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Coupling electrokinetics and rheology: Electrophoresis in non-Newtonian fluids
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We present a theoretical scheme to calculate the electrophoretic motion of charged colloidal particles
immersed in complex (non-Newtonian) fluids possessing shear-rate-dependent viscosities. We demonstrate that
this non-Newtonian rheology leads to an explicit shape and size dependence of the electrophoretic velocity of
a uniformly charged particle in the thin-Debye-layer regime, in contrast to electrophoresis in Newtonian fluids.
This dependence is caused by non-Newtonian stresses in the bulk (electroneutral) fluid outside the Debye layer,
whose magnitude is naturally characterized in an electrophoretic Deborah number.
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I. INTRODUCTION

Electrokinetic phenomena arise as electric fields or hy-
drodynamic flows drive the ionic clouds that screen charged
surfaces in viscous electrolytes out of equilibrium [1,2]. The
field has a rich history dating back two centuries [3]; today,
electrokinetics plays an important role in colloid science
[4], environmental remediation [5], biomechanics [6], and
microfluidics and nanofluidics [7,8].

Surfaces immersed in electrolytes typically acquire an
electrical charge, which is screened by counter ions in
solution, over a distance characterized by the Debye length
λD (e.g., λD ≈ 10 nm for monovalent salts at millimolar
concentration and room temperature). An external electric
field acts on the net charge in this “Debye layer” to drive
an electro-osmotic flow, whose magnitude uEOF is given by
the Helmholtz-Smoluchowski (HS) formula uEOF ∼ −εζE/η.
Here, ε and η are the permittivity and viscosity of the
electrolyte, respectively, and ζ is the electric (zeta) potential
of the surface.

The HS formula assumes that the electrolyte is Newtonian,
i.e., its deviatoric mechanical stress τ is proportional to the rate
of strain e, τ = 2ηe, with a viscosity η that is independent of
flow type and shear rate. However, in microfluidic devices
and capillary electrophoresis, for example, electric fields
are routinely used to drive electrokinetic transport in fluids
whose rheology does not follow Newton’s ideal. e.g., polymer
solutions [9–13] or biofluids [14–16]. Indeed, there has been
significant recent interest in electro-osmotic flows of such
complex, or non-Newtonian, fluids [17–30]. For example, a
simple non-Newtonian constitutive relation is the power-law
fluid, which possesses a shear-rate-dependent viscosity ηPL =
mγ̇ n−1, where m is a constant, n is the power-law index, and

γ̇ =
√

1
2 e : e is the shear rate. For n < 1 the fluid is shear

thinning (typical of polymer solutions); n > 1 corresponds to
shear thickening; and n = 1 is Newtonian. The characteristic
electro-osmotic flow velocity of a power-law fluid is uPL

EOF ∼
n(−εζE/m)1/n(λD)1−1/n, in the Debye-Hückel limit ζ �
25 mV [11,21]. (At larger ζ potentials, nonlinear screening
results in a more complicated expression [26].) This result
suggests that non-Newtonian rheology leads to electro-osmotic
flows that are nonlinear in the applied field and ζ potential, a
marked departure from electro-osmosis in Newtonian fluids.
Pressure-driven streaming potentials and currents in complex

fluids have also been investigated [31–35]. In these studies
non-Newtonian effects result from a nonlinear dependence of
the mechanical (Cauchy) stress on the rate of strain. This is
distinct from the viscoelectric effect [36], electrorheological
fluids [37], the electroviscous effect [38], and charge-induced
thickening [39]: in the first two cases non-Newtonian rheology
originates from an explicit dependence of the Cauchy stress
on the electric field, in the third it arises from the deformation
of Debye layers in applied flows, and in the fourth it is due to
a local increase in viscosity due to ion crowding in the Debye
layer at large ζ .

Electrophoresis is the motion of a freely suspended charged
colloid animated by an electric field. Smoluchowski calculated
[1,4] that a spherical particle with a uniform ζ potential
and thin Debye layer translates at an electrophoretic velocity
UEP = εζE/η (without rotating). Morrison [40] proved that
this result is independent of particle size, shape, and even
concentration, provided all the particles have equal ζ and
surface currents in the Debye layer (characterized by the
Dukhin number, Du [1]) are negligible. This remarkable
finding has been experimentally verified for concentrated
suspensions of red blood cells [41]. Morrison’s proof also
has profound implications for particulate separations: e.g.,
in capillary electrophoresis of DNA, strands of different
length (but uniform ζ ) move at equal velocities in bulk
electrolyte [42], thus requiring a gel matrix or molecular
“drag tags” [43] to affect separation. Given the recent intense
interest in electro-osmosis of complex fluids, it is natural
to ask how electrophoresis is affected by non-Newtonian
rheology. In particular, does non-Newtonian rheology endow
the electrophoretic velocity with a size and shape dependence,
thereby “breaking” Morrison’s result?

II. MODEL DEVELOPMENT

Here, we present a theoretical approach for calculating
electrophoretic motion in non-Newtonian fluids. It appears
that the only previous studies in this area are from Hsu
and co-workers [44–55] who computed the electrophoresis of
spherical and rod-shaped particles in shear-thinning Carreau
fluids using numerical methods. In contradistinction, our
approach applies to particles of any shape in fluids whose
viscosity can be shear thickening or thinning (or even both).
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FIG. 1. (Color online) Electrophoresis of a uniformly charged
particle under an electric field E∞ in a non-Newtonian fluid with
stress σ . (a) Particle motion at rectilinear velocity V and angular
velocity �, arising from electro-osmotic slip vs

|| in the thin Debye
layer (b). (c) Power-law and Carreau models for the non-Newtonian
viscosity η(γ̇ ) of Eq. (1).

Specifically, we consider weakly generalized Newtonian fluids
with a shear-rate dependent viscosity [56]

η(γ̇ ) = η0 + δη1(γ̇ ), (1)

where η0 is a “base” Newtonian viscosity, η1 is a non-
Newtonian (shear-rate dependent) “correction,” and δ(< 1) is
a generic small parameter.

We consider a uniformly charged colloidal particle in a
binary symmetric electrolyte (Fig. 1). The particle can be
of any shape, but we invoke the thin-Debye-layer limit,
whereby λD is much smaller than the local radii of curvature
of the particle. Furthermore, we neglect surface currents in
the Debye layer (Du � 1). Given the disparity between λD

and the particle size, it is judicious to analyze separately the
transport processes in the Debye layer and electroneutral bulk.
The particle appears locally flat on the scale of λD , and the
momentum equation at zero Reynolds number reduces to a
balance of tangential electrical and viscous stresses [4]

∂

∂y

(
η(γ̇ )

∂v||
∂y

)
= ε

∂2φ

∂y2
E||, (2)

where y is a Cartesian coordinate normal to the local surface,
v|| and E|| are the tangential velocity and electric fields,
respectively, and φ is the electric potential. Inserting Eq. (1)
into Eq. (2), the “slip” velocity at the boundary between the
Debye layer and bulk (y → ∞) is to O(δ)

vs
|| = −εζ

η0
E|| + δ

ε

η0
E||

∫ ∞

0

η1(γ̇0)

η0

dφ

dy
dy, (3)

where the first term is the familiar Helmoltz-Smoluchowski
slip, and the second is due to non-Newtonian rheology, with
the viscosity η1 evaluated using the Newtonian O(δ0) shear
rate γ̇0.

The slip velocity (3) provides the required matching
condition on the fluid flow outside the Debye layer. The
bulk fluid is electroneutral, and conservation of momentum
requires ∇ · σ = 0, where the hydrodynamic stress σ =
−p I + 2η(γ̇ )e, with p the pressure, I the isotropic tensor,

e = 1
2 [∇v + (∇v)T ] the rate of strain, and v the velocity field.

Additionally, the fluid is incompressible ∇ · v = 0. We invoke
the weakly non-Newtonian limit by expanding the velocity and
pressure as {v,p} = {v0,p0} + δ{v1,p1} + O(δ2). At O(1) the
familiar problem of electrophoresis in a Newtonian fluid is
recovered, namely, η0∇2v0 = ∇p0 and ∇ · v0 = 0, subject to
v0 → 0 as |r| → ∞ and the slip condition v0 = V 0 + �0 ∧
r + v

s,0
|| on the particle surface. Here, v

s,0
|| = −εζ E||/η0 is

the Newtonian contribution to the slip velocity in Eq. (3),
and V 0 and �0 are the rectilinear and angular velocities
of the particle, respectively. Finally, we require that the
hydrodynamic force and torque on the surface enclosing the
particle and Debye layer vanishes. The O(1) problem admits
the well-known irrotational flow solution v0 = −εζ E/η0, and
V 0 = εζ E∞/η0 and �0 = 0, which is valid for any particle
shape [40,57,58].

Non-Newtonian effects emerge at O(δ), for which

η0∇2v1 − ∇p1 = 2∇ · [η1(γ̇0)e0] , ∇ · v1 = 0, (4)

subject to v1 → 0 as |r| → ∞ and v1 = V 1 + �1 ∧ r + v
s,1
||

on the particle surface, where the O(δ) slip velocity v
s,1
||

is the second term in Eq. (3). Here, V 1 and �1 are the
non-Newtonian contributions to the rectilinear and angular
velocities of the particle, respectively. At O(δ) the flow satisfies
the inhomogeneous Stokes equations with a “non-Newtonian
body force” 2∇ · [η1(γ̇0)e0] arising from gradients in the
Newtonian velocity field. In principle, one can obtain the
O(δ) particle motion, V 1 and �1, by solving Eq. (4) subject
to zero force and torque on the particle. However, for even
the simplest non-Newtonian model of η(γ̇ ) the forcing term
in Eq. (4) necessitates numerical evaluation of the velocity
v1 and pressure p1 fields. Remarkably, one does not need
these fields to compute the O(δ) particle motion. Instead,
we employ the Lorentz reciprocal theorem, which has been
used to calculate particle dynamics in weakly non-Newtonian
fluids under external forces [56,59,60] and imposed fluid
flows [61,62].

Let vaux and σ aux be the velocity field and stress tensor,
respectively, belonging to an “auxiliary” Stokes flow around
the particle. Evidently,∫

V

vaux · (∇ · σ 1) dV =
∫

V

v1 · (∇ · σ aux) dV, (5)

where the integral is over the fluid volume outside the Debye
layer and σ 1 = −p1 I + 2η0e1 + 2η1(γ̇0)e0 is the O(δ) stress.
Manipulation of Eq. (5) yields

V 1 · Faux + �1 · Laux =
∫

S

v
s,1
|| · (σ aux · n) dS

+ 2
∫

V

η1(γ̇0)e0 : ∇vaux dV, (6)

where Faux and Laux are the force and torque on the particle
in the auxiliary problem, which we are free to choose, thereby
providing the requisite number of equations to determine V 1

and �1. In Eq. (6) the first integral is over the surface S

enclosing the particle and Debye layer and represents the
contribution due to non-Newtonian electro-osmosis in the
Debye layer. The second integral arises from non-Newtonian
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stresses in the bulk. Finally, note that Eq. (6) is valid for a
particle of arbitrary shape.

III. RESULTS

In this study, Eq. (6) is applied to a spherical particle of
radius R, for which v0 = εζ

2η0
(R/r)3(3r̂ r̂ − I) · E∞, where

r = |r|, r̂ = r/r , and r is the position vector [57]. We select
the auxiliary flow to be that produced by a torque-free sphere
translating under an imposed force Faux. Hence, Eq. (6)
reduces to

V 1 = εζ

η0

(
I
∫ ∞

0

η1(γ̇0)

η0
e−ŷ dŷ+ 3

4π

∫
V

η1(γ̇0)

η0
F dV̂

)
· E∞.

(7)

In deriving Eq. (7) we have used φ = ζe−ŷ in the Debye-
Hückel limit (ŷ = y/λD), dV̂ = dV/R3, and F = (3r̂−6 −
2r̂−8)r̂ r̂ − r̂−8 I , where r̂ = r/R. The first and second dimen-
sionless integrals in Eq. (7) are the contributions from the
Debye layer and bulk, respectively.

We first consider a power-law viscosity correction η1(γ̇0) =
mγ̇ n−1

0 . By symmetry, V 1 is collinear with the applied field;
hence, let V 1 = (V1,D + V1,B )V0 Ê∞, where V0 = εζE∞/η0,
E∞ = E∞ Ê∞, and V1,D and V1,B are the dimensionless
contributions to the O(δ) velocity from the Debye layer and
bulk, respectively. Adopting a spherical coordinate system
attached to the particle centroid, and taking E∞ to be along
the symmetry axis, from Eq. (7) it is found

V1,D = −1

n

m

η0

(
εζE∞
η0λD

)n−1

, (8)

V1,B = 3m

2η0

(
3εζE∞
2η0R

)n−1 ∫ π

0

∫ ∞

1
h(r̂ ,θ ; n) dr̂ dθ, (9)

where θ is the polar angle and h(r̂ ,θ ; n) =
(
√

1 + 2 cos2 θ/r̂4)n−1[(3r̂−6 − 2r̂−8) cos2 θ − r̂−8]r̂2 sin θ .
As expected, V1,D and V1,B vanish for a Newtonian fluid
n = 1. For a non-Newtonian fluid, both contributions are
nonlinear in the ζ potential and applied field, reminiscent
of electro-osmosis in power-law fluids [11,21]. Moreover,
V1,B ∼ R1−n, demonstrating that the electrophoretic velocity
has an explicit particle-size dependence, originating from
the bulk electrolyte. However, h ∼ r̂−4n at large distances,
r̂ 
 1; hence, the integral in Eq. (9) diverges at n = 1

4 . This
is unsurprising in hindsight, since the power-law model for
shear-thinning fluids (n < 1) has the unphysical feature of
an unbounded viscosity as γ̇ → 0 [Fig. 1(c)]. Hence, η1

diverges at low shear rates (large distances) for n < 1, clearly
invalidating the premise that non-Newtonian effects are a
correction to the base viscosity η0 in Eq. (1). (Note, a similar
calculation for sedimentation in a power-law fluid would yield
a divergence at n = 1

2 , cf. [56].)
Therefore, we now consider a bounded viscosity correction

of the Carreau type

η1(γ̇ ) = η0
{ [

1 + (τ γ̇ )2
] n−1

2 − 1
}
, (10)

where τ is a fluid time scale. For n < 1 the viscosity thins
from a zero-shear Newtonian plateau to another plateau at
large shear rates, whereas for n > 1 the viscosity grows
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FIG. 2. Non-Newtonian Debye layer V1,D (a) and bulk V1,B (b)
velocity contributions vs Carreau index n.

monotonically with shear rate [Fig. 1(c)]. Substituting Eq. (10)
into Eq. (7) yields

V1,D = 1 −
∫ ∞

0

(
1 + De2

De−2ŷ
) n−1

2 e−ŷ dŷ, (11)

V1,B = 3

2

∫ π

0

∫ ∞

1

[
1 + (

3
2 DeB

)2 1 + 2 cos2 θ

r̂8

] n−1
2

× [(3r̂−6 − 2r̂−8) cos2 θ − r̂−8]r̂2 sin θ dr̂ dθ, (12)

where DeD = τV0/λD and DeB = τV0/R are Deborah num-
bers for the fluid in the Debye layer and bulk, respectively.
The Deborah number is the ratio of the fluid time scale τ to the
flow time scale, λD/V0 for the Debye layer, and R/V0 for the
bulk, and it characterizes the importance of non-Newtonian
rheology. The particle size (R) dependence enters through the
bulk Deborah number DeB .

Figure 2 plots the bulk and Debye layer contributions to
the velocity as a function of n at various Deborah numbers.
Importantly, the bulk contribution no longer diverges for
n < 1, as the Carreau model has a finite zero-shear rate viscos-
ity. Both contributions are positive (negative) for n < 1 (>1),
corresponding to an increase (decrease) in the particle velocity
in a shear-thinning (thickening) fluid, which is intuitively
sensible.

Figure 3 plots the two contributions as a function of
appropriate Deborah number for various n. At small Deborah
numbers the fluid approaches its Newtonian zero shear-rate
viscosity η0 and hence V1,D and V1,B vanish as V1,D ∼ 1−n

6 De2
D

and V1,B ∼ 9(1−n)
65 De2

B to leading order as DeD → 0 and
DeB → 0, respectively. (The two contributions also vanish
in the trivial Newtonian case n = 1). For n > 1 the mono-
tonic shear thickening of the Carreau model results in both
contributions being negative and decreasing with increasing
Deborah numbers; i.e., the particle velocity is smaller than
in a Newtonian fluid. In contrast, for n < 1 the Debye layer
contribution V1,D is positive and increasing, corresponding
to an increase in particle velocity, until a common plateau
is reached at large DeD . This plateau occurs since at very
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large shear rates, η → η0(1 − δ); the reduced viscosity drives
a faster electro-osmotic flow in the Debye layer [by a factor
of 1 + δ + O(δ2)], leading to a concomitant increase in V1,D .
The bulk contribution V1,B for n < 1 goes through a maximum
before decaying to zero as DeB → ∞. This is expected as V1,B

is driven by non-Newtonian stresses in the bulk, which vanish
as DeB → ∞, where the Carreau fluid attains a high-shear-rate
Newtonian plateau.

Figure 4(a) shows that for n < 1 the maximum in V1,B

(V max
1,B , say) is of O(0.1) and also plots the bulk Deborah

number, Demax
B , at which the maximum occurs. Hence δV1,B ∼

O(10−1δ) for Demax
B . Note that τ can be on the order of

seconds; hence, taking τ = 1 s, λD = 10 nm, R = 1 μm,

n
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FIG. 4. (a) Maximum of the bulk velocity contribution, V max
1,B

(circles), vs n for shear-thinning fluids, n < 1. Also shown is the bulk
Deborah number, Demax

B (squares), at which the maximum occurs. (b)
Ratio of bulk to Debye layer velocity contributions V1,B/V1,D vs n,
at DeD = 103 and DeB = 1, 10, and 100.

and V0 = 10 μm/s yields DeD ∼ O(103) and DeB ∼ O(10)
(which is close to Demax

B ). This suggests that appreciable
Deborah numbers can be attained in experiments. Furthermore,
Fig. 4(b) plots the ratio V1,B/V1,D vs n, at DeD = 103 and
DeB = 1, 10, and 100. The ratio is O(10−1), from which
it is concluded that V1,B and V1,D are comparable at these
realistic conditions. Note, the difference between DeD and
DeB (namely, DeB/DeD = λD/R) is due to the disparity in
λD and R; physically, the shear rate in the Debye layer is
O(R/λD) larger than the bulk.

IV. CONCLUDING REMARKS

We have developed a general framework to compute the
electrophoretic velocity of a colloidal particle (of any shape)
suspended in a non-Newtonian fluid whose viscosity is a
function of shear rate. We find that non-Newtonian rheology
endows the velocity with an explicit dependence on particle
size, in contrast to electrophoresis in a Newtonian fluid. We an-
ticipate our work will be valuable to capillary electrophoresis
and microfluidics, wherein electric fields are routinely used to
transport particles in non-Newtonian fluids. Admittedly, we do
not account for physicochemical changes to the Debye layer
due to the microstructural entities (e.g., polymer molecules)
comprising the complex fluid: e.g., alterations in the ζ potential
due to polymer adsorption, depletion of polymers in the Debye
layer, or transient polymer-particle collisions, each of which
may play a role in the Debye-scale electrokinetics. However,
of equal importance, the predicted size dependence of the
electrophoretic velocity arises from non-Newtonian stresses
in the bulk (electroneutral) electrolyte; hence, we expect
this central conclusion to be robust to the aforementioned
effects.

The perturbation scheme adopted here dictates that the non-
Newtonian contributions to the instantaneous electrophoretic
motion are modest in magnitude. However, one is often
interested in particle motion relative to another particle or
boundary, over a period of time. In this case, the instantaneous
deviation from Newtonian behavior calculated herein may
lead to an appreciable cumulative effect. To illustrate this,
consider two spherical particles with radii 0.1 and 1 μm,
respectively, each with a ζ potential of ζ = 25 mV and Debye
length λD = 10 nm, undergoing electrophoresis in a Carreau
fluid with η0 = 0.113 Pa s (approximately 100 times that of
water), n = 0.468 and τ = 11.9 s [63]. For these parameters,
V0 = 1.5 μm/s in an applied field of strength 100 V/cm,
leading to DeD = 1785, DeB = 178.5 (0.1 μm particle), and
DeB = 17.85 (1 μm particle). This gives the dimensionless
non-Newtonian velocity corrections: V1,D = 0.9768, V1,B =
0.0381 (0.1 μm particle), and V1,B = 0.0745 (1 μm particle).
Thus, our theory predicts for δ = 0.05 that the particles
will separate by 1 μm, i.e., ten (smaller) particle lengths, in
approximately 6 min.

The present study suggests several future directions. For
instance, our approach can be extended to nonspherical or
multiple particles. In the latter case, two particles with equal
ζ move at the same velocity in a Newtonian fluid; we
expect relative electrophoretic motion in a non-Newtonian
fluid—do the particles attract or repel? How does this depend
on the fluid rheology (thinning vs thickening)? Moreover, a
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shear-rate-dependent viscosity is but one non-Newtonian trait;
complex fluids also often possess normal stress differences,
which our approach can readily be adapted to account for.
We will, however, leave these interesting issues for future
studies.
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