r)|2 ≡ ρ4(η̂)|∇η̂(r)|2. Notice
that the generalized case [cf. Eq. (15)] can be reduced to
the case mentioned above [cf. Eq. (4)] in the special case
ρ2(η̂) ≡ 1.

Next we repeat the steps described above for the conformal
mapping, and by the direct algebra show that the generalized
Ansatz

ψ(η̂,ϕ̂) = ρ(η̂)eiνϕ̂(r)φ[η̂(r)] (16)

solves the 2D stationary GP equation (1) provided that φ(r)
satisfy the stationary equation (8) with η(r) substituted by η̂(r)
and the linear and nonlinear potentials are given by

Vext(r) ≡ ∇2ρ

2ρ
+ ν2(1 − ρ4) − ε

2
|∇η̂|2,

(17)

g(r) ≡ G|∇η̂|2
2ρ2

.

Notice that now the linear and nonlinear potentials are not
proportional to each other any more [cf. Eq. (5)].

To construct a particular example, we choose

η̂(r) = 2η(r) + η2(r)

2
, ϕ̂(r) = ϕ(r),

(18)

ρ(η̂) = 1√
2 + η(r)

with η(r) and ϕ(r) solving Eq. (4). One can ensure that this
choice also satisfies the conditions (15). Then the simplest
solution of Eq. (8) with the repulsive nonlinearity (G = 1)
is given by we study, the “dark soliton” shape (12) with η(r)
substituted by η̂(r) and valid for the positive chemical potential
E = ε − ν2 > 0.

Then, according to the generalized Ansatz with η̂(r), ϕ̂(r),
and ρ(η̂) given by Eq. (18), as well as η(r) and ϕ(r) defined in
the domain D2, we obtain the “dark soliton”

ψ̂ds(r) =
√
Eρ(η̂) tanh

(√
E
2

η̂(r)

)
exp(iνex cos y), (19)

with η ≡ η(r) = ex sin y, which solves Eq. (1) with the linear
and nonlinear potentials given by [cf. Eq. (17)]

Vext(r) = e2x

8(2 + η)2
{3 − 16(4E + ν2) − 2η[ν2(3 + 2η)

+ 2E(4 + η)(η2 + 4η + 8)]}, g(r) = 1

2
e2x(2 + η)3.

The presented solutions found in the domain D2 behave
in a way similar to the previous example; see Fig. 3.
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The numerical simulations prove that the found analytical
solutions can indeed be used as a good approximation for
the stable stationary solutions of Eq. (1) describing systems
with physically relevant potentials.

VI. CONCLUSION

To conclude, we have shown that exact analytical solutions
can be obtained in a large class of two-dimensional Gross-
Pitaevskii equations with inhomogeneous linear and nonlinear
potentials, defined on bounded domains. The method of con-
structing the models is based on the properly defined conformal
mapping of the given domain into a complex half plane.
In the context of applications to Bose-Einstein condensates,
the obtained solutions having nontrivial phase depending on
spatial coordinates can be interpreted as superfluid flows. In
the case of negative scattering length (repulsive interactions)
the background flows, i.e., ones having no zeros in the open

spatial domain, appear to be stable. The obtained results
generalize previous studies devoted to construction of the exact
solutions, using the self-similar transformation, to the two-
dimensional models given on bounded domains. Moreover,
the ideas presented in this paper are also able to apply
in two-dimensional cubic-quintic models, two-dimensional
multicomponent models, etc., and to design linear and non-
linear potentials for control of Bose-Einstein condensates and
nonlinear optical fibers in limited spatial domains.
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J. Belmonte-Beitia, V. M. Peréz-Garcı́a, V. Vekslerchik, and
V. V. Konotop, ibid. 100, 164102 (2008); A. T. Avelar,
D. Bazeia, and W. B. Cardoso, Phys. Rev. E 79, 025602(R)
(2009).
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