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A promising approach to the modeling of anomalous (non-Gaussian) dispersion in flow through heterogeneous
porous media is the continuous-time random walk (CTRW) method. In such a formula on the waiting time
distribution ψ(t) is usually assumed to be given by ψ(t) ∼ t−1−α , with α fitted to the experimental data. The
exponent α is also related to the power-law growth of the mean-square displacement of the solute with the
time t 〈R2(t)〉 ∼ t ζ . Invoking percolation and using a scaling analysis, we relate α to the geometrical exponents
of percolation (ν, β, and βB ) as well as the exponents μ and e that characterize the power-law behavior of the
effective conductivity and permeability of porous media near the percolation threshold. We then explain the cause
of the nonuniversality of α in terms of the nonuniversality of μ and e in continuum systems, and in percolation
models with long-range correlations, and propose bounds for it. The results are consistent with the experimental
data, both at the laboratory and field scales.
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I. INTRODUCTION

When a solute is brought into contact with a miscible
solvent, it slowly diffuses into the solvent, and after some
time develops a diffused mixed zone. If the volumes of the
two fluids do not change upon mixing, then the net transport
of the solute across any arbitrary plane is represented by Fick’s
second law of diffusion

∂C

∂t
= Dm∇2C, (1)

where C is the solute concentration, t the time, and Dm

the molecular diffusivity of the solute in the solvent. If the
solvent is also flowing, then there will be additional convective
mixing that is due to the nonuniform velocity field, which,
in turn, is caused by the morphology of the medium. The
resulting mixing process is called hydrodynamic dispersion,
or dispersion for brevity.

Dispersion is important to a wide variety of processes. One
important example of much current interest, due to the phe-
nomenon of global warming, is the storage and sequestration
of CO2 in deep saline aquifers, in which dispersion plays
an important role. Dispersion is also important to miscible
displacements in enhanced oil recovery, to salt water intrusion
in coastal aquifers where it helps the mixing of fresh and
salt waters, and to the in situ characterization of aquifers
by the classical method of injecting fluid tracers into the
porous formations and measuring their travel times between
two specific locations. Dispersion also plays a fundamental
role in spreading industrial and nuclear wastes and polluting
subsurface waters. In particular, burying nuclear waste deep
in porous rock has been suggested as a way of sequestering
its pollution, but the leakage of the waste into groundwater
aquifers, which spread by dispersion, has been a major
concern.

In laboratory-scale porous media dispersion is driven by a
kinematic mechanism whereby pore throats are divided and
rejoined at the pore bodies of the pore space. The tangling and
divergence of streamlines is accentuated by the widely varying
orientations of flow passages and coordination numbers of the

pore space. Dispersion in such porous media is also driven by
a dynamic mechanism because the speed with which a given
pore throat is traversed depends on its hydraulic conductance
and orientation, as well as the local pressure field. The net
result is wide variations in the lengths of the streamlines
and their downstream transverse separations that contribute
to dispersion. The two mechanisms indicate that there is a
geometrical aspect of dispersion with respect to the direction
of the mean flow velocity: a longitudinal effect due to the
difference between the velocity components in the direction
of the mean flow and a transverse effect due to the differences
between local velocity components orthogonal to the direction
of the mean flow. On the other hand, over length scales that
are much larger than the laboratory scale (those in which the
spatial distribution of the permeability is broad) dispersion
is dominated by the fluctuations in the flow velocities, with
diffusion playing no significant role.

Dispersion is said to be diffusive or Gaussian if it is
described by the convective-diffusion equation (CDE)

∂C

∂t
+ 〈v〉 · ∇C = DL

∂2C

∂x2
+ DT ∇2

T C, (2)

where 〈v〉 is the macroscopic mean velocity, and ∇2
T the

Laplacian in the transverse directions. Here DL and DT

represent, respectively, the longitudinal (in the direction
of macroscopic flow) and transverse (perpendicular to the
direction of macroscopic flow) dispersion coefficients. As Eq.
(2) indicates, DL and DT represent effective diffusivities that
are, however, distinct from Dm, the molecular diffusivity, or
De, the effective diffusivity in a pore space in the absence
of a flow field. For the sake of simplicity we delete 〈·〉 and
denote the magnitude of the average fluid velocity by v. Due
to its high significance dispersion has been studied by a wide
variety of techniques and models [1]. They include mean-field
approximations [2], several types of pore network models
[3–7], volume- [8] and ensemble-averaging methods [9], the
stochastic spectral method [10], particle-tracking techniques
[11], the critical-path analysis [12], and the continuous-time
random walk (CTRW) model [13–15].

016316-11539-3755/2012/85(1)/016316(8) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.85.016316


MUHAMMAD SAHIMI PHYSICAL REVIEW E 85, 016316 (2012)

An important question, the focus of this paper, is the mod-
eling of anomalous dispersion (i.e., when dispersion cannot be
described by the CDE [16]). When dispersion is anomalous,
the mean-square displacement of the solute, 〈R2(t)〉, varies
with the time t as 〈R2(t)〉 ∼ t ζ with ζ �= 1. While numerical
simulations may be used to study anomalous dispersion, the
question of developing a fundamental formulation of the
problem is still under study. The stochastic spectral method
[10] and the ensemble-averaging technique [9] do provide
analytical formulations, but are limited by certain constraints,
such as the porous media having high porosity, or the spatial
distribution of their permeability having certain properties. On
the other hand, the CTRW formulation of dispersion [13–15]
is a promising approach that has been shown to be capable of
providing accurate predictions for the experimental data that
cannot be modeled by the CDE. But, as described below, the
current CTRW formulation is still phenomenological in the
sense that its key quantity, the waiting-time distribution, must
still be fitted to the experimental data.

In this paper we propose to combine the CTRW formulation
with percolation theory to develop a model in which the
key parameter of the former approach is expressed in terms
of the percolation exponents that describe the power-law
properties of flow and transport properties near the percolation
threshold. We show that such an approach also explains
the nonuniversality of the key parameter of the CTRW
formulation, as well as providing bounds on its numerical
value.

The rest of this paper is organized as follows. In the
next section we provide a brief description of the CTRW
formulation of dispersion. Section III describes how the CTRW
formulation is combined with a percolation approach. In
Sec. IV we test the prediction of the model against some
experimental data measured in laboratory-scale porous media.
Section V explains the origin of the observed nonuniversality
of the CTRW’s key parameter. We then extend in Sec. VI the
discussion to dispersion in field-scale porous media. The paper
is summarized in Sec. VII.

II. CONTINUOUS-TIME RANDOM WALK FORMULATION

The starting point of the CTRW model is a master equation
(ME) [13,17]

∂C(s,t)
∂t

=
∑

s′
W (s,s′)C(s′,t) −

∑
s′

W (s′,s)C(s,t), (3)

where C(s,t) is the solute concentration or, provided that it is
suitably normalized, the probability that a solute particle is at
s at time t , and W (s,s′) is the transition rate, the probability of
moving from s to s′ that implicitly contains the effect of the flow
velocity on the motion of the solute. s and s′ are not necessarily
the sites of a lattice. The crucial aspect of the formulation is
specifying W (s,s′), which entails detailed knowledge of the
heterogeneities of porous media. Below a length scale �c the
heterogeneities are unresolved and, thus, one must resort to
a statistical description of the set {W (s,s′)}. To do so, one
ensemble averages Eq. (3) that, as is well known [18], leads

to a generalized master equation (GME), which is a nonlocal
equation with memory (see also Ref. [19])

∂Cm(s,t)
∂t

=
∑

s′

∫ t

0
ϕ(s − s′,t − t ′)Cm(s′,t ′)dt ′

−
∑

s′

∫ t

0
ϕ(s′ − s,t − t ′)Cm(s,t ′)dt ′, (4)

where Cm(s,t) is the ensemble-averaged concentration. The
function ϕ(s,t) is given by Eqs. (8) and (15) below. Note that
ϕ is stationary in space, depending only on s − s′.

A CTRW is described by

P (s,t) =
∑

s′

∫ t

0
ψ(s − s′,t − t ′)P (s′,t ′)dt ′, (5)

where P (s,t) is the probability per time that a random walker
has arrived at s at time t , and ψ(s,t) is the probability per unit
time for a displacement s with a difference of arrival times
of t , with P (s,0) = P0 = δs,0δ(t − 0+). It was shown [20] a
long time ago that the GME is equivalent to a CTRW. The
correspondence between Eqs. (4) and (5) is given by

Cm(s,t) =
∫ t

0
�(t − t ′)P (s,t ′)dt ′. (6)

Here �(t) is given by

�(t) = 1 −
∫ t

0
ψ(t ′)dt ′, (7)

with ψ(t) = ∑
s ψ(s,t). ϕ(s,t) is related to ψ(s,t) in the

Laplace transform space by

ϕ̃(s,λ) = λψ̃(s,λ)

1 − ψ̃(λ)
, (8)

where λ is the Laplace transform variable conjugate to t . The
formulation so far is valid for a lattice of N sites with periodic
boundary conditions in which the sites’ positions are given
by, s = ∑3

j=1 sjaj with sj = 1,2, . . . ,N , and aj being the
lattice constants. If N is very large, the lattice constant can be
arbitrarily small, approaching the continuum limit.

An important quantity, which has been used in the numeri-
cal simulations of dispersion [3,4,11], is the first passage-time
distribution (FPTD) Q(s,t), the probability density of a solute
particle arriving at s at time t for the first time. Introducing
the FPTD into the CTRW formulation is necessary because,
while the solution of Eqs. (5) through (8) may be derived for
a system with periodic boundary conditions, such conditions
do not necessarily exist in actual experiments. One has

P (s,t) = P0 +
∫ t

0
Q(s,t ′)P (0,t − t ′)dt ′. (9)

The solution of Eq. (9) in the Laplace transform yields

Q̃(s,λ) = P̃ (s,λ) − δs,0

P̃ (0,λ)
. (10)

The breakthrough curve j (t,L) measured at time t and, say
s1 = L (L is the length of the porous medium), which is
measured routinely in experiments, is given by

j (t,L) =
∑
s2

∑
s3

Q(s1 = L,s2,s3). (11)
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The inverse Laplace transform of the solutions presented so
far must be computed numerically [21].

One must now identify ψ(s,t) and its relation with the
transition rates. One first writes down an ME as a random walk
equation to obtain a transition length and time distribution

ψs,s′ (t) = W (s′,s) exp

[
−t

∑
s′′

W (s′′,s)

]
. (12)

Then, summing over all s′, one obtains

ψs(t) =
∑

s′
W (s′,s) exp

[
−t

∑
s′

W (s′,t)

]
≡ −dQs

dt
, (13)

with

ψ(t) = − d

dt
[[Qs]], (14)

where [[·]] denotes an ensemble average. For an ordered porous
medium, W (s′,s) = W (s′ − s) and Ws = ∑

s′ W (s′,s) = con-
stant. Then ψ(t) = Ws exp(−Wst), ψ̃(λ) = Ws/(Ws + λ), and

ϕ̃(s,λ) = W (s). (15)

One can also determine an effective transition rate by an
effective-medium approximation [19]. More generally though,
the porous medium may have a fixed W (s′ − s), but with a
random spatial distribution of the sites s. Thus, if the site
density is Ns , one has [22]

[[Qs]] = exp

{
−Ns

∫
{1 − exp[−W (s)t]}d3s

}
. (16)

A transition rate is then specified and Eq. (15) is evaluated [23]
to derive an expression for ψ(t).

The CTRW may be extended to the continuum limit. If the
first two moments of ψ(s,t) exist, one has [24] in the Laplace
transform space

λC̃m(s,λ) − Cm(s,0) = −v∗(λ) · ∇C̃m(s,λ)

+ D∗(λ) : ∇∇C̃m(s,λ), (17)

where : indicates a tensor product. v∗(λ) and D∗(λ) are, respec-
tively, the effective flow velocity vector and the dispersion
tensor. In many cases, one writes ψ(s,t) = p(s)ψ(t), where
p(s) and ψ(t) are the probability distributions for the length
of the solute’s jump and the waiting time before the jump
is made, respectively. The decoupling is justified if the flow
velocity correlates very weakly [13,17] with |s|, which is the
case in many situations. Writing [24,25], v∗(λ) = M̃(λ)vψ and
D∗(λ) = M̃(λ)Dψ with M̃ ≡ tcλψ̃(λ)/[1 − ψ̃(λ)], one obtains

vψ = 1

tc

∫
s p(s)dds, (18)

Dψ = 1

2tc

∫
ss p(s)dds, (19)

with tc being a characteristic time. The mass flux J is then
given by

J̃(s,λ) ≡ M̃(λ)[vψC̃m(s,λ) − Dψ · ∇C̃m(s,λ)]. (20)

In a very large number of applications of the CTRW [13,15,17,
19–26], including to dispersion [13,17], the following power
law has been used

ψ(t) ∼ t−1−α. (21)

Equation (21) completes the CTRW formulation of disper-
sion: one fits the CTRW expression for the flux J or the
breakthrough curve j to the data and estimates α, the critical
parameter of the formulation. α is nonuniversal, implying
that it depends on the porous media’s morphology. We now
propose combining percolation theory [27] with the CTRW
formulation to develop a method for estimating the exponent
α, relating it to the morphology of the pore space, and putting
bounds on its value.

III. ESTIMATING α BASED ON PERCOLATION THEORY

Even on the scale of a laboratory sample, porous media are
highly heterogeneous [28], hence giving rise to broad distri-
butions of the pore conductances. Thus, one can invoke the
critical-path analysis (CPA), first proposed by Ambegaokar,
Halperin, and Langer [29], who argued that transport in a
disordered medium with a broad distribution of conductances
(one in which the conductances vary by at least a few orders of
magnitude) is dominated by those with magnitudes larger than
some characteristic conductance σc, defined as the smallest
conductance such that the set of conductances {σ |σ > σc}
forms a conducting sample-spanning cluster (SSC), called the
critical path. In other words, transport is dominated by the
highly conducting regions, and it is their connectivity that is
important to macroscopic transport. Since the low-conducting
regions make little or no contribution to the overall transport,
their connectivity is not important and, thus, they can be
removed. Therefore, transport in a disordered medium with
a broad conductance distribution reduces to a percolation
problem with threshold conductance σc, even if the medium
may seem to be in a state far from its percolation threshold.

According to the CTRW formulation of dispersion, if the
distribution ψ(t) is given by Eq. (21) then the mean-square
displacement 〈R2(t)〉 of a solute particle is given by

〈R2(t)〉 ∼
{

t2α α < 1,

t3−α 1 < α < 2,
(22)

where α < 1 corresponds to porous media that are highly
heterogeneous. On the other hand, for dispersion on the SSC
at the percolation threshold pc one has [30]

〈R2(t)〉 ∼ t ζ , (23)

where, as shown shortly, ζ is related to the standard percolation
exponents. A comparison of Eqs. (22) and (23) indicates
that if the percolation model and the CPA are applicable,
then estimating the exponent α of Eq. (21) is tantamount to
determining the exponent ζ that characterizes the power-law
dependence of 〈R2(t)〉 on the time t in the SSC at the
percolation threshold pc. Anomalous dispersion corresponds
to ζ �= 1.

Relating the CTRW to percolation systems deserves some
discussion since the CTRW is obtained by ensemble averaging
of the master equation, and one might question the applicability
of such averaging to a poorly connected system, such as one
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near or at the percolation threshold. However, three points are
worth mentioning here. (i) One can rigorously map diffusion
in the percolation system onto a CTRW [19], in which case the
power law (22) arises naturally. (ii) The CPA maps a disordered
medium that is seemingly far from its percolation threshold to
which the CTRW formulation is applicable, onto one at the
percolation threshold, if the medium is heterogeneous. This
is the crucial aspect of what we are proposing in the present
paper. (iii) Data for dispersion in porous media with extremely
low connectivity have been shown to be described well by the
CTRW formulation [1].

To determine ζ we carry out a scaling analysis that
represents an extension of our previous work [30]. Let us
first recall the power laws that govern the various quantities
near pc. The correlation length ξp of percolation follows
ξp ∼ (p − pc)−ν . The accessible fraction XA(p), the fraction
of the bonds or pores that are on the SSC, follows XA(p) ∼
(p − pc)β , while the backbone fraction XB(p) (the fraction
of bonds on the backbone, the flow-carrying part of the
SSC) is given by XB(p) ∼ (p − pc)βB . The exponent ν, β,
and βB are universal with ν = 4/3 and 0.89, β = 5/36 and
0.41, and βB 
 0.48 and 1.05 for two-dimensional (2D) and
three-dimensional (3D) systems, respectively. The electrical
conductivity σ and permeability K of the SSC follow the
power laws σ ∼ (p − pc)μ and K ∼ (p − pc)e. For lattice
percolating in which the hydraulic or electrical conductance is
either 0 or a finite value for all the bonds e = μ 
 1.3 and 2.0
in 2D and 3D. But in certain continuum percolation systems
in which the conductance distribution is broad (varying over
orders of magnitude), μ and e take on nonuniversal values
[19,31,32]. The breakdown of the universality of μ and e is,
in fact, a key to our development in this paper.

We first note that every porous medium contains a certain
fraction of dead-end pores. Solute transport into and out of such
pores is by diffusion only. Thus, we consider two distinct cases.
(i) Diffusion of the solute into the dead-end pores contributes
significantly to dispersion, and cannot be neglected. This is
usually the case for column experiments carried out with
laboratory-scale porous media, a fact that has been known
since the 1960s [33]. (ii) Diffusion into the dead-end pores is
not significant. This is the case when either the flow velocity
in the laboratory experiment is high enough to overcome any
effect by diffusion into and out of the dead-end pores, or when
dispersion is dominated by the velocity fluctuations induced by
large-scale spatial variations of the permeability and porosity,
as it happens in field-scale porous media, such as groundwater
aquifers.

An important characteristic of dispersion is the dispersivity
αL, defined by αL = DL/v. Two average flow velocities may
be defined. One, vc, is defined in terms of the travel times of
the solute in the SSC. Then vc ∼ K/XA, and near pc

vc ∼ (p − pc)e−β ∼ ξ−θc

p , (24)

where θc = (e − β)/ν. On the other hand, if an average particle
velocity vB is defined in terms of the solute travel time along
the backbone, then, vB ∼ K/XB . Thus, near pc

vB ∼ (p − pc)e−βB ∼ ξ−θB

p , (25)

where θB = (e − βB)/ν. For length scales L � ξp, we should
replace ξp in Eqs. (24) and (25) by L. We also define a Péclet
number Pe by

Pe = vξp

De

, (26)

where De is the effective diffusivity of the solute in the porous
medium De ∼ (p − pc)μ−β ∼ ξ−θ

p , with θ = (μ − β)/ν be-
ing the anomalous diffusion exponent [34], and v is either vc

or vB . For L � ξp, we replace ξp in Eq. (26) by L. To relate
the CTRW parameter α to the percolation exponents we focus
on 〈�x2〉, the mean-square displacements in the longitudinal
direction.

(i) Suppose that diffusion into the dead-end pores con-
tributes significantly to dispersion, as in the column exper-
iments. de Gennes [35] showed (see also Ref. [27] for a
simpler derivation of his result) that the longitudinal dispersion
coefficient DL (in the direction of macroscopic flow) is given
by DL ∼ (vcξp)2/De. This is similar to the classical theory of
dispersion in pores with stagnant regions [36], which play a
role similar to the dead-end pores in porous media. The work
by Aris [36] showed the same type of dependence of DL on vc

and De exists in such pores, except that in a porous medium the
relevant length scale is the percolation correlation length ξp,
not the pore size as in Aris’ work [36]. Thus, using Eq. (24)
and De ∼ ξ−θ

p , we obtain, DL ∼ ξ 2−2θc+θ
p . For L � ξp the

only relevant length scale is L and, therefore, we must replace
ξp with L. Hence

DL ∼ L2−2θc+θ . (27)

Since L is now the only relevant length scale in the percolating
system, all the length scales must be proportional to L. Thus,
Eq. (27) is rewritten as DL ∼ 〈�x2〉(2−2θc+θ)/2. As DL repre-
sents an effective diffusivity, one must have DL ∼ d〈�x2〉/dt .
Thus, one obtains, d〈�x2〉/dt ∼ 〈�x2〉(2−2θc+θ)/2, which,
after integration, yields 〈�x2〉 ∼ t2/(2θc−θ), implying that

ζ = 2

2θc − θ
= 2ν

2e − μ − β
. (28)

Therefore, if we use the numerical values of e and μ for lattice
percolation, we obtain

ζ 

{

2.3 2D porous media,
1.1 3D porous media. (29)

(ii) Suppose that the dead-end pores do not contribute
significantly to dispersion. Thus, dispersion takes place only
in flow through the backbone of the SSC, in which case [1]
DL/De ∼ Pe, implying that DL ∼ ξpvB ∼ ξ 1−θB

p . Thus, for
L � ξp

DL ∼ L1−θB . (30)

Using the same type of analysis as in case (i), we obtain
〈�x2〉 ∼ t2/(1+θB ). Thus

ζ = 2

1 + θB

= 2ν

ν + e − βB

, (31)

implying that

ζ 

{

1.26 2D porous media,
0.97 3D porous media (32)
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if the numerical values of θB for lattice percolation are used.
The power laws that relate the dispersivity αL to the time can
then be derived. Consider, for example, case (i) and Eq. (24).
For length scales L � ξp one has vc ∼ L−θc ∼ 〈x〉−θc . On
the other hand, vc = d〈x〉/dt . Thus, equating the two equa-
tions and integrating, one obtains 〈x(t)〉 and, hence, vc(t) ∼
t−θc/(1+θc). Since αL = DL/vc and DL ∼ t (2−2θc+θ)/(2θc−θ), one
obtains the power law that relates αL to the time t . The final
results for both cases (i) and (ii) are then given by

αL ∼
{

t (2+θ)/[(2θc−θ)(1+θc)] case (i),
t1/(1+θB ) case (ii).

(33)

IV. COMPARISON WITH LABORATORY
EXPERIMENTAL DATA

Anomalous dispersion was first reported by Aronofsky and
Heller [16], who reported on systematic deviations of their
data from the description by the CDE. Scheidegger [37] also
reported on some careful experiments on dispersion in porous
columns, noting that the breakthrough solute concentration
profile, when fitted to the CDE, deviated significantly and sys-
tematically from his data. Silliman and Simpson [38] reported
convincing data for dispersion in laboratory experiments that
indicated the scale dependence of the dispersivity, the hallmark
of non-Fickian dispersion (see also below).

Cortis and Berkowitz [39] reanalyzed Scheidegger’s data
using the CTRW formulation. Scheidegger measured the
breakthrough curves in Berea sandstone cores, 30 inches long
with a diameter of 2 inches, and porosity of 0.204. The volume
flux was 1.73 cm3/min. The cores were first saturated fully
with the solute tracers and subsequently flushed with clear
liquid. Figure 1 presents the fit of the data by both the CDE and
CTRW formulations [39], which we have replotted slightly dif-
ferently. The most accurate fit with the CDE was obtained [39]
with DL 
 (1.58 ± 0.84) × 10−3cm2/min. Equation (21) was
used and the most accurate fit was obtained with vψ 
 (7.25 ±
0.01) × 10−1cm/min, Dψ 
 (7.97 ± 0.16) × 10−2 cm2/min,
and

α 
 1.59. (34)

The error in the estimated α was negligible to two decimal
places.

FIG. 1. Comparison of the fits of Scheidegger’s data by the
CTRW model and the CDE.

Biggar and Nielsen [40] reported breakthrough curves for
both saturated and unsaturated porous media. In their exper-
iments the columns were filled with Aiken clay loam 0.23–
0.5 mm aggregates in saturated conditions. Two breakthrough
curves for the saturated porous medium were measured with
injection speeds of 3.4 cm/h and 0.058 cm/h. The most
accurate fit of the data for the latter case by the CDE
was obtained with DL 
 (9.70 ± 0.17) × 10−4cm2/min. The
regression of the data by Cortis and Berkowitz [39] using
the CTRW model yielded vψ 
 3.33 × 10−3cm/min, Dψ 

2.02 × 10−4cm2/min, and

α 
 1.29, (35)

with insignificant errors to two decimal places for the three
quantities. The corresponding exponent for the data at higher
injection speed was α 
 1.67 [39].

Thus, for both sets of data we have 1 < α < 2, implying
that it is the second equation in Eq. (22) that is relevant to
our discussions and, therefore, α = 3 − ζ . As pointed out
earlier, in the column experiments of the type carried out by
Scheidegger [37] and Biggar and Nielsen [40] diffusion into
the dead-end pores is important and cannot be ignored since the
fluid velocity is not too high. Thus, it is case (i) that is relevant
to their experiments. Indeed, estimates (29) yield 0.7 < α <

1.9, consistent with Eqs. (34) and (35). But one must also
explain the differences between the percolation estimates and
Eqs. (34) and (35). The power laws of percolation theory are
valid for infinitely large systems, whereas the experimental
systems are finite. Thus finite-size effects might play a role in
the difference between the percolation predictions and what
one obtains by fitting the experimental data. We believe,
however, that there is a deeper reason for the deviations, which
we now address.

V. NONUNIVERSALITY OF THE CTRW EXPONENT

Estimates (34) and (35) indicate clearly that α is not
universal. On the other hand, it is also known [19,31,32]
that many continuum models of disordered media give rise to
nonuniversal values of μ and e, and porous media certainly rep-
resent continuum systems. Since the main difference between
the porous media used in the experiments of Scheidegger and
Biggar and Nielsen is their morphologies, the nonuniversality
of α may be due to the morphology of the two porous media.
Thus, one must use the nonuniversal estimates of μ and e in
Eqs. (28) and (31).

In particular, consider a percolation system in which the
local conductances g follow a distribution given by

h(g) ∼ g−γ , (36)

where 0 < γ < 1. Distribution (36) is not a pathological one
and is actually quite common [1,31,32]. Several authors [19,
31,41] have shown that, given distribution (36), μ and e are
nonuniversal. Let us denote the nonuniversal exponents by μn

and en. Feng et al. [31] showed that

max(μl + y,μ) � μn � μ + y, (37)

max(μl + y,μ) � en � μ + y, (38)

016316-5



MUHAMMAD SAHIMI PHYSICAL REVIEW E 85, 016316 (2012)

where y = γ /(1 − γ ), μ and e are the universal values of
the two exponents, and μl = 1 + (d − 2)ν, with d being the
system’s dimensionality. Kogut and Straley [41] argued that
the upper bound for μ may be an exact result.

Thus, consider Scheidegger’s experiments. Using estimate
(35) we obtain, ζ 
 1.41 which, when substituted in Eq. (28),
yields μn 
 en 
 1.42ν + β if we use the suggestion by
Kogut and Straley [41]. Thus, if Scheidegger’s porous medium
was 2D, one obtains μn 
 en 
 1.82, much larger than
the universal (lattice) value of 1.3, but corresponding to a
conductance distribution with γ 
 2/5. On the other hand,
if the porous medium was 3D, then μn 
 en 
 1.69, which
could not be produced by any γ > 0, and in fact violates the
theoretical requirement that the conductivity and permeability
exponents in d dimensions must be larger than those in
(d − 1) dimensions. Thus, Scheidegger’s porous sample was
essentially 2D, as are most laboratory-scale porous media.
Indeed, it had an aspect ratio (the ratio of column’s length and
diameter) of 15. A similar analysis for Biggar and Nielsen’s
data indicates that their porous medium had a 2D geometry
with γ 
 1/4, but assuming a 3D geometry would again
violate what is known about μ and e. Such considerations
imply that the theory that we are proposing is self-consistent,
in the sense that it produces results that are consistent with
what is known about μ and e, and automatically rules out
other possibilities that violate rigorous theories concerning
these exponents.

Based on this analysis we also identify bounds for α. It has
been shown [31,32,41] that nonuniversal values of μ and e

for continuum percolation are always larger than the universal
values for lattice percolation. Thus, according to Eqs. (28)
and (29) for laboratory-scale porous media and based on
dimensional considerations, one must have

0.7 � α � 1.9. (39)

Interestingly, α 
 0.7 was reported by Bijeljic, Mostaghim,
and Blunt [5] for carbonate rock as an example of highly
heterogeneous porous media, and α 
 1.8 very close to the
proposed upper bound, for sandpacks as an example of
relatively weakly heterogeneous porous media.

VI. DISPERSION AT FIELD SCALE

Despite considerable difficulty associated with measure-
ments of DL and αL in field-scale porous media (FSPM),
a considerable amount of data have been collected [42] that
indicate unequivocally that both αL and DL depend on the
length scale of measurements and time. Over 130 dispersivities
were collected from the literature by Arya et al. [43], collected
on length scales from less than 10 cm to more than 100 km.
At least 75% of the data followed the scaling

αL ∼ Lδ, (40)

with δ 
 0.88, where L is the length scale of the measurements
or distance from the source. Reanalysis of their data and those
of others by Neuman [44] indicated that L � 100 m one has
δ 
 0.92.

The case relevant to FSPM is (ii) because in flow through
such porous media diffusion into and out of the dead-end
pores plays no significant role, as the distribution of the solute

concentration is dominated by the fluctuations in the flow
velocity field, which in turn is controlled by heterogeneities of
FSPM. Equations (25) and (30) predict that

αL ∼ L, (41)

implying that δ = 1, at most 13% larger than Arya et al.’s
estimate, and only 9% larger than Neuman’s [44]. Given
the uncertainty in measuring αL, the agreement between the
percolation prediction and the data is good. Moreover, if we
write

αL ∼ tχ , (42)

then, according to Eq. (33), χ = (1 + θB)−1. We then rec-
ognize that FSPM are essentially 2D porous media, as they
are up to tens of kilometers long, but at most a few hundred
meters thick. Therefore, it is the 2D value of θB that is
relevant to Eq. (42) and thus χ 
 0.63 if we use the numerical
value of θB for lattice percolation. Indeed, in the numerical
simulation of dispersion in FSPM [45] χ 
 0.5–0.6 has been
used, completely consistent with the percolation prediction.

For the FSPM the exponent ζ and, hence, the CTRW
exponent α = 3 − ζ (or α = ζ/2, depending on the condi-
tions) should be expected to be nonuniversal. The reason
is that numerous studies [1] have indicated that the spatial
distribution of the permeability and porosity of FSPM are
dominated by long-range nondecaying correlations that are
well described by such self-affine fractal distributions as the
fractional Brownian motion (FBM) and fractional Gaussian
noise (FGN). Simulation of flow and transport in percolation
systems in which the local permeabilities are distributed
according to an FBM [32] indicated that the percolation
exponents ν, β, and βB , as well as the permeability exponents
e are nonuniversal. Thus, if the CTRW formulation is to be
used to model dispersion in FSPM [46], its critical parameter
α should be expected to be nonuniversal, vary from field to
field, and related to the Hurst exponent or other exponents that
characterize long-range correlations in FSPM.

VII. SUMMARY

The key parameter in a CTRW formulation of anomalous
dispersion in porous media is α, defined by the power law that
describes the waiting time distribution of the CTRW, Eq. (21).
We argued that percolation theory can provide expressions,
in terms of its key exponents, for α for dispersion in both
laboratory- and field-scale porous media. We also argued that
the observed nonuniversality of α is due to the nonuniversality
of the percolation exponents that occur in continuum models,
as well as in percolation with long-range correlations.

One might argue that the percolation approach merely
expresses the nonuniversal CTRW parameter α in terms of
the exponents that are nonuniversal for continuum models.
As such, one might argue that the percolation approach has
no more predictive power than simply fitting α to the data.
But, whereas in the CTRW formulation the parameter α is
purely phenomenological, in the percolation approach it is
expressed in terms of fundamental exponents that have rig-
orous theoretical foundation. Moreover, for laboratory-scale
porous media the nonuniversality of α is explained in terms
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of the dependence of the percolation exponents e and μ on
the parameter of the conductance distribution, which not only
represents an important aspect of a pore space morphology, but
is also measured routinely. Similarly, for dispersion in FSPM
the nonuniversality of α is linked to the dependence of μ and e

on the parameters that characterize long-range correlations in
the pore space, such as the Hurst exponent H that is paramount
to the FBM and FGN, and is also routinely estimated using
well log data [1,47]. As such, we believe that the proposed link
between percolation and the CTRW formulation of dispersion,
and the explanation of the nonuniversality of α in terms of the

nonuniversality of the percolation exponents is appealing, and
puts the CTRW formulation of anomalous dispersion on a
more rigorous foundation.
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