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Scattering and nonlinear bound states of hydrodynamically coupled particles in a narrow channel
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We model a pair of hydrodynamically interacting particles confined in a channel with thin rectangular cross
section. We find that the particles have a finite region of attraction, which arises from the screening of dipolar
hydrodynamic interactions by the side walls. Outside this region, the two particles break apart and scatter; inside,
they oscillate together as an effectively free quasiparticle. We demonstrate that modulation of channel geometry
provides a means to irreversibly manipulate bound pairs.
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I. INTRODUCTION

Control of flowing suspensions of particles is central
to many emerging microfluidic applications, including cell
sorting [1], information processing [2], and assembly of
complex structures [3]. If the desired colloidal manipulations
could be encoded directly into the microchannel geometry,
they could be performed sequentially, continuously, and
with high throughput. Recently, researchers have investigated
self-organized states and nonlinear dynamics arising from
hydrodynamic interactions between colloidal particles [4,5].
These interactions are dramatically sensitive to geometric
confinement. For instance, it has been shown that Volvox
algae colonies swimming near a plane wall form oscillatory
bound pairs [6]. Between parallel plates, a flowing linear train
of droplets can support longitudinal and transverse acoustic
waves, owing to the unique dipolar form of hydrodynamic
interactions in this geometry [7]. Likewise, this dipolar form
leads to the formation of patterns [8] and sharp interfaces [9]
in confined particle arrays.

In this paper, we model the dynamics of a particle pair
confined to a channel of thin rectangular cross section. We
show numerically that the interplay of the dipolar form and
the screening of hydrodynamic interactions by the side walls
gives rise to two behaviors: scattering, in which pair distance
grows without bound, or nonlinear oscillations, for which pair
distance remains bounded. The oscillations take place far from
equilibrium, as the energy provided by the external flow is
dissipated by viscosity in this overdamped system. Neverthe-
less, they retain surprising similarity to free oscillations in a
conservative system, owing to the time reversal symmetry of
the underlying equations [10]. We characterize the observed
behavior as due to an effective softening spring nonlinearity
and, drawing on this analogy to a finite potential well, we show
that a resonant, long wavelength perturbation to the channel
boundaries can chaotically break oscillatory pairs. Our results
demonstrate that irreversible particle manipulations can be
performed through patterning of confining boundaries.

II. MODEL

Consider a particle confined between infinite parallel plates.
If the characteristic particle size L is comparable to the height
of the slit H , its motion is confined to a plane. When the particle
moves with respect to the surrounding fluid, it creates an

in-plane disturbance field with a long-range dipolar form [11].
This form arises from mass conservation: because of friction
from the confining walls, the flux of momentum from a force
multipole is exponentially screened over a length scale set
by the slit height H . Lack of momentum conservation fun-
damentally distinguishes this “quasi-two-dimensional” (q2D)
system from genuine 2D Stokes flow [12]. The velocity field
will have an approximate parabolic dependence in the z (plate
normal) direction, determining the areal density of the force of
friction on the fluid as γcHU(r), where γc = 8μ/H 2, μ is the
bulk dynamic viscosity, and U(r) is the fluid velocity relative
to the channel walls at a point r in the midplane z = H/2.
The friction on the particle, determined by the details of the
lubricating fluid that separates the particle from the walls, can
be associated with a parameter γp. This coefficient will in
general be higher than γc, so that, in an external flow, the
particle will not be freely advected but lag the surrounding
fluid and create a dipolar disturbance field.

Now we consider a collection of N such particles. We can
approximate the velocity field U(ri) at particle i as the external
field plus the disturbance created by the other particles and,
neglecting velocity gradients, we can use the drag coefficient ζ
for a cylindrical particle of radius R = L/2 in a q2D uniform
flow, as discussed in the appendix. This gives a system of 2N

equations for force-free particles:

γcπR2HU(ri) − γpπR2HUp

i + ζ
[
U(ri) − Up

i

] = 0, (1)

where Up

i is the velocity of particle i relative to the channel
walls and ri = (xi,yi) is its position in the fixed coordinate
system of Fig. 1(a). Assuming a uniform external flow U0 =
U0x̂, the local field is evaluated to leading order in rij :

U(ri) = U0 +
∑

j

V(ij )(rij ) · (
Up

j − U0
)
, (2)

where V(ij )(rij ) is a tensor determining the contribution of
particle j to the local field at i, detailed in the Appendix, and
rij ≡ rj − ri . These equations can be rearranged into matrix
form, AUp = B, where Up is a vector containing the 2N

particle velocities. The off-diagonal terms in the resistance
matrix A represent the coupling between particles, while terms
involving the external flow U0 are collected in the vector B.
Numerically, we can solve the N -particle problem by forming
A and B at each time step, inverting A to obtain Up, and
integrating forward in time via a Runge-Kutta routine. While
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FIG. 1. (Color online) (a) Particles of length L are confined to
two-dimensional motion in a channel of width W and height H , where
H < L < W and subject to an external flow. (b) Top-down view of
the system of images used to impose the no-mass flux condition at
the channel side walls. The real particles (dark red and dark blue) are
dressed by an infinite set of images (light colors). The particles lag the
external flow and are therefore coupled by dipolar flow disturbance
fields. Gray vectors are particle velocities in a frame moving with
the x component of the particles’ center of mass, xc.m.. (c) Particle
trajectories in the xc.m. frame for oscillation around a 0◦ fixed point,
as described in the text. (d) Particle trajectories around a 90◦ fixed
point. (e) A scattering event.

A is populated only by single and two-body terms, its inversion
solves a many-body problem.

In this geometry, the two-body problem is analytically
trivial: we obtain that r12 is fixed, and that the particles have
a component of velocity perpendicular to the external flow
U

p

1,y ∼ U0 sin(θ12) cos(θ12), where θ12 is the angle between r12

and U0, analogous to a pair of widely separated sedimenting
particles in unbounded three-dimensional (3D) fluid. Clearly,
with an additional set of confining side walls, a pair cannot
indefinitely maintain constant velocity in y. To introduce
side walls, we draw on an analogy with 2D electrostatics
and enforce the no-mass flux boundary condition via a set
of images [Fig. 1(b)]. The side walls are separated by a
distance W , and each particle is dressed by an infinite set
of reflections. By performing the appropriate summations, we
obtained the dressed self- and two-particle contributions to
the hydrodynamic interaction tensor, detailed in the appendix.
Significantly, the reflections exponentially screen two-particle
coupling in the channel direction x over a length scale ∼W

[13]. We note that our expression for the disturbance velocity
created by motion in the x direction reduces to an expression
obtained for a quasi-one-dimensional channel, Eq. (1) in
Ref. [13], in the limit that γ → 0. This limit represents the
neglect of fluid incompressibility (i.e., the effect of channel
blockage by a finite-sized particle). However, this effect is
not significant for the channel sizes we consider. The thin
channel approximation allows us to neglect the effects of
particle rotation and shear layers near solid boundaries. We
have explored including all reflections in evaluation of the
local field [i.e., replacing the second U0 in Eq. (2) with U(rj )],
but the quantitative effect was insignificant.

Our model is a minimalistic representation of hydrodynam-
ically coupled particles as coupled dipolar flow singularities,
reducing the full set of partial differential equations for the flow

field to a set of 2N coupled ordinary differential equations.
Such “singularity” models have been applied to systems of
vortices, swimmers, and sedimenting particles [10,14–16].
The simplicity of such models permits rapid identification
of dynamical motifs sustained by hydrodynamics, which can
then be studied in detail via experiments or more fully featured
simulations. For instance, the main results for sedimentation
of coupled Stokeslets [15] were recovered in multipole
simulations that included finite-size effects and lubrication
interactions [17].

III. RESULTS

Numerically, we address the N = 2 problem with parame-
ters W = 8L, γp/γc = 25, and ζ obtained from H/L = 2/3.
Variation of these parameters did not significantly affect
the dynamics we report. We sweep over initial particle
configurations (y1,y2,�x), where �x is separation in the flow
direction, �x ≡ x2 − x1. The angles θ12 = 0◦ and θ12 = 90◦
still constitute fixed points when yc.m. = W/2, where yc.m. ≡
(y1 + y2)/2, consistent with the symmetry in y. Otherwise,
depending on the initial configuration, the two particles either
oscillate around a 0◦ or 90◦ fixed point, remaining always
together, or break apart and scatter, with |�x| growing without
bound (Fig. 2). Owing to the time-reversal symmetry [10] of
the underlying equations, the oscillations are closed loops in
phase space. When particle trajectories are plotted in the frame
moving with xc.m. ≡ (x1 + x2)/2, they generically resemble
Figs. 1(c) and 1(d): two figure eights for 0◦ and two loops
(which do not necessarily cross) for 90◦. We distinguish
scattering trajectories as having a final |�x| > 2W . Invoking
time-reversal symmetry, we see that these trajectories are
pieces of longer trajectories, symmetric around �x = 0, for
particles that start with �x = ±∞, approach and interact near
�x = 0, and scatter to �x = ∓∞. Robust bound states are
possible only for particles that are initially close together,

FIG. 2. (Color online) Phase map indicating behavior for the ini-
tial condition (y1,y2,�x). Yellow (light) squares indicate oscillation
around a 0◦ fixed point; green (light) triangles, a 90◦ fixed point; blue
(dark) squares, scattering; and red (medium) circles, particle-particle
or particle-wall overlap. For the oscillatory trajectories, the inset
figures show the distributions of mean angle and frequency, where
f L is found by taking the spatial Fourier transform, as described in
the text.
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FIG. 3. (Color online) (a) Position of particle in y with xc.m.

for initial separation �y = 3L and �x = 0 and various initial
displacements of yc.m. from the centerline, where the fixed point
has y1/L = 2.5. (b) Matched by color, the power spectra of the
trajectories in (a), where f has units of inverse length. f0 is
predicted by linear theory. Arrows indicate the shift of peaks with
increasing amplitude. The appearance of second harmonics is linked
to the breaking of the half-wave symmetry y1(xc.m. + λ/2) − 2.5L =
−[y1(xc.m.) − 2.5L], where λ is the signal wavelength. The inset
shows both the largest amplitude trajectory from (a) and the result of
performing the symmetry operation on it; the curves do not coincide.

|�x| < 2W . Finally, we reject trajectories in which particles
overlap with each other or with the side walls. While we could
eliminate overlap via the inclusion of lubrication or contact
forces, we are primarily interested in the effect of far-field
hydrodynamics.

In order to examine the nonlinear oscillations in detail, we
consider a pair of particles with initial separation �x = 0 and
�y = 3L, where �y ≡ y2 − y1. When yc.m. is on the channel
centerline, the pair is at a fixed point and only translates in the
flow direction. If the initial yc.m. is displaced from the centerline
for fixed initial separation, the pair will oscillate around a 90◦
fixed point with amplitude in y identical to the magnitude of
the initial displacement. Since time can be arbitrarily rescaled
when Re = 0, we consider the variation of y1/L with xc.m./L

instead of with time [Fig. 3(a)]. The small-amplitude signals
are sinusoidal, well described by linearization about the fixed
point, while large-amplitude signals are nearly triangular. The
power spectra, determined by spatially Fourier transforming
the trajectories in Fig. 3(a), reveal a shift in the fundamental
frequency with amplitude, as well as growth in odd and,
eventually, even harmonics [Fig. 3(b)]. As shown in the
inset, the appearance of even harmonics is the signature of
broken half-wave symmetry. This symmetry breaking can be
attributed to the strong interaction of a particle with its nearest
image in the vicinity of a wall. The nearest image retards
motion in y, since the component of its velocity in y is opposite
that of the original particle.

Since the oscillations are closed loops in phase space, they
resemble free motion in a conservative potential. We define
an effective potential in coordinate q as Vq = −q̇2. For 90◦
oscillations, potentials defined via coordinates yi and �x are
single valued. In Fig. 4, we shift and rescale the effective

FIG. 4. (Color online) Effective potentials in �x (a) and y1 (c)
for the trajectories in Fig. 3, matched by color. The potentials are
shifted and rescaled for characterization in the Chebyshev basis.
(b) For motion in �x, a negative coefficient of T4 for large-amplitude
oscillations indicates a softening nonlinearity. (d) For motion in
y1, large-amplitude oscillations have skewed potentials, consistent
with the half-wave symmetry breaking. Arrows indicate the effect of
increasing amplitude.

potentials for the trajectories of Fig. 3 in order to characterize
their shapes via projection onto a basis set of Chebyshev
polynomials. For the potential defined in �x, a softening
nonlinearity is indicated by growth in a negative coefficient of
the fourth Chebyshev polynomial T4(x) ≡ 8x4 − 8x2 + 1 with
increasing amplitude of oscillation. All oscillatory trajectories
have ∂V/∂|�x| � 0. If a trajectory could explore the region
where ∂V/∂|�x| < 0, then |�x| would grow without bound,
which would be observed as a scattering event. This softening
can be attributed to the weakening of the pair interaction in
|�x| by the side walls.

The finitude of the effective potential suggests that, if a
particle pair could explore its effective potential diffusively,
it might unbind stochastically. Since the fixed point of
oscillations is at the channel centerline, a sinusoidal pattern
that displaces the side walls (varying the walls’ position
in y with x, but not with time, and fixing W ) recalls
parametric variation of a spring tether point—a route to chaotic
escape for finite potential oscillators. For a configuration
with initial separation �y = 3L and �x = 0, as previously
considered, and yc.m. initially on the the centerline, yc.m. =
W/2, we vary the amplitude A/L and spatial frequency
fw/f0 of a wall perturbation. Without a wall perturbation,
this configuration is a fixed point. f0 is the fundamental
frequency of small-amplitude oscillations, shown in Fig. 3.
The wavelength of the perturbation λw = f −1

w is always large,
λw � W > L, such that we can retain the model developed
for straight walls. For each set of parameters, we perform ten
simulations for a dimensionless time 7.5 × 104 L/U0, with
each trajectory initially perturbed in phase space by noise with
magnitude ε = 10−4. We calculate the Euclidean distance of
each trajectory with respect to a reference trajectory. Taking
scattered trajectories to have a final |�x| > 2W , we define the
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FIG. 5. (Color online) (a) Phase portrait of two trajectories with
A/L = 0.2 and fw/f0 = 1 initially separated by a noise vector
in phase space with magnitude ε = 10−4. The trajectories diverge
exponentially (inset). (b) Distribution of scattering length x(s)

c.m. for
A/L = 0.2 and fw/f0 = 1. (c) Number of scattering and overlap
trajectories for various amplitudes and spatial frequencies of a
sinusoidal pattern. The results for irrational frequency ratios are
similar.

scattering distance x(s)
c.m. as the minimum xc.m. for which this

criterion is satisfied.
We find that while most trajectories remain bound states,

a finite-amplitude perturbation at a resonant wavelength can
lead to chaotic scattering. Scattering and overlap trajectories
are clustered around fw/f0 = 1 [Fig. 5(c)]. The scattering
trajectories are chaotic, diverging exponentially from the
reference trajectories [Fig. 5(a)]. For A/L = 0.1,A/L = 0.2,
and A/L = 0.5 at fw/f0 = 1, we run an additional set of one
thousand trajectories to probe stability and the distribution
of scattering length. None of the most weakly perturbed
trajectories scattered. This suggests that experimental real-
izations of bound pairs would be robust against imperfections
in channel geometry. The distribution of scattering lengths for
A/L = 0.2 is shown in Fig. 5(b). Although the particles are
non-Brownian, both the abrupt rise on the left and the long
tail on the right are typical features of a distribution of first
passage times for a diffusive particle with absorbing boundary.
For A/L = 0.5, particles scatter quickly, accumulating little
distance in phase space, so that x(s)

c.m. is strongly peaked around
x(s)

c.m./λ0 = 5.3, where λ0 = f −1
0 . We note that time reversing

the above-described scattering trajectories produces solutions
in which particles are initially widely separated but induced to
approach and form bound states, whereas robust bound states
in the straight wall system required an initial |�x| < 2W .
Therefore, patterned walls can function either to release bound
pairs or to trap initially free particles.

IV. CONCLUSION

In summary, we have shown that particles driven by an
external flow in a narrow channel can form bound states
when coupled through boundary-mediated hydrodynamic in-
teractions. Owing to time-reversal symmetry, the bound state
resembles a free “quasiparticle,” oscillating in an effective
potential constituted by the confining boundaries and the
colloids own motion. The softening nonlinearity of this
potential arises from the screening of interactions in the flow
direction by the side walls. This softening limits pair binding
to a finite region, outside of which the particles scatter to
infinity. Patterning the confining boundaries for modulation of

the hydrodynamic interaction provides a means to irreversibly
trap, manipulate, and release colloidal particles without the
application of external forces.
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APPENDIX

A cylindrical particle with radius R and velocity Up

i that is
confined in a slit and subject to an external flow U which is
uniform in the midplane can be modeled by the 2D Brinkman
equation,

−∇P2D + μ2D∇2u − μHa2u = 0, (A1)

with ∇ · u = 0, where a2 ≡ 8/H 2, μ2D ≡ μH , and u is the
fluid velocity in the midplane. P2D is the 2D pressure and
has units of surface tension. The solution to this equation
determines both the drag coefficient ζ [18] and the hydrody-
namics interaction tensor V(ij )

αβ . The latter should be read as
“the disturbance at particle i in direction α due to motion of
particle j in direction β.” The drag coefficient is

ζ = 4πμ2D

(
a2R2

4
+ aRK1(aR)

K0(aR)

)
. (A2)

The force on the particle from the flow is

F = πR2γcHU + ζ
(
U − Up

i

)
. (A3)

The first term in Eq. (A3) breaks Galilean invariance and arises
from the external pressure gradient required to drive the flow
against friction from the walls. Equation (1) is obtained after
including the friction on the particle.

Retaining only the far-field, dipolar term, the hydrodynam-
ics interaction tensor is xy symmetric and nonzero only for
i 
= j :

B ≡
(

1 + 2K1(aR)

aRK0(aR)

)
R2,

X ≡ (xi − xj ), Y ≡ (yi − yj ),

V (ij )
xx = B(X2 − Y 2)/r4

ij , V (ij )
xy = 2BXY/r4

ij ,

V (ij )
yx = V (ij )

xy , V (ij )
yy = −V (ij )

xx .

In a channel, particle i will not only interact with other
particles, but also with its own images and the images of
other particles. A particle and its images can be divided into
two sets. The first set, designated “far,” includes the original
particle, as well as periodic images displaced from the original
particle in the y direction with periodicity 2W . The “near” set
is seeded from the original particle’s mirror image across the
closest side wall and includes periodic copies of this image.
The “near” set is so named because it includes the image closest
to the original particle, and the ŷ component of velocities in
this set are negated relative to the original particle [Fig. 1(b)].
Summing over the images in these two sets, the self-interaction
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(i = j ) is determined to be

C ≡
(

1 + 2K1(aR)

aRK0(aR)

) (
Rπ

2W

)2

,

V
(ii)
xx,far = −C/3, V

(ii)
yy,far = −V

(ii)
xx,far,

V
(ii)
xy,far = 0, V

(ii)
yx,far = 0, V (ii)

xx,near = −C/ sin2(πyi/W ),

V (ii)
yy,near = V (ii)

xx,near, V (ii)
xy,near = 0, V (ii)

yx,near = 0,

V
(ii)
αβ = V

(ii)
αβ,near + V

(ii)
αβ,far.

For i 
= j ,

X− ≡ π (xi − xj )/(2W ), Y± ≡ π (yi ± yj )/(2W )

V
(ij )
xx,far = C

2 cos2 Y− cosh2 X− − cosh2 X− − cos2 Y−

(cosh2 X− − cos2 Y−)2
,

V
(ij )
xy,far = 2C

cos Y− cosh X− sin Y− sinh X−

(cosh2 X− − cos2 Y−)2
,

V
(ij )
yx,far = V

(ij )
xy,far, V

(ij )
yy,far = −V

(ij )
xx,far,

V (ij )
xx,near = C

2 cos2 Y+ cosh2 X− − cosh2 X− − cos2 Y+

(cosh2 X− − cos2 Y+)2
,

V (ij )
xy,near = −2C

cos Y+ cosh X− sin Y+ sinh X−

(cosh2 X− − cos2 Y+)2
,

V (ij )
yx,near = −V (ij )

xy,near, V (ij )
yy,near = V (ij )

xx,near,

V
(ij )
αβ = V

(ij )
αβ,near + V

(ij )
αβ,far.

For a given channel width W , Y+ and Y− are bounded
from above and below. As |X−| → ∞ for fixed Y+ and Y−,
the components of V(ij )

αβ decay exponentially with screening
length W/π or 2W/π .
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