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Thermal evidence for Taylor columns in turbulent rotating Rayleigh-Bénard convection
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We investigate flow structures in rotating Rayleigh-Bénard convection experiments in water using thermal
measurements. We focus on correlations between time series measurements of temperature in the top and
bottom boundaries. Distinct anticorrelations are observed for rapidly rotating convection, which are argued to
attest to heat transport by convective Taylor columns. In support of this argument, these quasigeostrophic flow
structures are directly observed in flow visualizations, and their thermal signature is qualitatively reproduced
by a simple model of heat transport by columnar flow. Weakly rotating and nonrotating convection produces
positively correlated temperature changes across the layer, indicative of heat transport by large-scale circulation.
We separate these regimes using a transition parameter that depends on the Rayleigh and Ekman numbers,
RaE3/2.
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I. INTRODUCTION

Fluid motions in planetary systems are subject to Coriolis
forces resulting from the planet’s rotation. A strong Coriolis
force imposes an organizational influence on otherwise tur-
bulent flow that is thought to be responsible for, inter alia,
the alignment of Earth’s rotation axis and magnetic dipole.
Here, we examine results from a simple experimental analog
of such planetary fluid systems: rotating Rayleigh-Bénard
convection.

Rayleigh-Bénard convection (RBC) is a horizontal layer
of fluid through which heat is fluxed from bottom to top.
Fluid near the bottom boundary is warmed, expands, and rises
due to gravitational instability. Rotating RBC has an identical
setup, but fluid and boundaries spin about a vertical axis. Many
planetary convection systems are considered rapidly rotating,
meaning that the period of rotation is among the fastest
dynamical time scales present. Rapidly rotating flows are
typically described by the so–called geostrophic force balance,
a balance between the Coriolis force and pressure gradient.
The curl of this force balance produces the Taylor–Proudman
theorem [1]:

�ẑ · ∇u = 0, (1)

where �ẑ and u are the rotation and flow vectors, respec-
tively. Although convective flow cannot strictly abide by this
constraint beyond the lowest order, a strong Coriolis force
nevertheless tends to align flow with the axis of rotation in
what is considered quasigeostrophic convection.

Flow in quasigeostrophic RBC is manifest as a vortex grid
of so-called convective Taylor columns (CTCs) [e.g., [2]]. A
CTC is a helical vortex with either upward or downward flow
[3]. The sign of vorticity (ω ≡ ∇ × u) in an upward flowing
CTC is positive in the lower half of the layer (z < h/2) and
negative in the upper half (z > h/2). Conversely, a downward
flowing CTC will have negative vorticity in the lower half
of the layer and positive vorticity in the upper half. For both
upward and downward flowing CTCs, then, helicity (u · ω) is

positive in the lower half and negative in the upper half. A
schematic depiction of CTCs is shown in Fig. 1(a).

For rapidly rotating convection, roughly equal numbers
of upward and downward flowing CTCs are expected [4].
Vortex-vortex interactions between the CTCs cause them to
be advected laterally about the container [e.g., [5]]. This
horizontal “dance” of the axial CTCs has been observed
in movies of quasigeostrophic RBC in experiments [6] and
numerical simulations [4,7].

If a convection system rotates slowly enough or if the
vigor of convection is strong enough, inertial forces can
overwhelm the Coriolis force, resulting in weakly rotating con-
vection, which behaves similarly to nonrotating convection.
Experimental work [e.g., [8,9]] has seen the development of
large-scale circulation in weakly rotating convection like those
typical of nonrotating RBC experiments [e.g., [10,11]]. This
large-scale circulation results from the interaction of nonlinear
entrainment processes and the experimental convection tank
geometry [12]. Figure 1(b) shows a schematic depiction of the
flywheel pattern of a large-scale circulation.

The different regimes of rotating convection are often ex-
amined using heat transfer measurements in experiments and
simulations to distinguish competing influences of buoyancy
and rotation [e.g., [7,13–20]]. Some work, however, is able to
connect flow and heat transfer regimes. References [21,22],
for example, measure heat transfer efficiency and helicity in
rotating RBC simulations, showing that heat transfer and flow
structure regimes are linked by a relationship that depends
only on the Prandtl number. Experimentally, it is difficult to
simultaneously characterize flow patterns and heat transfer,
as visualization techniques can compromise thermal control
[e.g., [23]]. Here, we measure temporal correlations of thermal
signals to infer large-scale patterns of convection in rotating
RBC experiments. For quasigeostrophic convection, in partic-
ular, we may expect that the random horizontal dance of the
CTCs should produce significant thermal anomalies nearly
simultaneously on stationary, vertically aligned temperature
probes.
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FIG. 1. (Color online) Flow regimes in rotating RBC. (a) An
illustration of two CTCs in quasigeostrophic convection. (b) An
illustration of a large-scale circulation typical of turbulent weakly
or nonrotating RBC. (c and d) Visualizations of flow regimes in
rotating RBC experiments. A vertical sheet of laser light is projected
through the center of a 20-cm-tall, uninsulated convection tank. Both
panels show convection in water (plus trace amounts of Kalliroscope
particles) driven by 100 W of heating power and rotated at 4.3 Hz (c)
and 0.43 Hz (d). Approximate nondimensional parameters are then
Pr≈ 7, Rf ≈ 1.1 × 1011, E ≈ 3 × 10−6 (c), and E ≈ 3 × 10−5 (d).

II. METHOD

A. Experiments

We conduct rotating convection experiments in water
(Pr ≈ 7) and sucrose solution (Pr ≈ 10) using the rotating
magnetoconvection device at University of California, Los
Angeles. Figure 2 shows a schematic depiction of the ex-
perimental setup. The convection tank is a 20-cm-diameter
cylinder whose top and bottom end walls are 4-cm-thick
aluminum and 1.3-cm-thick copper blocks, respectively. The
fluid is contained by polycarbonate sidewalls with heights
varying between 3.2 and 19.7 cm. An electrical heating
element is mechanically fixed to the bottom of the lower
end wall. Between 5 and 600 W of heat is passed through
the end walls and fluid and is removed above the upper end
wall by thermostated water flowing through an aluminum
heat exchanger, which is isothermal to within 0.05 K. The
convection tank setup is insulated by closed cell foam, 20-cm
thick, to minimize heat losses through the sidewalls. The
experimental apparatus (convection tank setup and diagnostic
systems) is rotated up to fifty revolutions per minute (5.2 Hz).
More detailed descriptions of the device and experimental
method can be found in [24,25].

We report results from a suite of 64 rotating and 12
nonrotating convection experiments. These experiments rep-
resent a subset of those presented in [7,25]. Time series from
each experiment have at least 25 000 data points, acquired

at 10 Hz for at least 45 min. The control parameters fixed
experimentally are tank height h, rotation rate �, input heat
power Q, as well as fluid properties. The nondimensional
parameters fixed for each convection experiment are the
Prandtl number Pr, Ekman number E, flux Rayleigh number
Rf , and the tank diameter-to-height aspect ratio �. Table I
defines these and other relevant experimental parameters. In
this study, we focus on changes in dynamics as Rf and E vary
over several orders of magnitude.

Figures 1(c) and 1(d) show frames from video taken in a
complementary set of experiments for qualitative visualiza-
tion. Here, the insulation is removed from the sidewall of
the convection tank, and Kalliroscope particles in water are
illuminated by a vertical sheet of laser light projected through
the center of the tank [e.g., [26]]. Such visualizations allow us
to check more directly the existence of CTCs that are indirectly
observed using temperature time series measurements in
thermally insulated experiments.

The prime diagnostic of interest here is temperature time
series measurements. We use these measurements to distin-
guish the two flow regimes depicted in Fig. 1. To accomplish
this goal, we place six thermistors within the solid bottom end
wall, 2 mm below the fluid, and another six thermistors within
the solid top end wall, 2 mm above the fluid [see Fig. 2(a)].
The probes are arranged to form six vertically aligned pairs,
equally spaced in azimuth [see Fig. 2(b)]. Figure 3 shows
an example of temperature time series measurements from a
thermistor within each of the top and bottom end walls. These
temperature measurements are denoted T

top
i (t) and T bottom

i (t),
where i = 1, . . . ,6, corresponding to azimuthal location [see
Fig. 2(b)]. The temperature cross correlation is calculated
using temperature time series measurements of top and bottom
thermistors at the same location in azimuth:

C
top−bottom
i (m) =

N−|m|−1∑
t/dt=0

[
T

top
i (t) − 〈

T
top
i (t)

〉
t

]

× [
T bottom

i (t + m dt) − 〈
T bottom

i (t)
〉
t

]
, (2)

where t is the measurement time and dt is the inverse of the
data-acquisition frequency such that t/dt = 0,1, . . . ,N , where
N is the total number of data points acquired in time and
integers m = 1 − 2N, . . . ,2N − 1 represent the correlation
lag. Ci(m) is then normalized such that the autocorrelation
at zero lag, C

top−top
i (m = 0), is unity.

The mean, zero-lag correlation of the six pairs can be
calculated such that a single correlation coefficient is produced
for each convection experiment:

C = 1

6

6∑
i=1

C
top−bottom
i (m = 0). (3)

This quantity allows us to gauge the nature of flow structures
as a function of our changing parameters for all 76 experiments
conducted.

III. RESULTS

Figure 1 shows visualizations of quasigeostrophic (panel
c) and weakly rotating (panel d) convection in uninsulated
experiments. We quantify the relative influence of rotation and
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FIG. 2. A scaled illustration of the experimental apparatus. (a) A side view showing the vertical structure of the tank setup with a 5-cm
sidewall. T top and T bottom show the vertical locations of the top and bottom thermistors. (b) A plan view of the convection tank setup showing
the horizontal orientation of the top and bottom thermistor pairs, T1,...,6.

buoyancy using the transition parameter of [25]. The transition
between quasigeostrophic and weakly rotating convection
regimes is argued to be controlled by the relative thicknesses
of the thermal and Ekman boundary layers [7], and the
ratio of their thicknesses can be characterized by a transition
parameter RaE3/2. We show in [25] that the thermal boundary
layer becomes thinner than the Ekman boundary layers
when RaE3/2 � 20, which coincides with a transition from
quasigeostrophic to weakly rotating heat transfer behavior.
The quasigeostrophic experiment shown in Fig. 1(c) has
RaE3/2 ≈ 8, and the weakly rotating experiment shown in
panel (d) has RaE3/2 ≈ 280. The former experiment reveals
the existence of container-high CTCs in the more rapidly
rotating case (c), which, in order to expose the fluid for
visualization, are not well controlled thermally.

Figures 4(a) and 4(b) show measurements of C
top−bottom
i

from quasigeostrophic convection experiments for each of
the six thermistor pairs (i = 1, . . . ,6). Panel (a) has Rf =
2 × 108, and E = 4.4 × 10−5. Panel (b) has Rf = 1.1 × 1011,

and E = 3 × 10−6 [identical to the experiments shown in
Fig. 1(c)]. These convection experiments are considered
quasigeostrophic, as they have RaE3/2 ≈ 5 and RaE3/2 ≈ 8,
respectively, and transport heat less efficiently than nonrotating
but are otherwise identical experiments (by 30% and 10%,
respectively). The instantaneous (m = 0) thermal variations
are vertically anticorrelated.

The anti-correlation of these quasigeostrophic temperature
signals is perhaps counterintuitive. Upward flowing CTCs
transport warm material from the bottom boundary to the top,
and downward flowing columns bring cold material from top to
bottom. The CTCs are then either anomalously hot or cold, and
measurements of temperature on vertical pairs of thermistors
within the fluid should exhibit positive correlations. Our
measurements, however, are taken in the tank’s end wall,
not in the fluid, and this difference is important in producing
the anticorrelated thermal signals. Convective heat transfer
can be parameterized locally as uT ′, where T ′ is the local
temperature anomaly [e.g., [27]]. Both warm, upward flowing,

TABLE I. Relevant experimental parameters.

Parameter Definition Experiments

Dimensional
h Tank height 0.032 � h � 0.197 m
Q Heat power 5 � Q � 600 W
� Rotation rate 0 � � � 5.2 Hz
ν Viscous diffusivity 7.2 × 10−7 � ν � 1.5 × 10−6 m2/s
κ Thermal diffusivity 1.4 × 10−5 m2/s
αT Thermal expansivity 0.002 � αT � 0.0043 K−1

k Thermal conductivity 0.6 W/mK
A Cross-sectional area 0.0314 m2

�T Temperature difference 2.2 � �T � 45 K
Dimensionless

Aspect ratio � ≡ [4A/(πh2)]1/2 1 � � � 6.2
Prandtl number Pr ≡ ν/κ 4.8 � Pr � 11
Ekman number E ≡ ν/(2�h2) 2.5 × 10−6 � E � ∞
Flux Rayleigh number Rf ≡ (αT gQh4)/(Aνκk) 8.8 × 106 � Rf � 5.3 × 1011

Rayleigh number Ra ≡ (αT g�T h3)/(νκ) 106 � Ra � 5.5 × 109

Nusselt number Nu ≡ (Qh)/(Ak�T ) 6.2 � Nu � 96.2
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FIG. 3. An example of temperature time series data from a
rotating RBC experiment (Rf = 1.1 × 1011,E = 3 × 10−6). The top
panel shows measurements from a single thermistor in the top end
wall [T top

1 (t)], and the bottom panel shows measurements from a
thermistor below the fluid [T bottom

1 (t)].

and cold, downward flowing CTCs transport heat upward.
Vertical conduits of heat such as CTCs will simultaneously
cool the bottom boundary and warm the top boundary.

Negative correlations in temperature variations measured
in the end walls therefore correspond to positive correlations
in local vertical heat transport. As a control case, temperature
correlations are calculated for thermistor pairs with both verti-
cal and lateral separation. Discussed in detail in the Appendix,
these horizontally separated temperature correlations produce
significantly less coherent behavior than the purely vertically
separated pairs for quasigeostrophic convection, in support of
the interpretation of heat transfer by roughly vertical CTCs.
This interpretation is further supported by a simple heat
transfer model presented in Sec. IV.

Correlation data for weakly rotating and nonrotating con-
vection are shown in Figs. 4(c) and 4(d). Both cases have Rf =
1.1 × 1011. The case shown in panel (c) has E = 3 × 10−5, and
the data in panel (d) come from a nonrotating convection ex-
periment. Temperature correlations in the absence of dominant
rotation (panels c and d) produce different thermal signatures
from quasigeostrophic convection (panels a and b). We observe
broader, slightly positive correlation patterns in weakly and
nonrotating convection experiments. This thermal signature is
likely due to the development of large-scale circulations as the
influence of rotation wanes.

Large-scale circulations have been found to produce
positive thermal correlations in vertical thermistor pairs in
nonrotating RBC experiments [e.g., [10]]. In contrast to
heat transport by CTCs, large-scale circulations will typi-
cally produce vertically anticorrelated vertical heat flux and
therefore positively correlated temperature signals within the
boundaries. In other words, the thermal boundary layers are
thickest where the large-scale circulation departs from the
boundary [top left and bottom right corners of the cell depicted
in Fig. 1(b)] and thinnest where it impinges (top right and
bottom left). The right half of a counterclockwise large-scale
circulation is anomalously warm, and the left half is cold,
and so they produce positive vertical temperature correlations

and negative horizontal temperature correlations, respectively
[e.g., [28]].

We may therefore interpret positively correlated thermal
signals as evidence for the development of large-scale circu-
lations. In fact, visualizations in an uninsulated, nonrotating
experiment with identical parameters as that shown in Fig. 4(d)
confirm the existence of a large-scale circulation. The detailed
dynamics of large-scale circulations are discussed elsewhere
[e.g., [8,11,12]], and so we will not focus on this flow
regime here. The inferred presence of these strongly three-
dimensional flow patterns, however, indicates the breakdown
of quasigeostrophic flow.

We should also note that the normalization used to calculate
these correlations [Eq. (2)] inherently assumes that the differ-
ent thermistors sample all parts of the large-scale circulation
equally as the large-scale circulation wanders azimuthally
[e.g., [11]]. If, however, the duration of experimental data
acquisition were to be shorter than the time scale over
which the large-scale circulation wanders, or if the large-
scale circulation were to become locked in place, the cross
correlation should be normalized not by each thermistor’s
time-averaged temperature but by the average of all thermistors
on that level. Otherwise, we may be correlating small-scale
plume behavior, instead of global dynamics. We have tried both
normalizations, and find no appreciable change, indicating that
we do, in fact, sample the large-scale circulation without such
azimuthal bias.

In Fig. 5, we show the mean zero-lag vertical temperature
correlation coefficient C for all experiments. These data
are plotted against the transition parameter RaE3/2, which
is argued to separate quasigeostrophic and weakly rotating
heat transfer regimes. In general, we observe anticorrelated
signals in the quasigeostrophic regime (small RaE3/2) and
positively correlated signals in weakly (large RaE3/2) and
nonrotating (E ≈ ∞) regimes. Negative correlations (C < 1)
are indicative of the importance of CTCs in transporting heat.
Positive correlations (C > 1) indicate the development of
large-scale circulations.

IV. ONE-DIMENSIONAL CTC HEAT TRANSFER MODEL

In order to better understand the physical meaning of
C

top−bottom
i in quasigeostrophic convection experiments, we

examine a simple one-dimensional numerical model for
vertical heat transport by CTCs. The model consists of a
vertical profile of a fluid layer sandwiched between two end
walls of finite thickness and thermal conductivity. As in the
laboratory experiments, the temperature is fixed above the top
end wall, and a heat flux is fixed below the bottom end wall. We
model the drifting CTCs as a region of temporally fluctuating
yet vertically uniform heat flux. This is accomplished by
characterizing the convecting fluid as a solid thermal conductor
with an effective conductivity keff = kfluidNu(t). Quantities
used are accurate to material properties and experimental
settings, and Nu(t) is generated artificially. We calculate
the vertical temperature profile of the model at each time
step, generating synthetic temperature time series within the
model’s top and bottom boundaries. The correlation coefficient
can then be calculated as in the actual experiment. This simple
model provides synthetic data for an end-member convection
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FIG. 4. (Color online) Temperature correlations from vertical thermistor pairs, C
top−bottom
i , vs correlation lag, m × dt , as defined in Eq. (3).

(a) h = 4.7 cm and Q = 50 W, and therefore Rf = 2 × 108. (b–d) h = 0.197 m and Q = 100 W, and therefore Rf = 1.1 × 1011. (a) Rotating
convection with � = 5.3 Hz, E = 4.4 × 10−5, RaE3/2 ≈ 5. (b) Rotating convection with � = 4.3 Hz, E = 3 × 10−6, RaE3/2 ≈ 8. (c) Rotating
convection with � = 0.43 Hz, E = 3 × 10−5, RaE3/2 ≈ 280. (d) Nonrotating convection.
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FIG. 5. Vertical temperature correlation coefficient at time lag m = 0 (C) as defined in Eq. (2), vs RaE3/2. Error bars represent one standard
deviation among the six thermistor pairs for each case. Rightmost data are from nonrotating experiments, for which the x coordinate is arbitrary.
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scenario wherein heat is transferred entirely by space-filling,
perfectly vertical CTCs. A more detailed description of the
model is given below.

A. Model details

First, a one-dimensional model convection tank setup is
constructed with dimensions to match the experiment, as
shown in Fig. 6. The model consists of three layers (from bot-
tom to top): a bottom end wall, which has thickness and thermal
conductivity hbottom = 0.015 m and kbottom = 390 W/mK; a
fluid layer with “tank” height hfluid and kfluid = 0.6 W/mK; and
a top end wall with htop = 0.06 m and ktop = 167 W/mK. The
thermal boundary conditions are fixed in heat flux below the
bottom tank end wall, q = Q/A, where A is the area through
which the heat power Q is fluxed, and fixed in temperature
above the top end wall, T cool.

The basic idea of the model is to vary the efficiency of
heat transfer in the fluid layer with time and solve for the
temperature profile at each time step, ti . We assume the
convective heat transfer within the fluid is uniform in height,
z, to approximate the behavior of an ideal CTC. This allows
treatment of the fluid as a uniform material with effective
thermal conductivity keff = kfluidNu(t), where Nu is the Nusselt
number. We use a time varying Nu to simulate a location in
a three-dimensional fluid layer through which Taylor columns
pass as they wander horizontally around the container.

fluid

heat flux Q

T cool

T III

T II

T Ibottom endwall

top
endwall

FIG. 6. A schematic illustration of the one-dimensional CTC heat
transfer model. The three vertical layers, from bottom to top, are the
bottom end wall, fluid layer, and top end wall. The vertical locations
of the interfacial temperatures calculated in the model are denoted
T I, T II, and T III. The dotted and dashed lines illustrate instantaneous
vertical temperature profiles generated by the model. The temperature
gradient within the fluid layer varies with Nu(t).

Time series for Nu are synthesized using a modified random
walk. Initially, Nu(t = 0) = Nu0. For the remaining time steps
ti = t1, . . . ,tmax, we generate Nu(ti) = Nui as follows:

Nui = Nui−1 + C1
(
Ri

1 − 1/2
)

if Nui−1 = Nu0, (4)

Nui = Nui−1 + C1
(
Ri

1 − 1/2
)

−C2R
i
2 exp[−(Nu0 − Nui−1)/Nu0]

if Nui−1 > Nu0, (5)

Nui = Nui−1 + C1
(
Ri

1 − 1/2
)

+C2R
i
2 exp[(Nu0 − Nui−1)/Nu0]

if Nui−1 < Nu0, (6)

where C1 and C2 are constants and Ri
1 and Ri

2 are numbers
in the range 0 < R < 1 generated randomly at each time
step. The constant C1 determines the typical variability of Nu
between time steps (Nui − Nui−1). The third term in Eqs. (5)
and (6) prescribes an exponentially weighted preference for
Nu values to change in the direction of Nu0. The constants
C1 and C2 are positive and small, 0 < C < 1, and are chosen
such that the Nu time series is trendless about the desired
value (Nu0) and has statistical properties (e.g., variance and
temporal power spectrum) similar to the actual experimental
time series.

The temporal resolution of the model is set to match
that of the acquisition frequency of experimental thermal
measurements. We assume that the thermal diffusion time scale
through the solid container boundaries is small compared to the
typical time scale of fluctuations in convective heat transport.
This assumption of instantaneous thermal equilibration allows
us to solve for a thermally equilibrated temperature profile
T (z,ti) at each time step. Based on visual observation of
flow in nonrotating convection and estimates of convective
free fall, advective time scales are expected to be tens of
seconds to minutes in our experiments. The time scale for
thermal diffusion over distance d is τκ ∼ d2κ , where κ is
the material’s thermal diffusivity. Copper and aluminum have
κ = 1.1 × 10−4 and 6.4 × 10−5, respectively [29]. The time
scale for diffusion between the fluid layer and thermistors
is approximately 0.05 s, which is faster than both advective
time scales and acquisition frequency. The time scale for
diffusion across the entire top and bottom end walls is roughly
25 and 1.5 s, respectively. The diffusive time scale through
the upper end wall, therefore, is not significantly faster than
advective time scales. A more advanced model could include
the influence of finite thermal diffusivity, but, since we’ve
already drastically reduced the complexity of the true system
with this toy model, we anticipate that this additional effect will
not alter its fundamental result. Experimental and numerical
examinations of the effects of finite conductivity boundaries
are given in [30,31].

The heat flux and effective thermal conductivity are uniform
in space within each layer, so the temperature will vary
linearly in z within each layer, such that we need only solve
for the temperatures at the interfaces between layers. The
temperature above the top end wall is fixed at T cool. The
temperature between the top end wall and fluid is T III(ti).
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The temperature between the fluid and the bottom end wall
is T II(ti). The temperature at the bottom of the lower end
wall is T I(ti). The locations of these interfacial temperature
calculations, T I−III, are shown in the schematic of Fig. 6. The
aim of the model is to solve for these three temperatures at
each time step ti which depend on the predefined Nu(ti).

Initially, we take

T III(t = 0) = T cool + q htop

ktop
, (7)

T II(t = 0) = T III + q hfluid

Nu(t = 0) kfluid
, (8)

T I(t = 0) = T II + q hbottom

kbottom
. (9)

For the remainder of the time steps, t1, . . . ,tmax, the tempera-
tures are solved for as

T III(ti) = T cool + Nu(ti) q htop

〈Nu〉 ktop
, (10)

T II(ti) = T III + q hfluid

Nu(ti) kfluid
, (11)

T I(ti) = T II + q hbottom

kbottom
. (12)

Notice that the temperature above the fluid, T III(ti), is
dependent on fluctuations of Nu about its mean 〈Nu〉 ≈ Nu0.
This is due to the convecting fluid’s control of how much of
the base heating q reaches the top end wall, as the fluid acts as
a heat flux capacitor.

Once the temperature profile time series are generated,
it is possible to extract a synthetic thermistor time series
measurement. In the experiment, the thermistors are located
within the end walls, 2 mm from the fluid boundary. Synthetic
top and bottom thermistor data are then

T top(ti) = T III(ti) −
(

0.002 m

htop

)
[T III(ti) − T cool], (13)

T bottom(ti) = T II(ti) +
(

0.002 m

hbottom

)
[T II(ti) − T II(ti)]. (14)

Examples of these synthetic thermistor data are shown in Fig. 7
and can be compared directly to experimental data (Fig. 3).
Note that the top temperature shows much smaller variance
than both the bottom temperature as well as the top temperature
from actual experiments. This is likely due to the assumption
of instantaneous thermal equilibration, which will smooth
vertical variations and limit their amplitude. The absolute
amplitudes of variations, however, are not important for
normalized cross-correlation coefficients, which are calculated
for the synthetic data exactly as in actual experiments using
Eq. (2).

B. Model results

Figure 8 shows calculations of vertical correlations,
C

top−bottom
i , from six model iterations. The model param-

eters are set to hbottom = 0.015 m, kbottom = 390 W/mK,
hfluid = 0.197 m, kfluid = 0.6 W/mK, htop = 0.06 m, ktop =
167 W/mK, Q = 100 W, T cool = 10 C, tmax = 3000 s, Nu0 =
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 (
C

)

FIG. 7. An example of synthesized temperature time series data
produced by the one-dimensional CTC heat transfer model. The top
panel shows synthetic measurements in the top end wall [T top

1 (t)],
and the bottom panel shows data from the lower end wall [T bottom

1 (t)].
Model parameters are hfluid = 0.197 m, Q = 100 W, T cool = 10 C,
and Nu0 = 66. Compare with experimental data shown in Fig. 3.

66, C1 = 0.01, and C2 = 0.0004. These values are chosen in
order to simulate the experimental setting from which the data
in Figs. 3 and 4(a) are collected.

At zero time lag (m = 0), the correlation is perfect
(|C| = 1), owing to the assumption of perfectly uniform,
vertical heat transport at each time step. The sign of the
correlation, however, is negative, in agreement with the
thermal anticorrelations observed experimentally [Figs. 4(a)
and 4(b)].

The nature of the time series used for Nu(t) is unimportant
for producing anticorrelated temperature calculations at zero

-600 -400 -200 0 200 400 600
Correlation Lag m (seconds)

-1

-0.5

0

0.5

1

C
to

p-
bo

tto
m

FIG. 8. (Color online) Temperature correlations calculated from
synthetic thermistor data from the one-dimensional CTC heat transfer
model. Model parameters are hfluid = 0.197 m, Q = 100 W, T cool =
10 C, and Nu0 = 66. Six separate model results are shown, wherein
different Nu time series are used in order to approximate the six
different thermistor pairs used in actual experiments. Instantaneous
temperature values within the top and bottom end walls are strongly
anticorrelated.
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FIG. 9. (Color online) Temperature correlations from a geostrophic convection experiment plotted vs correlation lag for six types of
thermistor pairs: (a) autocorrelation of the thermistor signal with itself, (b) horizontal pairs of nearest neighbors, (c) horizontal pairs of
diametrically opposed thermistors, (d) vertically aligned and vertically separated thermistors (our original analysis), (e) minimally laterally
offset and vertically separated thermistors, and (f) maximally laterally separated and vertically separated (antipodal) pairs. The experimental
case shown has h = 4.7 cm, Q = 50 W, and � = 5.3 Hz, and therefore Rf = 2 × 108, E = 4.4 × 10−5, RaE3/2 ≈ 5. Panel (d) is identical to
Fig. 4(a).

lag. If Nu(t) varies as white noise, for example, we again
find a perfect anticorrelation at m = 0. But, since each value
in a white time series is independent of the previous value,
C(m 	= 0) = 0 over an ensemble average. In order to produce
correlation profiles with broader ranges of nonzero values, the

time series must have nonzero autocorrelation. The width of
the troughs observed in Figs. 4(a), 4(b), and 8 are therefore
linked to the spectral properties of the time series, which is in
turn linked to the convective flow. We leave a detailed analysis
of temporal spectra for future work.
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FIG. 10. (Color online) Vertically and/or horizontally separated temperature correlations from a weakly rotating convection experiment
plotted vs correlation lag. As in Fig. 9, the six types of thermistor pairs are (a) autocorrelation of the thermistor signal with itself, (b) horizontal
pairs of nearest neighbors, (c) horizontal pairs of diametrically opposed thermistors, (d) vertically aligned and vertically separated thermistors
(our original analysis), (e) minimally laterally offset and vertically separated thermistors, and (f) maximally laterally separated and vertically
separated (antipodal) pairs. The experimental case shown has h = 19.7 cm, Q = 100 W, and � = 0.43 Hz, and therefore Rf = 1 × 1011,
E = 3 × 10−5, RaE3/2 ≈ 280. Panel (d) is identical to Fig. 4(c).

V. DISCUSSION

Figures 1(c) and 4(b) both show results from rapidly
rotating, turbulent Rayleigh-Bénard convection with Rf =
1.1 × 1011 and E = 3 × 10−6. Figure 8 shows synthetic
data from an idealized model of heat transport by Taylor
columns with parameters set to simulate these experiments.
The qualitative agreement between experimental correlation
measurements and the synthetic model data supports the idea
that anticorrelated temperature measurements are indicative
of the presence of CTCs. That the model data have a much
stronger anticorrelation is due to the assumption of perfectly
uniform, perfectly vertical instantaneous heat transport at all
times. Possible causes for imperfect correlation (|C| < 1) in
experiments include lateral diffusion of heat in CTCs and
end walls, diffusive heat transport in the space between CTC
cores, and the fact that CTCs may not be perfectly vertical
and container high. Flow visualizations [Fig. 1(c)], however,
further verify the columnar nature of flow in experiments with
identical parameters to those that produce vertically anticorre-
lated temperature signals [Fig. 4(b)]. The general agreement
between these three figures indicates that convection within
this regime is manifest as tall, roughly vertical, thermally active
CTCs.

Reference [25] shows that the thermal boundary layer is
thinner than the Ekman boundary layer when RaE3/2 � 20
in rotating RBC simulations. This transition also corresponds
to a change in heat transfer behavior from quasigeostrophic

to weakly rotating. Here, we observe that some experiments
with 20 < RaE3/2 � 100 produce anticorrelated signals. From
this we infer that when the thermal boundary layer thickness
is smaller than but comparable to the Ekman boundary layer
thickness, CTCs can still exist. This contention is in agreement
with the idea that the intensification of heat transfer observed
near this transition is related to Ekman pumping in the presence
of a thermal boundary layer [32]. The scatter in experimental
C data precludes the identification of any clear transition
point between quasigeostrophic CTCs and weakly rotating
large-scale circulation. This difficulty remains regardless of the
abscissa parameter chosen in Fig. 5 [including, for example,
the convective Rossby number, Roc = (RaE2/Pr)1/2].

To summarize, we find two rotating convective regimes,
termed quasigeostrophic and weakly rotating. In quasi-
geostrophic convection, heat is transported by tall, thin, vertical
conduits known as convective Taylor columns. These flow
structures wander about horizontally, pumping warm fluid
from bottom to top or vice versa. Locally, this flow (nearly)
simultaneously cools the bottom boundary and warms the
top boundary due to their finite conductivity and therefore
produces anticorrelated vertical temperature signatures. In the
weakly rotating regime, large-scale circulations produce warm
and cool “piles” of material that generate positively correlated
vertical temperature signatures.

It remains unclear over what range of parameters CTCs
are stable. The width of a CTC should scale as E1/3 [33]. As
E decreases to the very low values predicted in planetary
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FIG. 11. Histograms of the time lags at which vertically separated thermistor pairs produce maximum anticorrelations for geostrophic
experiments (RaE3/2 < 10). Panel (a) shows data from thermistor pairs with no lateral separation. Panel (b) shows data from minimally
laterally offset pairs. Panel (c) shows antipodal (maximally offset) pairs.

settings, CTCs become increasing thin and may undergo
instabilities [34]. Furthermore, in low-Pr fluids such as liquid
metals, the thermal anomalies carried in CTCs may be more
effectively diffused, and so the columns may not extend across
the layer. As an example, the observation of two pairs of
geomagnetic flux patches that are nearly symmetric about
the equator evokes, as an explanation, the existence of CTCs
in Earth’s field-generating core [e.g., [35,36]]. Earth’s liquid
metal outer core has E ≈ 10−15 and Pr � 0.1, and it is not clear
that large-scale CTCs can exist in such an extreme setting. We
can answer these questions by looking for evidence of CTCs
in experiments with increasingly extreme parameters.
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APPENDIX

To serve as a control group for the conclusions drawn from
the correlation data shown in Fig. 4, we have calculated corre-
lations between thermistor pairs with both vertical and lateral
separation. We look at correlations with two types of lateral
separation: either azimuthal neighbors (minimally offset), with
7-cm lateral separation, or maximally separated diametrically
opposed pairs (antipodal), separated by 13 cm laterally. For
quasigeostrophic experiments, some of these pairs do still
produce negative correlations, but these are always weaker
than the correlations between purely vertical thermistors and
grow weaker with increasing lateral separation.

Figure 9 shows a comparison of correlation coefficients
for six types of thermistor pairs: (a) autocorrelation of the
thermistor signal with itself; (b) horizontal pairs of nearest
neighbors; (c) horizontal pairs of diametrically opposed

thermistors; (d) vertically aligned and vertically separated
thermistors (our original analysis); (e) minimally laterally
offset and vertically separated thermistors; and (f) maximally
laterally separated and vertically separated (antipodal) pairs.
The experimental case shown is the same as in Fig. 4(a), which
is in the geostrophic regime (RaE3/2 ≈ 5). These geostrophic
correlations become less coherent as lateral separation is
increased.

Figure 10 shows a comparison of correlation coefficients
for the six types of thermistor pairs, as shown in Fig. 9, but
now for the weakly rotating convection experiment data shown
in Fig. 4(c). The correlations are weak in general. We do notice
that the weak positive correlations seen in the purely vertically
separated pair are complemented by weakly anticorrelated
signals for the antipodal pairs. This fits with our interpretation
of these thermal signatures as being produced by large-scale
circulations, which should produce heat flux anomalies that
are anomalously high in the tank corners that are antipodally
opposed.

We can test the CTC interpretation of the temperature
correlations more systematically by determining the time lag at
which vertical correlations are maximally anticorrelated in the
geostrophic experiments. Heat transfer by wandering CTCs
should result in maximum anticorrelations at lag (k ≈ 0) for
the vertically aligned thermistor pairs, but should show no
strong bias in lag space for the horizontally separated pairs.
We calculate the lag at which the correlation coefficient is
minimal (within a 10-min lag range) for each pair for the 64
cases with RaE3/2 < 10. Figure 11 shows a histogram of the
results of this calculation. For the pairs with purely vertical
separation (a), there is a strong likelihood that geostrophic
convection will produce minimum correlation (maximum
anticorrelation) near k = 0. For pairs with lateral separation
(b and c), this strong preference disappears. This supports
our argument that the anticorrelations observed in vertical
pairs for geostrophic convection are due to wandering Taylor
columns.
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