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Mixing generated by Faraday instability between miscible liquids
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The mixing between two miscible liquids subject to vertical vibrations is studied by way of experiments
and a two-dimensional numerical model. The experimental setup consisted of a rectangular cell in which the
lighter fluid was placed above the denser one. The diffuse interface was then visualized by a high-speed camera.
After an initial period of diffusion growth, the interface becomes unstable with a defined wavelength, which
depends on the amplitude and frequency of the acceleration. The waviness of the interfacial region disappears
once the mixing of the two fluids takes place. The mixing is characterized by a mixing layer thickness (MLT)
which measures the thickness of the mixed region between the two pure fluid domains. We find that the MLT
shows an exponential growth with time due to an initial fingering that appears at the interface and then a growth
with a defined slope after the mixing takes place. The MLT also increases with amplitude of driving motion.
Experimentally determined MLTs are always greater than those determined by computations since the latter
assume a jump discontinuity between the fluids prior to shaking, whereas in an experiment an initial diffusive
region establishes itself prior to shaking and this is destabilizing. In addition, it is found from computations that
mixing is best for low gravity levels at earlier times and high gravity levels at longer times. Explanations are
advanced for each of these observations.
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I. INTRODUCTION

The generation of waves near the diffuse interface of
two immiscible liquid layers that are subjected to vertical
vibrations is known as the Faraday instability [1,2]. This
instability occurs on account of a resonance that is set up when
there is a tuning of the imposed frequency with the natural
frequency of the free surface, which possesses surface potential
energy. This type of instability can also occur between two
miscible liquids with different densities [3]. In the experiments
of Zoueshtiagh et al. [3], where miscible fluid systems were
studied, the amplitude of the instability grew, which then led
to the mixing of the liquids. The waviness of the interface
finally disappeared once the two liquids were fully mixed over
a volume, considerably larger than the initial diffuse region.
In this paper, we report an experimental and numerical study
of Faraday instability used as a mixing tool when the applied
acceleration is perpendicular to the interface. In particular,
we investigate the mixing efficiency of the instability by
measuring the size of the volume where the two liquids were
fully mixed as a function of time, under different external
vibration parameters. A study of the mixing layer thickness
(MLT) based on experiments and numerical computations
is presented. The numerical study is extended to the case
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where gravity is a varying parameter, with potential space
applications.

II. EXPERIMENTAL SET-UP

The test cell depicted in Fig. 1(a) consists of a Plexiglas
cell of 8 × 4 × 2 cm3, which was filled until level 1 with
the heavier of the two fluids. From level 1 to the top, the cell
was filled through the side hole 2 with the lighter of the two
fluids. Air bubbles inside the cell were evacuated via the vent
or “gas exiting hole” at the top of the cell. Because of the
density gradient between the two liquids at their interface, the
latter was easily observable with ordinary lighting. The cell
was typically shaken 5 min after the start of injection of the
lighter fluid into the cell with the initial thickness of the diffuse
interface of the order of millimeters. This time corresponded
to the time necessary to slowly fill the cell without drastically
perturbing the interface. The range of amplitudes, A, and
frequencies, f , of the oscillations were A � 12 cm and
f �10 Hz (for more details on the experimental setup, cf.
Ref. [3]). The motion of the interface was observed by a
high-speed camera at 150, 200, or 250 images per second
with an exposure time of 250 μs [see Fig. 1(b)]. The recorded
images were digitized and calibrated into length scales from
which the size of the instability (wavelengths) and mixing
zone thickness were measured. To estimate the behavior of
mixing zone thickness with imposed amplitude and frequency,
a mathematical model is proposed. A 2D model meets the
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purposes of our study on qualitative grounds and it is to this
that we now turn.

III. MATHEMATICAL MODEL

We consider a 2D rectangular cavity [see Fig. 1(c)] to
model the experimental cell of Fig. 1(a). This cavity is filled
with the two miscible liquids (here brine and pure water).
The entire container is subjected to vibration of amplitude
A and frequency ω = 2πf . The scaled equations are written
below.
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In the above equations, all the variables are dimensionless:
�V is the velocity vector whose horizontal and vertical com-
ponents are denoted by U and V , respectively, t is the time,
P is the pressure field, and ρ = 1 + γ (�I − 1) is the mixture
density. Here, �I is the mass fraction of the heavier species and
γ is given by γ = (ρI − ρII )/ρI , where ρI is the density of
the heavy species. To render the modeling equations in scaled
form, we define length, time, and velocity scales. The length
scale “L” is given by

√
Dt0, the time scale by tref = L2/ν and

the velocity scale by Uref = ν/L, where D and ν are the mass
diffusivity and kinematic viscosity, respectively. Here, t0 is the
experimental wait time before the oscillations are imposed,
which basically corresponds to the time of mass diffusion.
The different dimensionless groups appearing in the above
equations are the following: Fr = Uref/

√
Lg (Froude number),

where g is the gravitational acceleration, Sc = ν/D (Schmidt
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FIG. 1. Sketch of (a) the test cell and (b) the experimental setup.
(c) The geometry and the boundary conditions of the numerical
problem.

number), W0 = 2πf tref (Womersley number), Re = LUref/ν

(Reynolds number), and Frv = Uref/
√

LA(2πf )2 (vibration
Froude number). We see that the scale factors make the
Reynolds number, Re, equal to unity. The above system of
equations is solved with the following dimensionless boundary
conditions:

y = 0, U = 0,V = 0,�I = 1

y = H/L, U = 0,V = 0,�I = 0

x = 0,W/L, U = 0,V = 0, ∂�I

∂x
= 0

⎫⎪⎬
⎪⎭ (2)

The mixing layer thickness (MLT) is calculated by considering
the average density in the x direction as

ρ(y,t) = 1

W/L

∫ W/L

0
ρ(x,y,t)dx. (3)

The MLT is then defined by

d(t) = ymax(t) − ymin(t), (4)

where ymin(t) is calculated by the condition [1 − ρ(y,t)] > ε

and ymax(t) by ρ(y,t) < ε. The value of ε is taken here as 10−5.
In other words, ymin is the location below which the heavier
fluid is very nearly uniform; likewise, ymax is the location
above which the lighter fluid is nearly uniform, the acceptable
deviation from uniformity being given by ε.

Equations (1) and (2) are solved by a finite volume method
using the SIMPLER algorithm [4] in a staggered mesh. The
space discretization uses the power-law scheme [5] and time
discretization is of the first-order Euler type. The effect of the
grid size was carefully tested for convergence. A nonuniform
mesh is used in order to capture the phenomena at the interface
and near the walls. The vibrational boundary layer thickness
is of the order of δvib = √

ν/(πf ) ≈ 178 μm for a maximum
frequency of f = 10 Hz and kinematic viscosity of 1 cSt.
Therefore, for all cases the nonuniform mesh has 80 × 80
points and the first point of the mesh is at around 150 μm. The
time step chosen is equal to 10−3 s, which is very small with
respect to all of the characteristic time scales.

IV. RESULTS

The study undertaken in a previous paper [3] has shown
that when a miscible two-fluid system is subject to vertical
vibrations, the interface showed waviness whose wavelength
decreased as the acceleration increased. The amplitude of the
fingers grew in time and then the mixing of the fluids took
place. In this paper, we characterize the mixing by the evolution
of MLT as a function of time, acceleration, and level of the
gravity.

In order to determine experimentally a temporal evolution
of MLT in two dimensions, thus accounting for the waviness of
the interface, the MLT was evaluated in some experiments and
the data are compared to the numerical results. The method
consisted of measuring the minimum and the maximum y

coordinate in each image, where the bottom and top limits
of the liquid mixing zone could be observed. This method is
equivalent to the calculation of MLT in numerical simulations
using Eq. (4). The results are presented in Fig. 2, where
the evolution of the MLT is plotted as a function of time
for the case of A = 1 cm and f = 5 Hz. The graph shows
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FIG. 2. (Color online) Experimental and numerical MLT, d , as a
function of time for an amplitude of A = 1 cm and frequency of f =
5 Hz. (a) Comparison between experiments and simulations 1 and 2
corresponding to sharp and diffuse initial interfaces, respectively. (b)
Numerical MLT for larger simulation times.

that there are two distinct regimes characterizing the MLT.
The first regime corresponds to an exponential state where
fingers of the instability are at the origin of any mixing in the
system. This exponential behavior is similar to that found by
Siddavaram and Homsy [6] in which the setup was different
as the acceleration was parallel to the interface. The second
regime starts after the fingers have vanished, i.e., after the
instability has vanished. The growth of MLT in this regime can
only be observed when the mixing by the instability (regime
1) has not invaded the whole cell. This is the case for Fig. 2.
The numerical data obtained for large simulation times show
a saturation of MLT in regime 2 [see Fig. 2(b)]. In this second
regime, the experimental data [Fig. 2(a)] appear to generally
underestimate the MLT and seem to even decrease with
time. This is due to increasing uncertainty in image readings
when the mixing takes place. Indeed, as the experimental
visualization of the MLT relies on the gradient of density at the
interface [3], the density gradient decreases as the mixing takes
place and it becomes technically more difficult to evaluate the
MLT.

The graph in Fig. 2 shows that the instability arises at shorter
times in the experiments than in the simulations with a sharp
initial interface (simulation 1). This is understandable since
in the experiments, unlike in the simulations with a sharp
interface [simulation 1 in Fig. 2(a)], there is a nonzero initial
interface layer thickness [3]. The origin of the instability
can be traced to the existence of a diffusion layer prior to
shaking and in this sense the instability is akin to the Bénard
problem. In simulation 2, this initial diffusion length is taken
into account by considering a simulation for a given time
period without activating the acceleration. As soon as the
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FIG. 3. (a) Numerical MLT, d , at the end of the exponential
growth as a function of the acceleration. (b) Time at the end of
the exponential growth as a function of acceleration in the numerical
simulation.

initial diffusion length in the simulations reaches that of the
experiments, the acceleration is then set on. Given the difficulty
in estimating accurately the MLT in the experiments, this
result is remarkable and expresses good agreement between
experiments and simulations for the regime 1 where instability
controls the mixing mechanism.

Figure 3(a) shows the MLT obtained at the end of the
exponential growth as a function of the acceleration level for
different fixed frequencies. The increase in MLT with accel-
eration implies that the MLT increases with the amplitude,
a control variable that occurs only linearly in the modeling
equations. The rise in the curve follows from an increase in the
instability with acceleration. After the instability commences,
the mixing takes place and the concentration gradients are
reduced. Now these concentration gradients are the very cause
of the instability and so the reduction of the gradients causes
a termination of the instability. In other words, the instability
sows the seeds of its own destruction. By this argument, one
must expect the duration of the instability to decrease with
acceleration, no matter how this acceleration is achieved.
This, too, is seen clearly in Fig. 3(b), which shows the
time, T0, required for each system to reach the end of the
exponential growth behavior. This time shows a power-law
type decrease as the acceleration of the vibrations is increased.
In addition to the linear behavior of MLT with Aω2, it appears
that for the same accelerations, larger values of MLT are
obtained with smaller ω. Indeed, for high-frequency runs, the
fingers developed at the interface do not have enough time to
“travel far” in the cell before the direction of the acceleration
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FIG. 4. (Color online) Numerical MLT, d , as a function of time for
different level of gravity for a fixed acceleration of (� = 25.26 ms−2).
The upper and lower graphs show MLT behavior for small and large
times, respectively. For the sake of clarity, some of the data were not
included in both graphs. Simulation parameters are A = 4 cm and
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and, thus, the direction of finger movement is reversed.
Therefore, the extent of MLTs reached in the cell for high
frequency runs remain smaller than those of low-frequency
experiments.

Figure 4 shows the calculated MLT as a function of time for
different levels of gravity (from 0.001 to 10 g) and for a fixed
acceleration (� = 25.26 m.s−2). It appears that with increasing
the level of gravity, the development of the instability is
delayed as the gravity has a stabilization effect. However, once
the instability emerges, its “lifetime,” which corresponds to
the exponential growth state, increases. This suggests that the
mixing at the interface is retarded for larger gravity level. This
in turn helps to keep a sufficiently large gradient of density
at the interface and, therefore, the instability can endure for
longer time. As a consequence, the MLT that is obtained at the
end of the exponential growth is larger for larger gravity level
[Fig. 4(b)].

It is interesting to note that at earlier times [less than about
1.5 s; see Fig. 4(a)], the MLT has higher values for low-gravity
levels than for high-gravity levels. As time progresses, this
situation reverses as the mixing is higher for higher values of
the gravity. The waviness appears indeed at the earlier times for
lower values of the gravity (say 0.01 g) than for higher values
of the gravity (say 1 g) due to the stabilizing buoyancy force in
the case of the latter. For the case of higher values of gravity,
the thickness of the diffusion layer grows as time progresses
and when the instability starts, the mixing invades most of the
cell more rapidly because a thicker diffuse layer obtains and
this renders the fingering process unstable (cf., the discussion
of Fig. 2). Thus, at a fixed value of acceleration (� ≈ 2.57 g),
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FIG. 5. (Color online) Numerical mean vertical position of d as a
function of time for different level of gravity for a fixed acceleration of
(� = 25.26 ms−2). The solid and dashed lines, respectively, highlight
the exponential (regime 1) and the slow-growth (regime 2) regimes in
the simulations. Simulation parameters are A = 4 cm and f = 4 Hz.

the mixing is better for large values of the gravity level if one
waits for longer times.

Figure 5 shows the mean vertical position of MLT as a
function of time. In this figure, the solid and dashed lines
highlight the exponential (regime 1) and the slow-growth
(regime 2) regimes in the simulations. It appears that the mean
vertical position of MLT at the end of the exponential state is
nearly identical for any level of gravity despite the fact that
the absolute value of MLT increases with increasing gravity
level (Fig. 5). This suggests that the motion of mean MLT
position depends on excitation parameters rather than the level
of gravity.

In the regime 2 the position of MLT is seen to move
toward the top of the cell for all levels of gravity (see
Fig. 5), but this movement is less important for large values of
gravity.

V. CONCLUSION

Experimental runs and numerical simulations on the inter-
facial instability between two miscible liquids that are subject
to accelerations have been performed. It has been shown in
a previous paper [3] that the wavelength of the interface
decreases when the magnitude of the acceleration increases,
much like the case of two immiscible fluids [2]. The amplitude
of the waves at the interface grows in both directions as time
goes on and then the fingers mix. A study of this mixing
process has been undertaken here as a function of time, levels
of acceleration, and gravity. Several key observations were
obtained from this study. First, the mixing layer thickness
grows exponentially with time as the fingering takes place at
the interface. This is followed by a smaller rate of growth where
the motion from the instability quenches. Second, the MLT
increases with the amplitude of the external motion. Further,
for a fixed amplitude the MLT increases with a decrease in
frequency. Third, numerical simulations that assume a jump
discontinuity between the fluids at the beginning show more
stability compared to the experiments wherein the starting
profile has a diffusion region between the fluids. This follows
from the fact that a gradient or diffusion profile prior to external
forcing enhances instability much like the Bénard problem.
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Last, numerical computations show that large gravity leads
to stability at earlier times wherein diffusion gradients can
more easily establish; in turn, these very diffusional gradients
enhance destabilization at long times with the result that the
MLT for large gravity is greater at long times.
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