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Tensorial slip of superhydrophobic channels
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We describe a generalization of the tensorial slip boundary condition, originally justified for a thick (compared
to texture period) channel, to any channel thickness. The eigenvalues of the effective slip-length tensor, however,
in general case become dependent on the gap and cannot be viewed as a local property of the surface, being a
global characteristic of the channel. To illustrate the use of the tensor formalism we develop a semianalytical
theory of an effective slip in a parallel-plate channel with one superhydrophobic striped and one hydrophilic
surface. Our approach is valid for any local slip at the gas sectors and an arbitrary distance between the plates,
ranging from a thick to a thin channel. We then present results of lattice Boltzmann simulations to validate the
analysis. Our results may be useful for extracting effective slip tensors from global measurements, such as the
permeability of a channel, in experiments or simulations.
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I. INTRODUCTION

With recent advances in microfluidics [1,2], renewed
interest has emerged in quantifying the effects of surface
heterogeneities with different local hydrophobicity (charac-
terized by a local scalar slip [3,4]), on fluid motion. In this
situation it is advantageous to construct the effective slip
boundary condition, which is applied at the hypothetical
smooth homogeneously slipping surface, and mimics the
actual one along the true heterogeneous surface [5,6]. Such
an effective condition fully characterizes the flow at the real
surface and can be used to solve complex hydrodynamic
problems without tedious calculations. Well-known examples
of such a heterogeneous system include superhydrophobic
(SH) Cassie surfaces, where trapped gas is stabilized with a
rough wall texture, leading to a number of “super” properties,
such as extreme nonwettability and low hysteresis [7]. For
these surfaces effective slip lengths are often very large [8–11]
compared with a smooth hydrophobic coating [12–17], which
can greatly reduce the viscous drag and impact transport
phenomena in microchannels [5].

The concept of effective slip was mostly exploited for thick
(compared to the texture characteristic length, L) channels
[1,18], where for an anisotropic texture it was shown to depend
on the direction of the flow and is a tensor [19], beff ≡
{beff

ij }, represented by a symmetric, positive definite 2 × 2
matrix

beff = S�

(
b

‖
eff 0

0 b⊥
eff

)
S−�, (1)

diagonalized by a rotation with angle �,

S� =
( cos � sin �

− sin � cos �

)
. (2)

For all anisotropic surfaces its eigenvalues b
‖
eff and b⊥

eff corre-
spond to the fastest (greatest forward slip) and slowest (least

forward slip) orthogonal directions [19]. In the general case
of any direction �, this means that the flow past such surfaces
becomes misaligned with the driving force. This tensorial slip
approach, based on a consideration of a “macroscale” fluid
motion instead of solving hydrodynamic equations at the scale
of the individual pattern, was supported by statistical diffusion
arguments [19], and was recently justified for the case of Stokes
flow over a broad class of periodic surfaces [6]. Note that an
effective slip in a thick channel situation is a characteristic of
a heterogeneous interface solely (being expressed through its
parameters, such as local slip lengths, fractions of phases, and
a texture period) [5,20].

It was, however, recently recognized and justified by using
the theory of heterogeneous porous materials [21] that a
similar concept of effective slip can also be exploited for a
flow conducted in a thin channel with two confining surfaces
separated by a distance H � L. In such a situation a natural
definition of the effective slip length could be based on a
permeability of a hypothetical uniform channel with the same
flow rate. An effective tensorial slip is then determined by
flow at the scale of the channel width, and depends on H [21].
This points to the fact that an effective boundary condition
reflects not just parameters of the liquid-solid interface, but
also depends on the flow configuration [5].

The power of the effective slip approach and the super-
lubrication potential of SH surfaces were already illustrated
by discussing several applications. In particular, it has been
shown that optimized SH textures may be successfully used
in passive microfluidic mixing [5,22] and for a reduction of
a hydrodynamic drag force [23,24], and that the effective slip
formalism represents a useful tool to quantify properties of
SH surfaces in thick and thin channels. In many situations,
however, the dramatic changes in flow happen when the two
length scales H and L are of the same order. In this work
we generalize the definition of the effective slip-length tensor
Eq. (1) to an arbitrary channel thickness and validate this
approach by means of lattice Boltzmann (LB) simulations.
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The structure of this manuscript is as follows. In Sec. II
we describe our model and formulate governing equations. In
Sec. III we analyze a tensorial permeability of the parallel-plate
channel with one (anisotropic) SH and one hydrophilic surface
and give some general arguments showing that the tensorial
relation, Eq. (1), should be valid at arbitrary H/L. Section IV
contains semianalytical results for a striped SH surface, and
in Sec. V we describe our LB simulation approach. In Sec. VI
simulation results are presented to validate the predictions of
the tensorial theory and to test our analytical results for the
asymptotic limits of thick and thin channels.

II. MODEL AND GOVERNING EQUATIONS

The basic assumptions of our theoretical model are as
follows. We consider a channel consisting of two parallel walls
located at y = 0 and y = H and unbounded in the x and z

directions as sketched in Fig. 1. The upper plate represents a
no-slip hydrophilic surface, and the lower plate is a SH surface.
The origin of coordinates is placed in the plane of a liquid-gas
interface at the center of the gas sector. The x axis is defined
along the pressure gradient. This (SH vs hydrophilic) geometry
of configuration is relevant for various setups, where the
alignment of opposite textures is inconvenient or difficult. In
addition, the advantage of such a geometry is that it allows one
to avoid the gas bridging and long-range attractive capillary
forces [25], which appear when we deal with interactions of
two hydrophobic solids [26,27].

As in previous publications [20,23,28], we model the
SH plate as a flat interface with no meniscus curvature,

H

y

z L

x

(a)

(b)

y

z (x)
O

H

FIG. 1. (Color online) Sketch of the SH stripes: (a) � = π/2
corresponds to transverse stripes, whereas � = 0 corresponds to
longitudinal stripes; (b) the situation in (a) is approximated by a
periodic cell of size L, with equivalent flow boundary conditions on
the gas-liquid and solid-liquid interfaces.

so that the SH surface appears as perfectly smooth with a
pattern of boundary conditions. The latter are taken as no-slip
(b1 = 0) over solid/liquid areas and as partial slip (b2 = b)
over gas/liquid regions. We denote as δ a typical length scale
of gas/liquid areas. The fraction of the solid/liquid areas is
denoted φ1 = (L − δ)/L, and that of the gas/liquid areas is
denoted φ2 = 1 − φ1 = δ/L. In this idealization, by assuming
a flat interface, we neglect an additional mechanism for a
dissipation connected with the meniscus curvature [14,29,30].

The flow is governed by the Stokes equations

η∇2u = ∇p, (3)

∇ · u = 0, (4)

where u is the velocity vector, and the average pressure
gradient is always aligned with the x-axis direction:

〈∇p〉 = (−σ,0,0). (5)

The local slip boundary conditions at the walls are defined as

u(x,0,z) = b(x,z) · ∂u
∂y

(x,0,z), ŷ · u(x,0,z) = 0, (6)

u(x,H,z) = 0, ŷ · u(x,H,z) = 0. (7)

Here the local slip length b(x,z) at the SH surface is generally
the function of both lateral coordinates.

We intend to evaluate the effective slip length beff at the SH
surface, which is as usual defined as

beff = 〈us〉〈(
∂u
∂y

)
s

〉 , (8)

where 〈· · · 〉 means the average value in the plane xOz.

III. GENERAL CONSIDERATION

In this section, we evaluate the pressure-driven flow
in the parallel-plate channel with one anisotropic SH and
one hydrophilic surface and investigate the consequences
of anisotropy. For an anisotropic texture, there are several
possible ways to define effective slip lengths. A natural
approach is to define a slip-length tensor via

k‖,⊥ = H 3

12

(
1 + 3b

‖,⊥
eff

H + b
‖,⊥
eff

)
(9)

by analogy with a hypothetical uniform channel. Such a
definition was earlier justified for thin SH channels, by using
the lubrication limit [21]. Below we argue that the same result
is obtained for a channel of an arbitrary thickness with a
tensorial generalization of the Navier boundary condition,
where beff is a global measure of the effective slippage of
the channel.

For a mathematical justification of the above statement we
first rewrite Eqs. (3) and (5) as

η∇2〈U〉 = 〈∇p〉, 〈∇p〉 = −σ x̂, (10)

where 〈U〉 is the depth-averaged velocity. The two boundary
conditions that apply at the channel walls can then be written
as follows: 〈U〉 = 0 at the upper surface, and uniform tensorial
slip,

〈U〉 = beff · 〈∂yU〉, (11)
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at the lower surface, with beff defined according to Eqs. (1)
and (2). The solution for the depth-averaged velocity is then
given by [5]

〈Ux〉 = −σy2

2η
+ σHy

2η
+ σH 2

2η
Cx

(
1 − y

H

)
, (12)

〈Uz〉 = σH 2

2η
Cz

(
1 − y

H

)
, (13)

with

Cx = Hb
‖
eff cos2 � + Hb⊥

eff sin2 � + b
‖
effb

⊥
eff

(H + b
‖
eff)(H + b⊥

eff)
,

Cz = H (b‖
eff − b⊥

eff) sin � cos �

(H + b
‖
eff)(H + b⊥

eff)
.

In linear response, the averaged flow rate, 〈Q〉, is propor-
tional to 〈∇p〉 via the permeability tensor, k:

〈Q〉 = −1

η
k · 〈∇p〉. (14)

Integrating the velocity profile across the channel we obtain

〈Q〉 =
∫ H

0
〈U(y)〉dy, (15)

with the components

〈Q〉x = σ

η

H 3

12
[1 + 3Cx], 〈Q〉z = σ

η

H 3

4
Cz. (16)

The latter may be rewritten as

〈Q〉x = σ

η
(k‖ cos2 � + k⊥ sin2 �), (17)

〈Q〉z = σ

η
(k‖ − k⊥) sin � cos �, (18)

provided the two tensors, k and beff , are coaxial and the
rigorous relationship between their eigenvalues is given by
Eq. (9). This unambiguously indicates that the two definitions
of the slip length are equivalent. It also becomes apparent
that Eq. (9) implies that b

‖,⊥
eff generally depends on the

separation H .
Note some similarity to a prior work [21,31]. The current

consideration, however, is valid for arbitrary H/L and b/L,
including the limit of thick channels, where beff becomes a
local property of the surface on scales much larger than the
texture characteristic length.

Consider now a situation where the “fast” axis of greatest
forward slip of anisotropic texture is inclined at an angle � to
the pressure gradient. This problem can be solved explicitly as
follows. The downstream effective permeability of the channel
can be expressed in terms of the effective downstream slip
length as

k
(x)
eff = H 3

12

(
1 + 3b

(x)
eff

H + b
(x)
eff

)
. (19)

Following [19], it can also be obtained from the permeability
tensor:

k
(x)
eff = k‖k⊥

k‖ sin2 � + k⊥ cos2 �
. (20)

By substituting Eq. (9) into Eq. (20) and after subtracting the
latter from Eq. (19) we express an effective downstream slip
length in the form

b
(x)
eff = b⊥

effH + 4b
‖
effb

⊥
eff + (b‖

eff − b⊥
eff)H cos2 �

H + 4b
‖
eff − 4(b‖

eff − b⊥
eff) cos2 �

. (21)

Note that in the general case b
(x)
eff depends on H and b

‖,⊥
eff (H ).

For this reason, b
(x)
eff cannot be viewed as a local property of

the SH surface, except as in the thick channel limit. Instead,
it is generally the effective slip length of the SH channel and
thus its global characteristic.

Finally, we emphasize the generality of Eqs. (20) and (21),
which follow only from the symmetry of the effective per-
meability and slip-length tensors for linear response. Similar
formulas have been obtained before in a few particular
calculations Refs. [31,32], but the present derivation is valid
regardless of the thickness of the channel and is independent
of the details of the textured surface. There could be arbitrary
patterns of local slip lengths, and the latter could itself be
a spatially varying tensor, reflecting surface anisotropy at a
smaller (possibly atomic) scale.

IV. THEORY FOR STRIPED PATTERNS

To illustrate the general theory, in this section we focus
on flat patterned SH surfaces consisting of periodic stripes,
where the local (scalar) slip length b varies only in one
direction. The problem of flow past striped SH surfaces has
previously been studied in the context of a reduction of
pressure-driven forward flow in thick [28,33,34] and thin [21]
channels, and it is directly relevant for mixing [5,22], and
generation of a tensorial electro-osmotic flow [5,35,36]. Here
we elaborate on a previously published ansatz [5] and present
the theory for an arbitrary gap, which in the asymptotic
limits describes situations of thin and thick channels. The
mathematical analysis we use here is similar to a technique
exploited in Ref. [34] for a thick channel configuration. The
crucial difference with Ref. [34], however, is that we consider
an arbitrary gap, which means that the effective slip is a
function of the channel thickness as discussed above.

For transverse stripes, we have u = (u(x,y),v(x,y),0),
u(x,0) = b(x)uy(x,0), and v(x,0) = 0. For longitudi-
nal stripes, the flow is also two dimensional: u =
(u(y,z),v(y,z),0), u(0,z) = b(z)uy(0,z), and v(0,z) = 0. As
the problem is linear in u, we seek a solution of the form

u = u0 + u1, (22)

where u0 is the velocity of the usual no-slip parabolic
Poiseuille flow,

u0 = (u0,0,0), u0 = − σ

2η
y2 + σH

2η
y, (23)

and u1 is the SH slip-driven superimposed flow.

A. Longitudinal stripes

In this situation the problem is homogeneous in the
x direction (∂/∂x = 0). The slip length b(x,z) = b(z) is
periodic in z with period L. The elementary cell is determined
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as b(z) = b at |z| � δ/2, and b(z) = 0 at δ/2 < |z| � L/2.
In this case the velocity u1 = (u1,0,0) has only one nonzero
component, which can be determined by solving the Laplace
equation

∇2u1(y,z) = 0, (24)

with the following boundary conditions defined in the usual
way as

u1(H,z) = 0, (25)

u1(0,z) = b(z)

(
σH

2η
+ ∂u1

∂y

∣∣∣∣
y=0

)
. (26)

The Fourier method yields a general solution to this problem:

u1(y,z) = (M0y + P0) +
∞∑

n=1

(Mne
λny + Pne

−λny) cos(λnz),

(27)

with λn = 2πn/L. The sine terms vanish due to symmetry.
Condition (25) leads to

u1(y,z) = P0

(
1 − y

H

)
+

∞∑
n=1

Pn cos(λnz)e−λny

× (1 − e−2λn(H−y)). (28)

Applying the boundary condition (26) we then obtain a
trigonometric dual series:

a0

(
1 + b

H

)
+

∞∑
n=1

an [1 + bλn coth(λnH )] cos(λnz)

= b
σH

2η
, 0 < z � δ/2, (29)

a0 +
∞∑

n=1

an cos(λnz) = 0, δ/2 < z � L/2, (30)

where

a0 = P0; an = Pn(1 − e−2λnH ), n � 1.

Dual series (29), (30) provide a complete description of
hydrodynamic flow and effective slip in the longitudinal
direction, given all the stated assumptions. These equations
can be solved numerically (see the Appendix), but exact results
are possible in the limits of thin and thick channels.

For a thin channel, H � L, we can use that coth t |t→0 =
t−1 + O(t). By substituting this expression into Eq. (29) and
and keeping only values of the first nonvanishing order [53],
we find

a0 = 2

L

∫ δ/2

0

σH

2η

b

1 + b/H
dz = σH

2η

bHφ2

H + b
, (31)

whence [21]

b
‖
eff|H→0 = bHφ2

H + bφ1
. (32)

This is an exact solution, representing a rigorous upper
Wiener bound on the effective slip over all possible two-phase
patterns in a thin channel. In order to gain a simple physical
understanding of this result and to facilitate the analysis below,

it is instructive to mention the two limits [5,23] that follow from
Eq. (32). When H � b,L we deduce

b
‖
eff|H�b,L � φ2

φ1
H ∝ H, (33)

and when b � H � L we get a surface-averaged slip

b
‖
eff|b�H�L � bφ2 ∝ b. (34)

In the limit of a thick channel, H  L, we can use that
coth(t → ∞) → 1 and the dual series (29), (30) can be solved
exactly to obtain [5]

b
‖
eff � L

π

ln
[

sec
(

πφ2

2

)]
1 + L

πb
ln

[
sec

(
πφ2

2

) + tan
(

πφ2

2

)] . (35)

This expression for an effective slip length depends strongly
on a texture period L. When b � L we again derive the area-
averaged slip length

b
‖
eff|b�L�H � bφ2 ∝ b. (36)

When b  L, expression (35) takes the form

b
‖
eff|L�b,H � L

π
ln

[
sec

(
πφ2

2

)]
∝ L, (37)

which coincides with an earlier result [33] obtained for a
perfect slip (b → ∞) case.

B. Transverse stripes

In this case it is convenient to introduce a stream function
ψ(x,y) and the vorticity vector ω(x,y). The two-dimensional
velocity field corresponding to the transverse configuration
is represented by u(x,y) = (∂ψ/∂y,−∂ψ/∂x,0), and the
vorticity vector, ω(x,y) = ∇ × u = (0,0,ω), has only one
nonzero component, which is equal to

ω = −∇2ψ. (38)

The solution can then be presented as the sum of the base
flow with homogeneous no-slip condition and its perturbation
caused by the presence of stripes as

ψ = �0 + ψ1, ω = 0 + ω1, (39)

where �0 and 0 correspond to the typical Poiseuille flow in
a flat channel with no-slip walls:

�0 = −σ

η

y3

6
+ σH

η

y2

4
, 0 = σ

η
y − σH

2η
. (40)

The problem for perturbations of the stream function and
z component of the vorticity vector reads

∇2ψ1 = −ω1, ∇2ω1 = 0, (41)

which can be solved by applying boundary conditions

∂ψ1

∂y
(x,0) = b(x)

[
σH

2η
− ω1(x,0)

]
,

(42)
∂ψ1

∂y
(x,H ) = 0,

∂ψ1

∂x
(x,H ) = 0,
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and an extra condition that reflects our definition of the stream
function:

ψ1(x,0) = 0. (43)

This can be solved to get

ψ1(x,y)

= −M0

4
y2 + P0y +

∞∑
n=1

(
P (1)

n − M (1)
n

2

y

λn

)
eλny cos λnx

+
∞∑

n=1

(
P (2)

n + M (2)
n

2

y

λn

)
e−λny cos λnx, (44)

ω1(x,y) = M0

2
+

∞∑
n=1

(
M (1)

n eλny + M (2)
n e−λny

)
cos(λnx).

(45)

Conditions (42) lead to

P (1)
n = −P (2)

n ≡ −Pn, M0 = 2P0

H
,

M (1)
n = −Pn(−eλnH + e−λnH + 2λnHeλnH )

H 2eλnH
,

M (2)
n = −Pn(−eλnH + e−λnH + 2λnHe−λnH )

H 2e−λnH
,

and we obtain another dual series problem, which is similar to
Eqs. (29) and (30):

a0

(
1 + b

H

)
+

∞∑
n=1

an[1 + 2bλnV (λnH )] cos(λnx)

= b
σH

2η
, 0 < x � δ/2, (46)

a0 +
∞∑

n=1

an cos(λnx) = 0, δ/2 < x � L/2. (47)

Here,

a0 = P0; an = cosh(2λnH ) − 2λ2
nH

2 − 1

λnH 2
Pn, n � 1,

and

V (t) = sinh(2t) − 2t

cosh(2t) − 2t2 − 1
. (48)

In the limit of a thin channel [where V (t)|t→∞ � 2t−1 +
O(t)], the dual series problem transforms to

a0 +
(

1 + 3b

H + b

) ∞∑
n=1

an cos(λnx) = σH

2η

b

1 + b/H
,

0 < x � δ/2, (49)

a0 +
∞∑

n=1

an cos(λnx) = 0, δ/2 < x � L/2, (50)

which allows one to evaluate

a0 = σH

2η

bHφ2

H + 4b − 3φ2b
. (51)

The effective slip length is then [21]

b⊥
eff|H→0 = bHφ2

H + 4bφ1
. (52)

This exact equation represents a rigorous lower Wiener bound
on the effective slip over all possible two-phase patterns in a
thin channel.

For completeness here we mention again the two limiting
situations:

b⊥
eff|H�b,L � 1

4

φ2

φ1
H ∝ H, (53)

b⊥
eff|b�H�L � bφ2 ∝ b. (54)

In the thick channel limit, the dual series (46) and (47) take
the same form as in prior work [5] [due to V (x → ∞) → 1],
whence we derive [5]

b⊥
eff � L

2π

ln
[

sec
(

πφ2

2

)]
1 + L

2πb
ln

[
sec

(
πφ2

2

) + tan
(

πφ2

2

)] . (55)

The consideration as above of the same limits of small and
large b give

b⊥
eff|b�L�H � bφ2 ∝ b (56)

and

b⊥
eff|L�b,H � L

2π
ln

[
sec

(
πφ2

2

)]
∝ L. (57)

C. Tilted stripes

If the stripes are inclined at an angle �, the effective slip
length of the channel, b

(x)
eff , can be calculated with Eq. (21),

provided that effective slip in eigendirections is determined
from the numerical solution of Eqs. (29), (30) and (46), (47).
Some simple analytical results are possible in the limit of thin
and thick channels.

In the case of a thin channel and large local slip, H �
min{b,L}, substitution of Eqs. (33) and (53) into Eq. (21)
gives

b
(x)
eff � Hφ2

4φ1

4φ2 + φ1 + 3φ1 cos2 �

4φ2 + φ1 − 3φ2 cos2 �
. (58)

Interestingly, in this limit b
(x)
eff does not depend on b, being a

function of only H and a fraction of the gas area. At small b

according to Eqs. (34) and (54), b
‖
eff � b⊥

eff � b
(x)
eff , so that the

flow becomes isotropic.
In the limit of a thick channel and sufficiently large local

slip, we can simplify Eq. (21) and define the downstream
effective slip length as

b
(x)
eff � (b‖

eff − b⊥
eff) cos2 � + b⊥

eff, (59)
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with b
‖,⊥
eff given by Eqs. (35) and (55). In the limit of perfect

local slip it can be further simplified to get

b
(x)
eff � b⊥

eff(1 + cos2 �). (60)

Using Eqs. (36) and (56) we conclude that the flow is isotropic,
b

‖
eff � b⊥

eff � b
(x)
eff , when b is much smaller than the texture

period.

V. SIMULATION METHOD

To simulate fluid flow between parallel patterned plates a
number of simulation methods could be used. These include
molecular dynamics, dissipative particle dynamics, stochastic
rotation dynamics, classical finite element or finite volume
solvers, as well as the LB method. Since the current paper does
not address molecular interactions or liquid-gas transitions
close to the surface, one can limit the required computational
effort by applying a continuum solver for the Stokes equation
together with appropriate boundary conditions to model local
slip. As detailed further below, in particular, in the thin channel
limit with H � min{b,L} a very high resolution of the flow
field is needed in order to measure beff with required precision.
Thus, simulation methods which require time averaging of the
flow field or finite length scales to resolve a slip boundary
render less efficient for the current problem. While finite
element or finite volume solvers would be suitable alternatives,
we apply the LB method [37].

The LB approach is based on the Boltzmann kinetic
equation [

∂

∂t
+ u · ∇r

]
f (r,u,t) = , (61)

which describes the evolution of the single particle probability
density f (r,u,t), where r is the position, u is the velocity, and
t is the time. The derivatives on the left-hand side represent
propagation of particles in phase space, whereas the collision
operator � takes into account molecular collisions.

In the LB method the time t , the position r, and the velocity
u are discretized. In units of the lattice constant �x and the
time step �t this leads to a discretized version of Eq. (61):

fk(r + ck,t + 1) − fk(r,t) = k, k = 0,1, . . . ,B. (62)

Our simulations are performed on a three-dimensional lattice
with B = 19 discrete velocities (the so-called D3Q19 model).
With a proper choice of the discretized collision operator � it
can be shown that the flow behavior follows the Navier-Stokes
equation [37]. We choose the Bhatnagar-Gross-Krook (BGK)
form [38]

k = − 1

τ

[
fk(r,t) − f

eq
k (u(r,t),ρ(r,t))

]
, (63)

which assumes a relaxation toward a discretized local
Maxwell-Boltzmann distribution f

eq
k . Here, τ is the mean

collision time that determines the kinematic viscosity ν =
2τ−1

6 of the fluid. In this study it is kept constant at τ = 1.0.
Physical properties of the simulated fluid are given by the

stochastical moments of the distribution function. Of special
interest are the conserved quantities, namely, the fluid density
ρ(r,t) = ρ0

∑
k fk(r,t) and the momentum ρ(r,t)u(r,t) =

ρ0
∑

k ckfk(r,t), with ρ0 being a reference density.

Within the LB method a common approach to describe
the interaction between hydrophobic surfaces and the fluid is
by means of a repulsive force term [14,15,39–41]. This force
applied at the boundary can be linked to the contact angle to
quantitatively describe the wettability of materials [15,42–44].
Alternatively, slip can be introduced by generalizing the
no-slip bounce-back boundary conditions in order to allow
specular reflections with a given probability [45–47], or to
apply diffuse scattering [48–50]. The method we apply here
follows the latter idea and uses a second order accurate on-site
fixed velocity boundary condition to simulate wall slippage.
The on-site velocity boundary condition is used to set a
required slip length on the patterned surface. For the details of
the implementation we refer the reader to [51,52].

Our geometry of configuration is the same as sketched
in Fig. 1, but in simulations we employ periodic boundary
conditions in the x and z directions, which allows one to
reduce the simulation domain to a pseudo-two-dimensional
(2D) system. To drive the flow a constant pressure gradient
is applied in the x direction by means of a homogeneous
acceleration, g, in the whole fluid domain. Even though the
simulation domain can be reduced to be pseudo-2D, we find
that the simulation of fluid flow with a large slip in the thin
channel limit still requires a system of several million cells
in order to properly resolve the velocity field. The key issue
is, here, that in order to resolve large slip lengths a minimum
channel height is necessary. To reach the thin channel limit the
stripe length has to be increased to even larger values.

Following the definition given for the Fourier analysis in
Sec. IV, all heights H and slip lengths b are given nondimen-
sionalized for a stripe length of L = 2π . The resolution of the
simulated system is then given by the lattice constant

�x = HL

2πN , (64)

where N is the number of discretization points used to
resolve the height of the channel. While systems with a
height of H = 1.0 can be simulated using a discretization
of 1 × 32 × 200�x3 only, decreasing H to 0.1 causes the
required system size to be 1 × 70 × 4400�x3. To successfully
recover the exact results in the thin channel limit (H = 0.01)
a system of size 1 × 104 × 64000�x3 has to be simulated.

The number of time steps required to reach a steady state
depends on the channel height, the velocity of the flow as
determined by the driving acceleration, as well as the fraction
of slip and no-slip area at the surface. For the simulations
conducted in the thin channel limit a steady state velocity
field exactly fitting the theoretical prediction develops after
one to four million timesteps. In the thick channel limit,
however, the number of timesteps required can be an order
of magnitude larger limiting the maximum feasible system
height. Moreover, the transition between slip and no-slip
stripes induces a distortion of the flow field with a range of
�3�x. In order to keep the induced error below an acceptable
limit, a minimum resolution of the channel length of 64�x

is maintained. Additionally, the maximum flow velocity is
limited due to the low Mach number assumption of our
lattice Boltzmann implementation. In effect, the acceleration
modeling the pressure gradient has to be reduced increasing
the time required for convergence. For example, a simulation
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FIG. 2. (Color online) Illustration of the measurement of effective
slip eigenvalues from lattice Boltzmann simulations. The velocity
information of the whole domain is projected onto a single plane. To
this cloud of data, Eq. (65) is fitted, effectively averaging the flow
field over the whole channel.

domain of 1 × 1024 × 64�x3 as used to model the thick
channel limit at H � 100 requires 12.5 × 106 time steps to
equilibrate.

We compare measurements of beff by permeability esti-
mates and velocity profiles, respectively. The permeability is
calculated from measurements of the flow rate, according to
Eq. (14). This allows one to determine the effective slip by
Eq. (19). Alternatively, the profiles of the velocity in flow
direction are averaged over the whole system by projecting
the velocity information of the whole domain onto a single
plane. Then, the effective slip length beff is found by a
Levenberg-Marquardt fit of the adjusted Hagen-Poiseuille
equation

ux(y) = gH 2

2η

(
(y − H )2

H 2
− (y − H ) + beff

(H + beff)

)
, (65)

with the known g and H (see Fig. 2 for an illustration).
The error of the effective slip measurements is determined

by two factors, namely, the resolution of the channel height
and the absolute slip length of the partially slipping stripes. For
poorly resolved channels with 10 < N < 30 and small slip
lengths the permeability measurements still produce accurate
results, whereas a fit of the velocity profiles fails. If b  H ,
however, the quality of the obtained data declines. For an
increase in resolution (30 < N � 100) both approaches allow
very precise measurements for intermediate slip lengths of up
to two orders of magnitude larger than the channel height.
However, if b is increased further, due to discretization the
error in the effective slip determined by the permeability
measurement increases significantly, rendering this method
inefficient since a higher resolution would be required. For
example, to keep the error in the determination of a prescribed
slip in the order of 105�x below 5% the permeability method

requires the channel height to be resolved by 200 lattice sites,
while for the measurement by fitting the velocity profiles 100
sites suffice.

To validate the concept of a tensorial slip by simulations of
a flow past tilted stripes, we do not rotate the surface pattern
with respect to the lattice, but instead change the direction of
the acceleration in the y-z plane. This avoids discretization
errors due to the underlying regular lattice occurring in case
of a rotated surface pattern. We extract the downstream slip by
projecting the slip measured on the main axes onto the pressure
gradient direction.

VI. RESULTS AND DISCUSSION

In this section we compare results of our LB simulation
with analytical example calculations and numerical solutions
of the dual series (29), (30) and (46), (47) (see the Appendix).

As a benchmark for the simulation, we start with a
thin channel, where striped surfaces were shown to provide
rigorous upper and lower Wiener bounds on the effective slip
over all possible two-phase patterns [21]. In order to reach
the thin channel limit, a dimensionless height of H = 0.01
is chosen. The slip lengths are set to b = 10−3H (0.1�x)
and b = 103H (102 000�x), each differing three orders of
magnitude from the channel height and reaching the limits of
small [cf. Eqs. (34) and (54)] as well as large slip Eqs. (33)
and (53). As preparatory tests showed, a minimum channel
height of H = 100�x is required to measure slip lengths
of b = 103H corresponding to 105�x. For a dimensionless
height of H = 0.01, we choose a simulation domain of
1 × 104 × 64 000�x3. For each of the two slip lengths,
longitudinal and transverse flow was simulated for a different
fraction of surface gas phase, ranging from no slip (φ2 = 0)
to homogeneous partial slip (φ2 = 1). The local acceleration
here (and below for thin channel simulations) was kept at
g = 10−6�x/�t2.

Figure 3 shows the exact eigenvalues of the effective slip
tensor in the thin channel limit, Eqs. (32), (52), for both slip
lengths b. The fit of the simulation data and the analytical limits
is excellent for all separations. In the case of small local slip
in the thin channel the effective slip remains isotropic despite
the inhomogeneity of the boundary. For large local slip, we
observe truly tensorial effective slip and highly anisotropic
flow over the surface. These simulations demonstrate that finite
size effects and resolution effects are well controlled, and the
size of the system is sufficient to avoid artifacts. Another
important point to note is that in our theoretical analysis
all equations were derived ignoring stripe edge effects. An
excellent agreement between theoretical and simulation results
indicates that the edge effects do not influence the simulation
results significantly.

Figure 4 shows the eigenvalues of the effective slip-length
tensor as a function of φ2 for a thick gap. For these simulations
the acceleration has been reduced down to g = 10−7�x/�t2

to obey the low Mach number (see Sec. V) limit. The time to
reach a stable state increased then to 15 × 106�t . Simulation
results are presented for two different slip lengths of b = 1.0
and b = 10.0 in a system of H = 0.1, where L is now resolved
by 4400 lattice sites. The theoretical solutions represented by
the lines were obtained by the dual series approach. We find
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data show that at small b the eigenvalues of beff decrease as compared
to a large local slip at the gas sector, and that the slip-length tensor
becomes isotropic resulting in b
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in the b = 10−3H case.

that the fit is excellent for all fractions of the slipping area,
indicating that our semianalytical theory is extremely accurate.
The data presented in Fig. 4 show larger effective slip for a
lower slip to height ratio, i.e., a thicker channel. This illustrates
well the earlier suggestion that effective boundary conditions
for this channel geometry are controlled by the smallest length
scale of the problem [23].

To check the validity of the tensorial slip approach, we
now orient the texture relative to the x axis, which in our
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thin channel simulated at φ2 = 0.5 for stripes inclined at different
angle � (symbols). Especially in the limiting case (b) the value of
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All the lines are predicted theoretically downstream slip lengths:
(a) calculated by using Eq. (1) [or Eq. (21)] with eigenvalues of beff

determined from numerical solutions of (29), (30) and (46), (47);
(b) calculated with Eq. (58).

model is always aligned with the applied pressure gradient.
Figures 5 and 6 show two sets of effective downstream slip
lengths simulated with several �, but fixed H = 0.1 and φ2 =
0.5, which results in a maximum transverse flow in a thin
channel situation [22].

In the first set (Fig. 5), we consider thin channels and
vary b/H from 1 to 1000. Figure 5(a) shows simulation
data obtained using a channel of height H = 0.1. Further,
theoretical curves calculated with Eq. (1) are presented. Here,
eigenvalues of the slip-length tensor are obtained by numerical
solution of the dual series. The fits of the simulation data are in
very good agreement with the numerical solutions of the dual
series suggesting the validity of the concept of a tensorial
slip in a thin channel situation. Note that the simulation
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and (57).

results of Fig. 5(a) cannot be compared with the analytical
expression, Eq. (58), because Fig. 5(a) is based on a relatively
moderate value of local slip at the gas sectors, whereas Eq. (58)
requires very large b. To validate predictions of this analytical
formula, the channel height was decreased down to H = 0.01.
Simulation results are presented in Fig. 5(b), confirming the
surprising accuracy of a simple analytical expression, Eq. (58).
We remark that in this important limit of validity of Eq. (58),
b

(x)
eff /H is quite large, although b

(x)
eff itself is small. This may

have implications for a reduction of a hydrodynamic drag
force [23,24]. Passive mixing might also be an interesting
application, since the anisotropy of flow is very large,
which is optimal for a transverse flow generation [22]. We
suggest that our simple asymptotic result could be intensively
used to simplify theoretical analysis of these important
phenomena.

10
-2

10
-1

10
0

10
1

H/L

0.0

1.0

2.0

b
ef

f(x
) /L

Θ = 0
Θ = π/4
Θ = π/2

FIG. 7. (Color online) Effective downstream slip lengths at dif-
ferent channel thickness (φ2 = 0.75, b/L = 5.0). Symbols illustrate
the simulation data, and curves show theoretical predictions.

In the second set as shown in Fig. 6 a thick channel (of
height H = 100) is simulated. Figure 6(a) plots simulation
results for several b/H varying from 10−3 to 1 (symbols).
Similarly to previous examples, we found very good agreement
between simulation results and predictions of tensorial Eq. (1)
with eigenvalues computed with our semianalytical theory. We
found that already for the case b = H = 100 our simulations
reach the limit of large slip in the thick channel, so that the
comparison with analytical solutions is possible. To examine
this more closely, the simulation results obtained in this limit
are reproduced in Fig. 6(b). Also included are the theoretical
results calculated with asymptotic formulas, Eqs. (37) and
(57), which perfectly fit simulation data.

Finally, we simulate the downstream slip length as a func-
tion of the channel thickness with the focus on the intermediate
gap situation. Figure 7 shows the typical simulation results
(the example corresponds to b/L = 5.0 and φ2 = 0.75) and
demonstrates that the effective slip lengths increase with H

and saturate for a thick gap. This fully confirms the statement
that an effective boundary condition is not a characteristic
of the liquid-solid interface alone, but depends on the flow
configuration and interplay between the typical length scales
of the problem. Again, the simulation and theoretical data are
in excellent agreement for longitudinal, transverse, and tilted
stripes. Thus, Fig. 7 unambiguously shows that the tensorial
slip boundary condition, originally justified for a thick channel,
to any channel thickness can be generalized to any channel
thickness.

VII. CONCLUSION

We have investigated pressure-driven flow in a flat-parallel
channel with one hydrophilic and one superhydrophobic
surface, and have given some general theoretical arguments
showing that a concept of an effective tensorial slip is valid
for any thickness (compared to a superhydrophobic texture
scale). The eigenvalues of the effective slip-length tensor
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depend on the gap, so that they cannot be viewed as a local
property of the superhydrophobic surface, except in the thick
channel limit. Instead, the slip-length tensor represents a global
characteristic of the channel. The mathematical properties of
the slip-length and permeability tensors allowed us to derive
a simple analytical formula for an effective downstream slip
length in the case of inclined to a pressure gradient textures.
Our analysis is validated by means of LB simulations.
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APPENDIX: NUMERICAL METHOD

Equations (29), (30) and (46), (47) provide a complete
description of hydrodynamic flow and effective slip in eigendi-
rections. Their exact solution is possible for the limits of a thin
and a thick channel only. In order to solve the problem for
general channel thickness, the following numerical algorithm
has been used.

It is convenient to change to dimensionless values. We,
therefore, choose L/(2π ) as the reference length scale and
σHL/(4πη) as the velocity scale. We make the substitution

(x,y,z) = L

2π
(x̃,ỹ,z̃), H = L

2π
H̃ , b = L

2π
b̃, (A1)

an = σHL

4πη
ãn, n � 0, (A2)

where nondimensional variables are denoted by tildes. This
procedure gives the dual series problem for longitudinal flow
in the form

ã0

(
1 + b̃

H̃

)
+

∞∑
n=1

ãn[1 + b̃n coth(nH̃ )] cos(nz̃) = b̃,

0 < z̃ � c, (A3)

ã0 +
∞∑

n=1

ãn cos(nz̃) = 0, c < z̃ � π, (A4)

where c = πφ2 = πδ/L. Similarly, the equations for the flow
in the direction orthogonal to the stripes is written as

ã0

(
1 + b̃

H̃

)
+

∞∑
n=1

ãn[1 + 2b̃nV (nH̃ )] cos(nx̃) = b̃,

0 < x̃ � c, (A5)

ã0 +
∞∑

n=1

ãn cos(nx̃) = 0, c < x̃ � π. (A6)

After integrating Eq. (A3) over [0,z̃] and Eq. (A5) over
[0,x̃], we multiply the result by sin(mz̃) [sin(mx̃), respec-
tively], where m is a non-negative integer. We then integrate
again over [0,c]. Equation (A4) is multiplied by cos(mz̃) and
Eq. (A6) by cos(mx̃) and we then integrate over [c,π ]. The
resulting equations are summarized to obtain a system of linear
algebraic equations,

∞∑
n=0

Anmãn = Bm, (A7)

which can be solved with respect to ãn by standard numerical
algebra tools.

The coefficients for the longitudinal case are (m � 0)

A
‖
0m =

(
1 + b̃

H̃

)∫ c

0
z̃ sin(mz̃)dz̃ +

∫ π

c

cos(mz̃)dz̃, (A8)

A‖
nm = 1 + b̃n coth(nH̃ )

n

∫ c

0
sin(mz̃) sin(nz̃)dz̃

+
∫ π

c

cos(mz̃) cos(nz̃)dz̃, n � 1, (A9)

B‖
m = b̃

∫ c

0
z̃ sin(mz̃)dz̃. (A10)

For transverse flow we get

A⊥
nm = 1 + 2b̃nV (nH̃ )

n

∫ c

0
sin(mz̃) sin(nz̃)dz̃

+
∫ π

c

cos(mz̃) cos(nz̃)dz̃, n � 1, (A11)

A⊥
0m = A

‖
0m, B⊥

m = B‖
m. (A12)

For the numerical evaluation, the linear system is truncated
and reduced to a N × N matrix and the solution is then
found to converge upon truncation refinement. According to
the definition

beff = 〈us〉〈(
∂u
∂y

)
s

〉 , (A13)

the dimensionless and dimensional effective slip lengths are
given by

b̃eff = ã0

1 − ã0/H̃
, (A14)

beff = L

2π
b̃eff . (A15)
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