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Effect of fluid inertia on probe-tack adhesion
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One way of determining the adhesive strength of liquids is provided by a probe-tack test, which involves
measuring the force required to pull apart two parallel flat plates separated by a thin fluid film. The large
majority of existing theoretical and experimental work on probe-tack adhesion use very viscous fluids and
considers relatively low lifting plate velocities, so that effects due to fluid inertia can be neglected. However,
the employment of low-viscosity fluids and the increase in operating speeds of modern lifting apparatus can
modify this scenario. By dealing with a proper gap averaging of the Navier-Stokes equation, we obtain a
modified Darcy-law-like description of the problem and derive an adhesion force which incorporates the effects
of fluid inertia, fluid viscosity (for Newtonian and power law fluids), and the contribution of the compliance
and inertia of the probe-tack apparatus. Our results indicate that fluid inertia may have a significant influence
on the adhesion force profiles, inducing a considerable increase in the force peaks and producing oscillations
in the force-displacement curves as the plate-plate separation is increased. The combined role of inertial and
non-Newtonian fluid behaviors on the adhesion force response is also investigated.
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I. INTRODUCTION

During the past ten years or so, there has been continuously
growing interest in the study of the adhesion properties
of confined fluids [1–14]. A great variety of fluids have
been used in these theoretical and experimental investigations
ranging from simple Newtonian liquids, or more complicated
non-Newtonian fluids (shear thinning, shear thickening, yield
stress, etc.), through complex magnetic liquid suspensions
(ferrofluids and magnetorheological fluids). One aspect in
common in all these different studies is the necessity of
evaluating and characterizing the bond strength of spatially
constrained, liquid thin films. This is provided by the so-called
probe-tack test [15,16].

In the plate-plate version of the probe-tack test, a fluid
sample is placed between two parallel plane plates, and then the
upper plate is lifted vertically at a known rate while the applied
lifting force is recorded. The result of such measurement is a
force-distance curve that quantifies the adhesive strength of the
liquid sample as a function of the upper plate displacement. A
typical force-distance curve usually starts with a sharp increase
of the force once the probe is pulled apart. The force quickly
reaches to its maximum and then drops asymptotically to zero
as the plate-plate separation is increased. It has been shown
[1–6] that the formation of a sharp peak is due to the
compliance (natural elasticity) of the lifting apparatus.

In the context of probe-tack tests, the role of fluid inertia
can be quantified by a Reynolds number (relative measure
of inertial and viscous forces) which is directly proportional
to the plate-plate separation and lifting plate velocity, and
inversely proportional to the viscosity of the confined fluid
sample. However, most experimental and theoretical studies
in probe-tack adhesion [1–14] deal with very small separation
gaps, relatively low lifting velocities, and highly viscous fluids.
Under such circumstances, the vanishing Reynolds number
limit is readily validated, and the effects of fluid inertia
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can be safely neglected. In this case, a standard lubrication
approximation can be used, so that the fluid motion is perfectly
described by Darcy’s law, which connects the fluid velocity to
the pressure gradient.

Although the assumption of negligible fluid inertia effects is
entirely justified for the vast majority of studies in probe-tack
adhesion, in certain situations it could be otherwise. The in-
crease in operating speeds of modern lifting machines (varying
from 1 to 40 mm/s) [4,6,17] and the possible use of fluids
of low viscosity (for instance, water, mercury, or even some
types of silicone oils [18]) could lead to a scenario in which
fluid inertia can play a relevant role. Curiously, this state of
affairs is quite similar to what recently happened in the area of
viscous fingering pattern formation in Hele-Shaw cells [19,20].
Traditionally, inertial effects are not relevant to the Hele-Shaw
flow problem. However, experimental [18] and theoretical
[21–23] studies have demonstrated that if one utilizes fluids
of low viscosity, larger Hele-Shaw plate spacings, and larger
flow speeds, inertial effects play a key role in determining
the dynamics and shape of the emerging fingering patterns.
In this framework, the governing hydrodynamic equation is a
modified, effectively two-dimensional (2D) Darcy’s law based
on a gap-averaging process of the three-dimensional (3D)
Navier-Stokes equation, which includes the contribution of
inertial terms [24–26].

Therefore, it would be of interest to evaluate the effect
of fluid inertia on probe-tack tests and try to understand its
influence on the force versus distance profiles. Even though the
action of fluid inertia has been a vastly neglected topic in probe-
tack adhesion, it has been analyzed by some investigators in
the context of squeezing flows [27,28], involving Newtonian
[29,30] and non-Newtonian [31] fluids. These theoretical
studies [29–31] deal with a full Navier-Stokes equation and try,
from first principles, to find an appropriate velocity profile for
the flow problem. However, this constituted a quite challenging
task due to the mathematical complexity of the hydrodynamic
equations. For this reason, they had to approach the problem
through perturbative methods or numerical computations. In
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spite of the relative intricacy of their models, they all concluded
that fluid inertia can make a significant contribution to the
squeezing force. In fact, a subsequent experimental work [32]
has supported these theoretical findings by providing evidence
that fluid inertia increases the force associated with both
squeeze and pull-off flow processes.

Despite the significance and usefulness of the studies per-
formed in Refs. [29–31], an alternative and simpler theoretical
investigation of the influence of fluid inertia on probe-tack
adhesion tests is still lacking. This is the problem we tackle
in this work. We examine a model situation in which the
confined fluid is either Newtonian or exhibits the simplest
non-Newtonian rheology: a power law viscosity [27,33].
Within the approach originally proposed in Ref. [24], we
consider a small Reynolds number, so that the velocity profile
is solely determined by viscous effects and not altered by
inertia. Additionally, we use a generalized velocity profile
for non-Newtonian viscous effects related to a power law
fluid, as proposed in Ref. [9]. These assumptions greatly
simplify the solution of the probe-tack adhesion problem,
leading to a gap-averaged nonlinear Darcy-like description.
This allows the determination of the adhesion force, including
fluid inertia and non-Newtonian contributions via analytic
means. So, the relevance of these important physical factors
on the force-distance profiles can be elucidated.

The layout of the rest of the paper is as follows: Sec. II
presents our theoretical approach and derives the adhesion
force between two flat parallel plates, taking into consideration
the combined action of fluid inertia and non-Newtonian
contributions. The introduction of the inertia and compliance
of the probe-tack apparatus is also considered. A discussion
about the role of fluid inertia in determining the force-distance
profiles and the magnitude of the force peaks is presented in
Sec. III. The Newtonian fluid limit is treated in Sec. III A, while
the non-Newtonian (power law) case is discussed in Sec. III B.
Our main results and conclusions are summarized in Sec. IV.

II. CALCULATION OF THE ADHESION FORCE
INCLUDING FLUID INERTIA

A. Physical problem and constitutive equations

Figure 1 sketches the geometry of the probe-tack system.
We consider a power law, incompressible fluid of viscosity η

and density ρ located between two narrowly spaced parallel,
flat plates. As in Refs. [1,3,5,8] we consider that the apparatus
has a spring constant denoted by k. One end of the lifting
apparatus moves at a specified constant velocity V , subjecting
the upper plate to a pulling force F . The lower plate is
held fixed at z = 0, where the z axis points in the direction
perpendicular to the plates. The initial plate-plate distance is
represented by b0 and the initial fluid radius by R0. At a given
time t the plate spacing is b = b(t), while the deformation due
to the stretching of the apparatus is L − b, where L = b0 + V t .
Note that due to the compliance of the measurement apparatus,
the actual plate spacing b is not necessarily equivalent to L.
Of course, in the case of a completely rigid apparatus we have
b = L and ḃ = V , where ḃ = db/dt .

Our main goal is to calculate the pulling force F as a
function of displacement L, taking into account the effect

F V

0b

L(t)
k

ρη

R
R0

b

z

FIG. 1. Schematic representation of the probe-tack apparatus,
where a fluid of viscosity η and density ρ is confined between parallel
flat plates. While the lower plate remains at rest, the upper plate is
lifted with constant velocity V through the application of a force F .
The fluid’s volume is kept constant during the lifting process so that
R2b = R2

0b0. The apparatus has elastic constant k and L = b0 + V t .

of fluid inertia. First, we calculate F analytically for the
rigid case in order to maintain a given b(t), and subsequently
we address the situation in which compliance is taken into
consideration by performing a numerical calculation. We
follow Refs. [3] and [10] and derive F assuming that the fluid
interface remains circular during the entire lifting process,
with time-dependent radius defined as R = R(t). Under such
circumstances, conservation of fluid volume leads to the useful
relation

R2b = R2
0b0. (1)

We start off by writing the governing equations of the
problem in cylindrical polar coordinates (r,θ,z), namely the
Navier-Stokes equation

ρ

(
∂vr

∂t
+ vr

∂vr

∂r
+ vz

∂vr

∂z

)
= −∂p

∂r
+ ∂

∂z

(
η
∂vr

∂z

)
(2)

and the continuity equation for incompressible fluids

1

r

∂(rvr )

∂r
+ ∂vz

∂z
= 0, (3)

where vr = vr (r,z) and vz = vz(r,z) are the 3D velocity
components in the radial and axial directions, respectively.
Note that in the axisymmetric flow considered here only the
radial and axial components of the velocity are nonvanishing,
so that the azimuthal component of the velocity vθ is null. Here
p denotes the hydrodynamic pressure. The left-hand side of
Eq. (2) contains the inertial terms, while the right-hand side
incorporates contributions from pressure and viscous stresses.
As in Refs. [9,24], we focus on a high-aspect-ratio situation
(thin gap compared to any in-plane dimension, or R/b � 1),
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so that the dominant shear is given by ∂vr/∂z. For such a
confined flow, gravity effects can be safely neglected [1–6].

We consider a power law fluid of viscosity

η(a) = η0

∣∣∣∣∂vr

∂z

∣∣∣∣
a

, (4)

where the exponent a expresses the non-Newtonian nature of
the fluid under tension: a = 0 corresponds to the Newtonian
fluid limit, while a < 0 (a > 0) describes the shear-thinning
(shear-thickening) situation. Of course, when a = 0, η(0) is
the Newtonian viscosity.

Existing rheological experiments [33] using solutions of
xanthane (a stiff rod-like polymer) are able to determine both
the power law index a and the consistency parameter η0

for different polymer concentrations. As shown in Ref. [33],
these laboratory measurements are satisfactorily described
by the expression (4), where the viscosity shows a power
law dependence on the shear rate. Moreover, experiments
performed by Leider [34] using various polymeric fluids
[including silicone and polyisobutylene (PIB) fluids] found
that the power law model was indeed very appropriate to
describe the rheological behavior of such materials.

B. Velocity approach

Finding a closed-form solution of a partial differential
equation like the one shown in Eq. (2) is definitely not an
easy task. Instead of trying to solve Eq. (2) by using standard
perturbation techniques or brute force numerical schemes
[29–31], here we employ an alternative approach. We closely
follow the procedure originally proposed in Refs. [9,24], which
consider a trial velocity solution

vr (r,z) = f (r)g(z), (5)

where

g(z) =
∣∣∣∣z − b

2

∣∣∣∣
α

−
(

b

2

)α

, (6)

with α = (a + 2)/(a + 1). The central idea behind this ansatz
is the consideration that velocity profile given by Eq. (6)
(see also Eq. (5) in Ref. [9]) holds provided a low-Reynolds-
number and high-aspect-ratio situation under moderate shear is
assumed. These are precisely the circumstances which pertain
to our problem. Notice that the standard parabolic velocity
profile is immediately recovered from Eq. (6) in the Newtonian
limit.

As in Refs. [9,24], we proceed by adopting a Darcy-law-like
approach and focus on the gap-averaged value of the radial
velocity

ur = ur (r) = 1

b

∫ b

0
vr (r,z)dz. (7)

By substituting Eqs. (5) and (6) into (7), we obtain that

f (r) = −2α(1 + α)

bαα
ur (r). (8)

Note that the explicit r dependence of f (r) can be obtained
by taking the time derivative of the volume conservation
expression (1), leading to

ur (r) = Ṙ = − ḃ

2b
r, (9)

which relates the upper plate and the interface velocities.

C. Darcy-like equation and the adhesion force

With g(z) expressed by Eq. (6) and f (r) given by Eq. (8), we
are ready to obtain a Darcy-law-like equation for the problem.
Following the standard approach used in Hele-Shaw problems
[20] and fluid adhesion problems in confined plate-plate
geometry [1–14], we take the gap average of Eq. (2) and use
Eq. (8) to express the resulting equation in terms of ur . As a
result of such gap-averaging process, a nonlinear generalized
Darcy-like equation is obtained:

ρ

[
∂ur

∂t
+ ḃ

b
ur + (4a + 6)

(3a + 5)

(
2ur

∂ur

∂r
+ u2

r

r

)]

= −∂p

∂r
+ 2η0

ba+2

(
4a + 6

a + 1

)a+1

|ur |a+1. (10)

Details about the derivation of Eq. (10) are presented in
the appendix. Notice that the usual Darcy’s law [19,20] for
Newtonian fluids (a = 0) is recovered when inertial terms on
the left-hand side of (10) are entirely disregarded.

By substituting Eq. (9) into Eq. (10) and integrating, the
pressure field can be written as

p(r) = p0 + ρ

[
b̈

4b
− 3

8

(4a + 6)

(3a + 5)

ḃ2

b2

]
(r2 − R2)

+ 2η0

(a + 2)

ḃa+1

b2a+3

(
2a + 3

a + 1

)a+1

(ra+2 − Ra+2), (11)

where p0 is the atmospheric pressure in the region outside
the fluid droplet. As is common in this type of adhesion
phenomenon, surface tension effects can be neglected [1–6].

The force exerted by the lifting machine on the upper plate
is calculated by integrating the pressure [Eq. (11)] over the
area occupied by the fluid F = ∫ R

0 [p0 − p(r)]2πrdr , leading
to

F = ρπR4
0b

2
0

8

[
b̈

b3
− (6a + 9)

(3a + 5)

ḃ2

b4

]

+ 2πη0R
a+4
0 b

a
2 +2
0

a + 4

(
2a + 3

a + 1

)a+1
ḃa+1

b
5a
2 +5

. (12)

Similar to what is done in Refs. [1,3,7,8], a convenient
dimensionless expression for Eq. (12) can be obtained by
rescaling lengths by δ = [3πη(0)R4

0b
2
0V/2k]1/6 and velocities

by V , resulting in

F = Re

[
b̈

b3
− (6a + 9)

(3a + 5)

ḃ2

b4

]
+ N (a)

ḃa+1

b
5a
2 +5

, (13)
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where fluid inertia effects are accounted for by a Reynolds
number

Re = ρV δ

12η(0)
, (14)

and

N (a) = 4

3(a + 4)

(
2a + 3

a + 1

)a+1 (
V R0

√
b0

δ5/2

)a

(15)

represents a non-Newtonian parameter. From now on we work
with the dimensionless version of the problem. It is worth
mentioning that if we deal with constant lifting velocity, we
have b = L and hence ḃ = 1. Equation (13) shows ḃ and b̈

explicitly in anticipation of our analysis of the compliant appa-
ratus situation. Note that when Re = 0 and a = 0 [N (0) = 1]
Eq. (13) reduces to the inertialess, Newtonian situation [3].
On the other hand, when Re = 0, a �= 0, and with dimensions
properly reintroduced, the inertialess case for power law fluids
is recovered [27].

As commented at the beginning of this work, typical force-
distance curves increase sharply during the initial stages of
the plate-separation process. This effect is not described by
the hydrodynamic forces within the fluid but is a result of the
elasticity of the apparatus [1,3,4]. We conclude this section
by discussing a way to access the complete form of the force-
distance curves, including the inertial and viscous properties
of the fluid, plus the intrinsic flexibility, as well as the inertia
of the lifting machine. To accomplish this, we adapt a method
originally developed by Francis and Horn [1] for their sphere-
plate geometry with Newtonian liquids for inertialess fluid and
apparatus.

It is assumed that, during the entire separation process, there
is an interplay among fluid inertia, viscous, and the spring-
restoring (dimensionless) force L − b which results from the
deflection of the apparatus. The influence of the apparatus
inertia can be evaluated by incorporating an acceleration
term into this dynamic scenario. Taking all this into account

and utilizing Eq. (13), we obtain a nonlinear second-order
differential equation for b = b(t)

(L − b) −
{

Re

[
b̈

b3
− (6a + 9)

(3a + 5)

ḃ2

b4

]
+ N (a)

ḃa+1

b
5a
2 +5

}
= Mb̈,

(16)

where M = mV 2/kδ2 is the dimensionless mass of the
apparatus. We solve Eq. (16) numerically for b(t), use the
dimensionless relation L = b0 + t to write b as a function
of L, and subsequently obtain the pulling force F = L − b.
We utilize differential equation (16) to obtain the complete
force-distance profiles.

In order to strengthen the practical and academic relevance
of our theoretical study, we ensure that the values of all
relevant dimensionless quantities we utilize are consistent with
realistic physical parameters related to existing probe-tack test
instruments [1–6] and material properties of the fluids [3,9,18].
We understand this could make our work of broader interest
and eventually help experimentalists test the predictions of our
theoretical model.

III. EFFECT OF FLUID INERTIA

A. Newtonian case

We begin our discussion by examining the effect of fluid
inertia on force-displacement (F vs L) curves of Newtonian
fluids (a = 0,N = 1). Figure 2 plots F vs L considering the
combined influence of fluid inertia (controlled by Re) and the
inertial contribution from the apparatus itself (M) for b0 = 1.7.
In both Figs. 2(a) and 2(b), the dashed curves represent the
situation in which inertial effects are completely neglected
(Re = 0 and M = 0). On the other hand, the black solid curves
indicate the sole influence of the fluid inertia (Re = 0.02 and
M = 0), while the gray solid curves depict the circumstances
in which fluid and apparatus inertia act simultaneously
(Re = 0.02 and M �= 0).

By inspecting Fig. 2, it is evident that fluid inertia signifi-
cantly increases the force peak (difference between black solid
and dashed curves). Physically, this is justified by the resistance

2 2.5 3 3.5
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0.02

0.04

0.06

0.08

F

(a)

Re 0.02 M 0

Re 0.02 M 3 10 4

Re 0 M 0

Re 0.02 M 0

Re 0.02 M 3 10 4

Re 0 M 0

2 2.5 3 3.5
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0.08

F

(b)

Re 0.02 M 0

Re 0.02 M 10 3

Re 0 M 0

Re 0.02 M 0

Re 0.02 M 10 3

Re 0 M 0

FIG. 2. Adhesion force F as a function of displacement L considering the role of fluid inertia (Re) and the inertia of the apparatus (M) in
the Newtonian limit a = 0. In (a), the value of M is taken from typical parameters used in real probe-tack experiments [1–6,14]. In (b), the
value of M has been exaggerated in order to highlight the influence of the inertia of the instrument. It can be seen that fluid inertia leads to a
significant increase of the adhesion force peak, followed by oscillations which become less intense for larger L. Conversely, oscillations tend
to persist if apparatus inertia is overestimated. Here the initial plate separation b0 = 1.7.
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FIG. 3. (a) Maximum value of the adhesion force Fmax as a function of the Reynolds number Re. (b) Relative growth 	Fmax [as defined by
Eq. (17)] plotted with respect to changes in Re. Three different values of b0 are considered: 1.6, 1.7, and 1.8.

against motion due to the fluid inertia term proportional
to the acceleration on the left-hand side of Eq. (16). It
is also noticeable that fluid inertia induces oscillations in
the force curves, which tend to die out rapidly as L is
increased.

Moreover, it is interesting to contrast the different roles
played by fluid inertia and apparatus inertia. In Fig. 2(a), the
gray curve is plotted by taking a value of M which considers
typical experimental parameters for usual probe-tack tests
(apparatus of a few hundred grams) [1–6,14]. It is readily
observed that the effect of the apparatus inertia is negligible
if compared with the impact of fluid inertia. To access more
visible effects from the apparatus inertia, we exaggerate the
value of M in Fig. 2(b). In this case, we notice a small
increase in the force peak, accompanied by the development
of more intense oscillations, which still remain sizable at the
curve’s tail. This behavior can be understood from Eq. (16) by
identifying the total acceleration term as [M + Re/b3]b̈, which
is mainly responsible for the curve oscillations. So, while
the fluid inertia term decays with increasing plate separation
(∼1/b3), the apparatus inertia term is independent of b. This
justifies why the oscillations due to the apparatus inertia tend to
survive for a longer time when M is considerably augmented.
Notice that for the noncompliant case (rigid apparatus), the
force-distance curves of Fig. 2 would not display peaks and
curve oscillations.

It is worth noting that the negligible role of the apparatus
inertia has already been pointed out in Ref. [2]. However, the
influence of fluid inertia on the shape of the F vs L curves and
the relative importance of fluid and apparatus inertia have not
been examined. From this point on, the effects of the apparatus
inertia will be neglected.

We proceed by examining how the maximum of the
adhesion force Fmax varies with the Reynolds number Re for
different values of the initial plate separation b0 [Fig. 3(a)].
Fmax is increased for increasingly larger values of Re. Despite
of the fact that smaller values of b0 lead to larger magnitudes
of Fmax, the rate of change of Fmax with respect to Re is
practically the same, regardless the value of b0. At first glance
this may sound a bit counterintuitive, since one could expect
stronger inertial effects for larger initial place separations. To

investigate this point a bit further, we evaluate how the relative
growth of Fmax

	Fmax = Fmax(Re) − Fmax(Re = 0)

Fmax(Re = 0)
(17)

changes with the Reynolds number. This is done in Fig. 3(b) for
the same values of b0 utilized in Fig. 3(a). It is now clear that
larger b0 values result in stronger growth of 	Fmax with Re.
For instance, for b0 = 1.8 the force peak grows almost 100%
in the interval 0 � Re � 0.03. This is a clear indicator of the
significant impact of fluid inertia on the adhesive strength of
confined liquids for this range of Re.

B. Non-Newtonian case

In this section, we turn to the influence of fluid inertia on the
adhesion force when the non-Newtonian nature of the liquid
is taken into account. Figure 4 plots the force-displacement
curves for b0 = 1.6 and three values of the power law exponent
a: 0.03 (dark gray curve), 0 (dashed curve), and −0.03
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0.04

0.06

0.08

0.1

F

a 0.03

a 0

a 0.03

a 0.03

a 0

a 0.03

FIG. 4. Adhesion force F as a function of displacement L

for three different values of the power law exponent a and the
non-Newtonian parameter N (a): 0.03 and N (0.03) = 1.31 (shear-
thickening case), 0 and N (0) = 1 (Newtonian limit), and −0.03
and N (−0.03) = 0.76 (shear-thinning case). Here Re = 0.02 and
b0 = 1.6.
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FIG. 5. (a) Maximum value of the adhesion force Fmax as a
function of the Reynolds number Re, for five different values of
the power law exponent a.

(light gray curve). For a shear-thinning fluid (a = −0.03),
we observe a decrease in the magnitude of the force peak with
respect to the Newtonian situation. This indicates a reduced
adhesion behavior for shear-thinning fluids. However, we also
notice that curve oscillations become more intense. On the
other hand, for a shear-thickening fluid (a = 0.03) we verify
the opposite behavior, so that the force peak is increased
if contrasted with the Newtonian peak position, but curve
oscillations are attenuated.

These behaviors are a result of an interplay between inertial
and viscous contributions: When a = −0.03, the effective
viscosity decreases during the lifting process, leading to a
lower viscous resistance and causing a lower peak position.
In addition, after the peak is formed, stronger inertial effects
become prevalent, inducing more intense oscillations. The
same type of explanation is valid for the a = −0.03 case,
where larger effective viscosity produces a higher force peak
and damps curve oscillations.

We close this section by examining Fig. 5, which depicts
the maximum value of the adhesion force Fmax as a function
of the Reynolds number Re for five different values of a,
and b0 = 1.6. The dashed curve (Newtonian case) in Fig. 5 is
precisely the dark gray curve plotted in Fig. 3, but now we fix
b0 and focus on the influence of a on the behavior of Fmax as
the fluid inertia is modified. We can verify that larger negative
values of a (lighter gray curves) induce a more significant
change of Fmax as fluid inertia is increased. Consequently, the
different curves tend to converge when Re gets larger. In other
words, a more intense inertial contribution tends to inhibit the
capability of the non-Newtonian effects to alter the adhesive
strength of the fluid.

IV. SUMMARY AND CONCLUSION

A typical procedure to characterize the adhesive strength
of a fluid is performed by a tensile test (i.e., a probe-tack test),
which measures the force required to pull apart two surfaces
bonded by a thin liquid film. In most probe-tack adhesion
studies to date, both separation gaps and lifting velocities
are small, and the fluids used are highly viscous. Under such
circumstances, inertial effects are indeed negligible. However,

the action of fluid inertia can become significant if larger
plate spacing, low viscosity fluids, and higher pulling-off
velocities are used. Despite the feasibility of a regime in which
fluid inertia is important to adhesion force measurements and
calculations, this research topic has been relatively ignored.

In this work, we studied the influence of fluid inertia on
the adhesive performance of Newtonian and power law fluids
under tension. Our theoretical analysis is performed through
a gap-averaged Darcy-law-like version of the hydrodynamic
problem, in a low-Reynolds-number limit. For a rigid probe-
tack apparatus, the adhesion force is derived analytically by
taking into account fluid inertia and viscosity effects. The
influence of the compliance of the measurement apparatus
as well as its own inertia is considered and analyzed by a
numerical solution of a nonlinear differential equation for the
force profile.

If the confined fluid is Newtonian, our results indicate that
fluid inertia makes a significant contribution to the adhesion
force. It alters the force profile at early stages of plate
separation by considerably increasing the magnitude of the
force peak. In addition, after the maximum force is reached,
fluid inertia induces relatively mild oscillations that tend to
attenuate at the tail of the force-distance curves. We have
also shown that under usual circumstances, the inertia of the
apparatus just adds a very small correction to the probe-tack
measurements, being negligible if compared to the strength of
the fluid inertia contribution.

Similar kind of findings (considerable increase in the force
peak followed by curve oscillations) are verified in the case of
non-Newtonian, power law fluids. Here a competition between
fluid inertia and non-Newtonian viscous properties determines
the force versus gap profile. If shear rates cause the power law
liquid to shear thin to a viscosity below that for the Newtonian
liquid limit (i.e., a = 0), a lower maximum force results and
stronger oscillations arise at the curve’s tail. The opposite
behavior is observed for shear-thickening fluids, where the
maximum force is larger than that for the Newtonian liquids,
and curve oscillations are considerably damped. Artificially
enlarged apparatus inertia effects would not vary much the
force peak but would lead to more intense oscillations at
the curve’s tail. So, contrary to the typical action of fluid
inertia, larger inertia of the instrument would induce persistent
oscillations even at the tail of the force-displacement curves.

More insight about probe-tack adhesion in the regime where
fluid inertia is relevant should be gained from experiments
and further analytical or numerical descriptions of the flow
characteristics. Maybe one could consider more complicated
situations in which cavitation, different surface types, slip,
elastic effects, pinning of the contact line, etc., might play
some role. Consideration of more complex non-Newtonian
behaviors such as the ones presented by yield-stress fluids and
shear-thinning fluids with Newtonian plateau would also be
of interest. We hope our work will motivate investigators to
examine these suggestive adhesion research topics.
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APPENDIX: DARCY-LIKE LAW

This appendix presents details of the derivation of Eq. (10).
We begin by presenting the gap average calculation of each
term in Eq. (2), using the velocity solution vr (r,z) = f (r)g(z)
[Eq. (5)]. The gap average of the first two terms on the left-hand
side of Eq. (2) are

1

b

∫ b

0

∂vr

∂t
dz = 1

b

∂f (r)

∂t

∫ b

0
g(z)dz, (A1)

1

b

∫ b

0
vr

∂vr

∂r
dz = 1

b
f (r)

∂f (r)

∂r

∫ b

0
[g(z)]2dz. (A2)

The third term on the left-hand side of Eq. (2) can be written
as

1

b

∫ b

0
vz

∂vr

∂z
dz =

(
1

b

)
(vrvz)

∣∣∣∣
z=b

z=0

− 1

b

∫ b

0
vr

∂vz

∂z
dz.

Note that the piece involving vrvz is zero, since vr (r,0) =
vr (r,b) = 0. Moreover, by using the incompressibility

condition (3), the remaining term can be rewritten as

1

b

∫ b

0

vr

r

∂(rvr )

∂r
dz = 1

b

f (r)

r

∂[rf (r)]

∂r

∫ b

0
[g(z)]2dz. (A3)

For the confined geometry of the probe-tack problem,
the pressure is considered to be nearly constant in the gap
direction, so that the gap average of the first term on the
right-hand side of (2) is trivial. On the other hand, the gap
average of the second term on the right-hand side of Eq. (2) is

1

b

∫ b

0

∂

∂z

(
η
∂vr

∂z

)
dz = 1

b
η
∂vr

∂z

∣∣∣∣
z=b

z=0

= 2

b
η0[f (r)]a+1

[
∂g(z)

∂z

]a+1 ∣∣∣∣
z=b

, (A4)

where we have utilized the power law fluid viscosity expression
(4). At this point, notice that Eqs. (A1)–(A4) are conveniently
written in terms of the functions g(z) and f (r). The rest of
the derivation consists of substituting Eqs. (6) and (8) into
Eqs. (A1)–(A4), and explicitly evaluating simple derivatives
and integrals. This procedure yields the Darcy-like law
equation (10) of the text.
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