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Energy deposition of multi-MeV protons in compressed targets of fast-ignition
inertial confinement fusion
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The energy loss and penetration of multi-megelectronvolt protons into a uniform deuterium-tritium (DT) plasma
has been calculated. The effects of nuclear elastic scattering and Coulomb interactions are treated from a unified
point of view. In general, multiple scattering enhances the proton linear-energy transfer along the initial proton
direction, thus the energy deposition increases near the end of its range. The net effect of multiple scattering is to
reduce the penetration from 1.20 to 1.02 g cm−2 for 12 MeV protons in a ρ = 500 g cm−3 plasma at T = 5 keV.
These results should have relevance to proton fast ignition, specifically to energy deposition calculations that
critically assess quantitative ignition requirements.
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I. INTRODUCTION

Fast ignition (FI) of thermonuclear fusion is an attractive
scheme to increase the energy gain, reduce the laser driver
energy, and relax fuel compression uniformity in inertial
confinement fusion [1,2]. In the original scheme, relativis-
tic laser-accelerated electron beams have been proposed to
fast ignite the precompressed fuel [2]. These electrons are
accelerated by an ultra-intense laser which penetrates through
the plasma corona up to the critical density. However, the
relativistic electron beam approach suffers problems with
localized energy deposition and focusing.

Recently, it has been found that an ultra-intense laser allows
the acceleration of protons or even the heavier ions [3,4].
Snavely et al. showed that protons with Maxwellian energy
distribution are efficiently accelerated by an ultra-intense laser
[5]. Following that, Roth et al. proposed the use of such a
laser-accelerated proton beam as a secondary driver for the
fast ignition phase [6]. Because of their highest charge-to-mass
ratio, protons do have several advantages compared with
other ion species and electrons. They can be accelerated most
efficiently up to the highest energies. They can penetrate deeper
into a target to reach the high density region, where the hot
spot is to be formed because of the quadratic dependence
of the stopping power on the charge state. And finally they
do, like all ions, exhibit a maximum characteristic of the
energy deposition at the end of their range (Bragg peak),
which is desirable to heat a localized volume efficiently.
Laser-generated protons are characterized by a small source,
high degree of collimation, and short duration, which has also
been used in proton radiography [7].

The successful realization of fast ignition requires the
understanding and control of the transport and energy de-
position of proton beams in the target. The penetration
depth of a proton beam in a dense plasma is a quantity
of particular relevance to fast ignition since it is related to
the depth of the region heated by the beam. In the original
work introducing the general concepts of FI, the range for
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∼MeV electrons in core plasmas was estimated based on
the stopping power model. Later on, the stopping of fast
electrons as well as their multiple scattering of target ions
was properly treated [8]. This was further improved and
extended by adding the equally significant multiple scattering
contribution of target electrons with the help of the multiple
scattering theory [9–12]. These works motivate us to use the
multiple scattering theory to evaluate the energy deposition
of proton beams. Nevertheless, there are differences between
electron and proton stopping and the scattering mechanism.
In the relativistic electron scheme, the electrons and ions of
the target are assumed to be stationary. This assumption is
no longer appropriate for proton beams. Furthermore, in the
plasmas, nuclear elastic scattering contributes to scattering
and slowing down of protons [13]. Recent studies pointed out
the possibility of compressing a D/T capsule and generating
a blob with a density of ρ = 300–500 (g/cm3),temperature
T = 5–10 keV and areal density ρR = 1–2 (g/cm2), using
relatively modest laser energy [14–17]. In this paper, we
consider laser-accelerated proton beams generated in close
proximity to the compressed fuel pellet to provide the ignition
spark. Thus, by using the multiple scattering theory, the energy
deposition of multi-megaelectron volt protons in compressed
targets of fast ignition is calculated in the ignition conditions.

This paper is organized as follows. Section II intro-
duces the differential scattering cross section and stop-
ping power for megaelectron volt protons in plasmas. The
multiple scattering theory, which links proton energy loss
with range and penetration depth, is presented in Sec. III.
Section IV discusses some fundamental results of these
calculations.

II. DIFFERENTIAL SCATTERING CROSS
SECTION AND STOPPING POWER

Measured differential elastic scattering cross sections for
protons on nuclei include the Coulomb scattering component,
the nuclear scattering component, and a component represent-
ing interference between these two processes. The Coulomb
cross section is analytic, and can be subtracted from the total
scattering cross section to yield what we call the nuclear
plus interference (NI) cross section. The elastic differential

016405-11539-3755/2012/85(1)/016405(7) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.85.016405


M. MAHDAVI AND T. KOOHROKHI PHYSICAL REVIEW E 85, 016405 (2012)

FIG. 1. The proton stopping time tdep in a uniform D/T plasma
versus initial proton energy E0.

Coulomb cross section is the well-known Rutherford’s cross
section, which in the center-of-mass system is

dσ Coul
pb

d�
= Z2

pZ2
be

4

m2
pbv

4
pb(1 − μ)2

. (1)

The form of the differential NI cross section is suggested as
the exact polynomial expansion [18]

dσNI
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d�
= − 2ηpb
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which is truncated at the highest-order partial waves lmax

that contribute to nuclear scattering. The dependence on the
relative velocity vpb = |vp − vb| enters through the expansion
coefficients and through the Coulomb parameter, which is
defined as ηpb = ZpZbe

2/h̄vpb, while the dependence on μ =
cos� is explicit in Eq. (2), where � is the scattering angle in the
center-of-mass system (Fig. 1). Zpe and Zbe are the charges
of projectile p and background plasma species b, respectively,
and mpb = mpmb/(mp + mb) is the reduced mass.

The complete treatment of the stopping power of charged
particles in plasma was evaluated in pervious work [13]. The
stopping power of a projectile due to NI elastic scattering is
given by
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}
, (3)

where ψ is the angle between velocities vp and vb, and � is
the scattering angle in center-of-mass system.

The usual method for obtaining the stopping power for
a charged particle by Coulomb interactions, moving through
matter is to divide the calculation into two parts: the long-
distance collective excitations and the short-distance hard
collisions. Collective effects are important in the long-distance
part, and it is evaluated from the j.E power loss of a particle
moving in a dielectric medium. The hard collisions are
described by Coulomb scattering.

A completely rigorous first-principles calculation of the
charged particle stopping power has recently been performed
by Brown, Preston, and Singleton (BPS) [19]. This calculation
is in exact to leading and next-to-leading order in the plasma
number density, including an exact treatment of two-body
quantum scattering. No restriction is made on the charge, mass,
or speed of this particle. It is, however, assumed that the plasma
is not strongly coupled in the sense that the dimensionless
plasma coupling parameter g = e2kD/T is small, where kD is
the Debye wave number of the plasma. For example, one finds
g � 0.00846 for a D/T plasma with density ρ = 500 g/cm3

and temperature T = 5 keV. It is shown that plasma quantities
always expand in integer powers of the coupling g, and
therefore g is the appropriate parameter in which to perform a
controlled perturbative analysis for weakly coupled plasmas.
The BPS calculation is therefore extremely accurate in the
plasma regime realized during the ignition and burn of an
inertial confinement fusion capsule. The BPS stopping power
of nonrelativistic particles moving through a highly ionized
plasma for Coulomb interactions is

dECoul

ds
=

∑
b

(
dEC

b,S

ds
+ dE<

b,R

ds
+ dE

Q
b

ds

)
. (4)

The well-known Lenard-Balescu kinetic equation describes
the long-distance collective excitations of the plasma [20,21],
whereas the Boltzmann equation for pure Coulomb scattering
describes the short-distance hard collisions of the plasma
particles. A complete description of the plasma includes both
the long- and short-distance physics encoded in the Lenard-
Balescu and Boltzmann equations, so that the short-distance
quantum effects is added to the classical results [22]. The first
term of Eq. (4) arises from classical short distance physics

dEC
b,S

ds
= Z2

pe2k2
b

mpvp

(
mb

2πβb

)1/2 ∫ 1

0
du u1/2exp

(
−1

2
βbmbv

2
pu

)

×
{[

− ln

(
βbmb

ZpZbe
2K

mpb

u

1 − u

)
+ 2 − 2γ

]

×
[
βbMpbv

2
p − 1

u

]
+ 2

u

}
, (5)

where Mpb = mp + mb is the total mass of the projectile and
plasma particles, βb = T −1

b is the inverse temperature, and
γ � 0.57721 . . . is Euler’s constant. The second term of Eq. (4)
related to the long-distance physics

dE<
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)
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where K is an arbitrary wave number so that the total result
does not depend on K . However, sometimes choosing K to be
a suitable multiple of the Debye wave number of the plasma
simplifies the formula. Debye wave number kb of this species
is defined by

k2
b = 4πβbZ

2
be

2nb, (7)

where nb is the number density of species b. The total Debye
wave number kD is defined by

k2
D =

∑
b

k2
b. (8)

The function F (u) is related to the leading-order plasma
dielectric susceptibility that may be expressed in the dispersion
form

F (u) = −
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−∞
dv

ρtotal(v)

u − v + iη
. (9)

The spectral weight ρtotal(v) is defined by
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The third term in Eq. (4) is the short-distance two-body
quantum correction to the classical result
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where �(z) is the logarithmic derivative of the gamma
function. Finally, the total stopping power can be expressed as

dE

ds
= dENI

ds
+ dECoul

ds
. (13)

This equation defines the energy loss of the projectile p to
the plasma particles of species b or, equivalently, the energy
gain of the plasma particles b brought about by the projectile
p moving through the plasma with the velocity vp.

III. RANGE AND PENETRATION DEPTH

For two-body elastic collision, the particles’ velocities
before and after the collision are considered as vp, vb and v′

p,
v′

b, respectively. The Boltzmann equation for the distribution
function fp(pp) of charged particles p is written as [23][

∂

∂s
+ �̂.∇

]
fp(r,pp,s) =

∫
d3pb

(2πh̄)3

∫
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b)fp(p′
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dσpb

d�
d�, (14)

where �̂ is the unit vector for directing the motion of
the projectile p. This relation describes the scattering of
the particles of mass mp and mb, the scattering from the
initial momenta pp = mpvp, pb = mbvb to the final momenta
p′

p = mpv′
p, p′

b = mbv′
b. If the background plasma species b

are assumed to be stationary (vb = 0), such as a cold matter,
Eq. (14) is converted to the diffusion equation[

∂
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]
fp(r,pp,s)=nb

∫
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p) − fp(pp)]
dσpb

d�
d�,

(15)

where nb is the number density of background component b.
Equation (15) is solved in a cylindrical coordinate with the
assumption that the scattering is azimuthally symmetric. The
solution that satisfies the boundary conditions for projectile
angular distribution is [11,12]

fp(θ,E) = 1

4π
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�=0

P�(cosθ )

× exp

[
−
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k�(E′)
(
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)−1
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]
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where P�(cosθ ) are the Legendre polynomials. Using orthog-
onality, the average values of the Legendre polynomials take
simple expressions

〈P�(cosθ )〉 = exp

[
−

∫ E0
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k�(E′)
(
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)−1

dE′
]
. (17)

The effects of the scattering are manifested by the macroscopic
transport cross sections of various orders (�) which are all
functions of the energy loss

k�(E) =
∑

b

nb

∫
dσpb

d�
[1 − P�(cosθ )]d�. (18)

As mentioned above, Eqs. (16) through (18) are obtained
from diffusion equation (15) assuming cold matter (vb = 0).
However, this assumption is not appropriate for the warm
dense matter such as the central high density region of fast
ignition fusion targets. One of the good approximations for
such plasmas is considering the plasma component b to be in
thermal equilibrium with the Maxwellian distribution function

fb(pb) = nb

(
2πh̄2βb

mb

)3/2

exp

(
−1

2
βbmbv

2
b

)
. (19)

To find a suitable solution, we refer to the Boltzmann
equation (14) and assume that the distribution function of
the background plasma component b does not change by the
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scattering [fb(p′
b) � fb(pb)]. The solution is straightforward

and helps us to evaluate the transport cross sections k�(E), in
particular, when � = 1

k
Coul,NI
1 (E)=
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d3pb

(2πh̄)3
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∫
dσ

Coul,NI
pb

d�
(1 − cosθ )d�,

(20)

where k1(E) = kCoul
1 (E) + kNI

1 (E).

Since differential cross sections are evaluated in the center-
of-mass coordinate, the second integration of Eq. (20) may be
performed by passing to the center-of-mass coordinate(

dσ
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(
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and the scattering angle in laboratory coordinate θ is related
to the scattering angle in the center-of-mass coordinate
� as
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is the projectile velocity in the center-of-mass system and

V = mpvp + mbvb
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, (25)

is the velocity of center of mass. For an elastic Coulomb
collision, the relation scattering angle in the center-of-mass
coordinate � with the impact parameter τ is

cot
�

2
= τ

ζ
; ζ = ZpZbe

2

mpbv
2
pb

. (26)

The Coulomb cross section diverges logarithmically in both
the short- and long-distance regimes. To obtain a finite result,
we must introduce the short- and long-distance cutoffs τmin and
τmax as we integrate over the impact parameter τ . Equations (1)
and (22) are substituted into Eq. (20) and, after a standard
change of variables Eq. (26) the Coulomb component is
obtained

kCoul
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2
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where the variables are defined as

ω = vc
pV cosα,

χ = (
vc

p

)2 + vc
pV cosα,

ξ = vc
pV sinα, (28)

ν = vc
p.V + V 2,

u = (
vc

p

)2 + V 2.

The Debye screening sets the scale for the long-distance cutoff
and we expect on physical grounds that τmax = k−1

D . The short-
distance cutoff is set by interpolation between the extreme
quantum and classical regimes τmin = √

ζ 2 + (h̄/2mpbvpb)2

[24]. As a result, from Eq. (17) we can obtain

〈cosθ〉 = exp

[
−

∫ E0

E

k1(E′)
(

dE′

ds

)−1

dE′
]
, (29)

where cosθ , a function of the residual proton energy E and the
initial energy E0, is a measure of the mean deflection resulting
from multiple scattering. Equations (13) and (29) can be used
to calculate the stopping power in the direction of the initial
projectile velocity

dE

dx
= 〈cosθ〉−1 dE

ds
, (30)

where dE/ds is the stopping power along the path while
dE/dx is the linear energy stopping power. It can be noticed,
however, that the computation of the range (i.e., the length of
the projectile trajectory) does not require the consideration
of scattering and can also be performed by numerically
integrating the equation

R =
∫ E0

E

(
dE′

ds

)−1

dE′ (31)

by using the linear energy deposition (30), which can be
evaluated

〈x〉 =
∫ E0

E

〈cosθ〉
(

dE′

ds

)−1

dE′. (32)

〈x〉 is the mean longitudinal projectile position, by starting
energy E0, and travels to be slowed down to reach the energy
E, which is named penetration depth.

IV. RESULTS AND DISCUSSIONS

According to Atzeni’s model, the minimum ignitor beam
energy, power, and intensity required for FI are affected by
the proton stopping range ρr over the interval 0.15 < ρr <

1.2 g cm−2, where ρr is the hot spot diameter at the proton
beam transport direction [25]. Further studies show that for
high gain FI, the assembled fuel should be compressed to a
mass density in the range ρ = 300–500 g cm−3 to keep the
required ignition energy and the fusion yield at manageably
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FIG. 2. The transport cross section Eq. (20) for 0.1–12 MeV
protons in a uniform D/T plasma with ρ = 300 g cm−3 and T =
5 keV. The contributions of Coulomb (dashed line) and nuclear elastic
(dotted line) scattering are shown.

small levels [26]. The initially compressed inertial confinement
fusion target temperature is typically found to be ∼1 keV, while
complete burn propagation requires that the hot spot reaches
an average temperature T = 5–10 keV. Moreover, the proton
beam should deposit its energy in the fuel within 10–20 ps, be-
fore it hydrodynamically disassembles to isochorically heat the
“hot spot” to ignition temperature. For comparison, we calcu-
lated the proton stopping time using the following equation:

tdep =
∫ E0

Eth

(
dE′

dt

)−1

dE′, (33)

where Eth is the thermal energy. The results in Fig. 1 show
that the stopping time, although sensitive to the proton initial

FIG. 3. The mean deflection angle 〈cosθ〉 versus the fraction of
the residual energy in a uniform D/T plasma for 12 MeV protons
with ρ = 300,500 g cm−3 and T = 5,10 keV.

FIG. 4. Stopping power for linear energy transfer and continuous
slowing down as a function of the proton energy for incident 12 MeV
protons in a uniform D/T plasma ρ = 500 g cm−3, T = 5 keV.

energy, fuel density, and temperature, is not a major concern
here as it be stopped within tdep � 4 ps at the energies up to
12 MeV. As a result, it can be assumed that the protons deposit
their energy in a precompressed DT fuel that is initially at rest
because the fuel is almost stagnated at the time of peak ρr .

The transport cross section was calculated using Eq. (20).
The results are plotted in Fig. 2. For Ep � 1 MeV, nu-
clear elastic scattering of protons with plasma ions is the
main contribution of the transport cross section. Calculating
Eq. (29), Fig. 3 illustrates the circumstance when the incident
proton (E0 = 12 MeV) continuously changes direction as it
loses energy. Densities ρ = 300,500 g cm−3 and temperatures
T = 5,10 keV are chosen to be relevant to the compressed
targets of fast ignition in ignition condition. This figure shows

FIG. 5. The range (solid line) and penetration (dashed line) for 2–
12 MeV protons in a uniform D/T plasma with ρ = 300,500 g cm−3

and T = 5,10 keV.
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FIG. 6. The ratio of range to penetration for 2–12 MeV protons in
a uniform D/T plasma with ρ = 300,500 g cm−3 and T = 5,10 keV.

that by increasing the density at the mean deflection angle does
not change effectively, and it is more sensible than temperature.
Increasing the temperature leads to an increase in the mean
deflection angle due to multiple scattering. This figure also
shows that the near-thermalized energy scattering mainly leads
to deflect the beam from the initial direction. For example, for
ρ = 300 g cm−3 and T = 5 keV, when E/E0 ≈ 0.01 the mean
deflection angle is |θ | ≈ 56◦, at which point the incident proton
has lost the memory of its initial direction.

By substituting this result in Eq. (30), Fig. 4 illustrates
the stopping power for linear transfer and continuous slowing
down as a function of the proton energy, for ρ = 500 g cm−3,
T = 5 keV. The enhancement of dE/dx (dashed lines) over
dE/ds (solid line) is a consequence of the effects of multiple
scattering.

Figure 5 plots the range ρR and the penetration depth ρ〈x〉
that the proton traverses as it scatters about and eventually
thermalizes, as a function of the initial proton energy. This
figure also shows dependences of the range and penetration
depth to the target density and temperature. The results in Fig. 5
show that, at lower hot spot temperature (T = 5 keV), 12 MeV
protons can deposit their energy into the hot spot at ρr <

1.2 g cm−2. However, when the hot spot becomes even hotter
to T = 10 keV, the desired proton’s initial energy decreases to
�6.5 MeV to meet the optimal deposition depth requirement.
For further comparison, the ratio of range to penetration
is depicted in Fig. 6, for 2–12 MeV protons in a uniform
D/T plasma with ρ = 300,500 g cm−3 and T = 5,10 keV. As
the initial proton energy, temperature, and density increase, the

FIG. 7. The stopping power for 12 MeV protons, as a function
of the proton penetration, for a uniform D/T plasma with ρ =
500 g cm−3 and T = 5 keV.

effects of multiple scattering becomes more pronounced, and
the penetration is further diminished with respect to the
range.

With the calculation of the penetration as a function of
energy loss, the linear energy deposition can be evaluated
(Fig. 7). In addition to the differences in total penetration with
and without scattering contributions, it is seen that the linear
energy transfer increases near the end of its penetration (i.e.,
an effective Bragg peak). Such differences may need to be
considered in quantitatively modeling the energy deposition
of protons for fast ignition, and for critically assessing ignition
requirements. In summary, the mean deflection angle, energy
loss, range, and penetration of multi-megaelectron volt protons
into a uniform deuterium-tritium plasma has been calculated,
and the effects of multiple scattering such as Coulomb and
nuclear elastic scattering is treated from a unified point
of view. The plasma conditions (ρ = 300,500 g cm−3 and
T = 5,10 keV) are chosen to be relevant to compressed
targets of fast ignition in ignition condition. Also, plasma
components (ions and electrons) are assumed to be in thermal
equilibrium with the Maxwellian distribution function. In
general, scattering enhances the proton linear-energy transfer
along the initial proton direction and reduces the proton
penetration. Energy deposition increases near the end of its
range. These results should have relevance to proton fast
ignition and to proton radiography in inertial confinement
fusion, specifically to energy deposition calculations that
critically assess quantitative ignition requirements.
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