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Two-fluid confined flow in a cylinder driven by a rotating end wall
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The flow of two immiscible fluids completely filling an enclosed cylinder and driven by the rotation of the
bottom end wall is studied numerically. The simulations are in parameter regimes where there is significant
advection of angular momentum, i.e., the disk rotation rate is fast compared to the viscous diffusion time. We
consider two classes of scenarios. The first consists of cases that are straightforward to reproduce in physical
experiments where only the rotation rate and the viscosity ratio of the fluids are varied. Then we isolate different
forces acting on the system such as inertia, surface tension, and gravity by studying variations in individual
governing parameters. The viscosity ratio determines how quickly the upper fluid equilibriates dynamically to
the flow in the lower fluid and plays a major role in determining how vortex lines are bent in the neighborhood of
the interface between the two fluids. This in turn determines the structure of the interfacial layer between the two
swirling fluids, which is responsible for the flow in the upper fluid. The simulations show that even when there is
significant interfacial deformation, both the dynamics and the equilibrium flow are dominated by vortex bending
rather than vortex stretching. The simulations show that for the range of immiscible fluids considered, surface
tension effects are significant. Increased surface tension reduces the degree to which the interface is deformed

and the limit of zero surface tension is not an appropriate approximation.
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I. INTRODUCTION

There has been much interest in the flow in a cylinder
driven by the rotation of the bottom when the top is a free
surface [1-20]. Experimentally, the free surface is the interface
between a liquid (typically water) and air. Some experiments
[2,4,6,7,15] were conducted in regimes where the free surface
remains essentially flat; however, other experiments [1,11,12,
14,18,19,21] have explored regimes where the deformation is
of the order of the depth of the fluid layer. In modeling this
problem, the flow on the air side of the interface has typically
been ignored and for the most part the interface has been
treated as flat and stress-free.

Very recent numerical simulations have allowed for small
interface deformations [17], but they continued to assume the
interface to be stress-free and ignored surface tension effects.
In contrast, some experimental studies have considered the
stress on the interface due to the presence of surface-active
agents, which not only alter the surface tension but also impart
surface viscosity to the interface [22-29]. In these swirling
flows, the surface shear viscosity directly determines the angle
at which vortex lines meet the interface. At a flat interface,
the vortex lines are normal to the interface in the limit of zero
surface shear viscosity and become tangential to the interface
in the limit of very large surface shear viscosity, affecting
the extent to which the interfacial flow rotates. The bending
of the vortex lines very near the interface in order to
accommodate the constraints imposed by the surface shear
viscosity results in a thin and intense interfacial boundary
layer whose azimuthal vorticity is comparable to that found if
the interface were a stationary rigid lid [30].

Gas and liquid (in particular air and water) flows in
the turbulent regime have also attracted much interest from
geophysical applications [31] and industrial applications [32].
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However, both theoretical modeling and numerical simulations
have so far been restricted to the idealized situation where the
interface is treated as being flat.

The characteristics of the interface between two immiscible
(or weakly miscible) fluids have also attracted much attention,
even when the density and viscosity differences are not as
great as between air and water in the studies mentioned
above. Such flows have been used extensively in laboratory
experiments in order to model processes of the atmosphere and
oceans [33-38]. Much of the theory for two-layer immiscible
flows has focused on linear spin up or spin down, i.e., the
transition from a state of solid-body rotation to another state
of solid-body rotation when the change in rotation rate is
very small compared to the mean rotation. The role of the
boundary layers that form either side of the interface is a
main concern for these studies [39—43]. More recently, these
two-layer problems have been simulated numerically, relaxing
some of the approximations made to allow for analytical
progress [44], but still considering only spin up and spin down
(albeit nonlinear) and neglecting surface tension effects.

Experimental observations in the strongly nonlinear regime
have reported drastic changes in the topology of the interface
as the shear increases [45]. The interfacial flow is strongly
influenced by centrifugal acceleration and the interfacial flow
alters the ambient flows. This two-way interaction appears
stronger for small density differences and large viscosity
differences between the two fluids [46]. What is still lacking
is a nonlinear numerical investigation of two immiscible fluids
with strong sustained shear across the interface.

In this paper we present such a numerical investigation
allowing for large interface deformations and surface tension
forces at the interface between the two fluids that are fully
two-way coupled. We study the case where the bottom end
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wall is impulsively accelerated from rest to a constant rotation
rate, accelerating the initially at rest fluids until they reach a
steady state.

After presenting the governing equations and numerical
methods in Sec. II, we discuss the effects of increasing the disk
rotation rate (Sec. III A), analyze the impact of changing the
viscosity ratio between the two fluids (Sec. I1I B), and explore
the effects of inertia (Sec. III C), surface tension (Sec. III D),
and gravity (Sec. IITE).

II. GOVERNING EQUATIONS

Consider a cylinder of radius R and height H filled with
two immiscible fluids with an initial interface height of &
when everything is at rest. At ¢+ =0, the bottom end wall
is impulsively set to rotate with angular frequency 2. The
gravitational acceleration g is aligned with the axis of the
cylinder. The density and viscosity of the bottom fluid are
denoted by p, and u;, respectively. Quantities with a b or ¢
subscript denote the bottom or top fluid, respectively. The two
fluids are characterized by their viscosity ratio @, = i,/ p,
density ratio p, = p;/pp, and the interfacial tension between
the fluids o. Using R as the length scale and 1/ <2 as the time
scale, the Navier-Stokes equations governing the motion of
this unsteady, incompressible, two-fluid system are

8u+ v
— 4u-Vu
p ot

1 1 1
=—-VP+—V . [w(Vu+ VT — kSh— —2
+ Re [w(Vu+ Viw] + wekon FrZ(,l)
V-u=0,

where u = (u,v,w) is the velocity in cylindrical polar coor-
dinates (r,60,z), P is the pressure divided by the bottom fluid
density pp, k is the interface curvature, § is the interface delta
function (nonzero only at the location of the interface), fi is the
interface normal, and Z is the unit vector in the axial direction.
The relative density p = 1 in the bottom fluid and p = p,
in the top fluid and the relative dynamic viscosity u = 1 in
the bottom fluid and i = p, in the top fluid. The Reynolds,
Froude, and Weber numbers are given by
2 2 p2 302
Re = PR Q, Fr= R , We:—pr « .
M gh o

The problem is governed by the nondimensional parameters
Re, We, and Fr; the material property ratios p, = p;/pp and
Wy = W/ Up; the relative initial interface height 4/ R; and the
cylinder aspect ratio H/R.

Of the many governing parameters in this problem, the
geometric parameters 4/R and H/R are the least interesting.
This is because what is of interest in this class of problems
is how the interface deforms in response to the governing
parameters and in how the top fluid is driven into motion
via the coupling across the interface as the bottom fluid is
driven into motion. So long as the deformation of the interface
does not bring the interfacial shear layer near either the top or
bottom boundary layer, the two geometric parameters play
only a secondary role. In the single-fluid version of this
swirling flow problem, which has been studied extensively
both experimentally and numerically (numerous papers are
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cited in the introduction), it is well established that the aspect
ratio, so long as it is not too large or too small, has only a
quantitative impact on the flow. Hence, we focus on variations
of the governing parameters that are of primary importance.

A. Numerics

To determine the location x; of the phase interface we
employ a level-set approach by defining the level-set scalar at
the interface

Gxy.) =0, 3)

with G(x,t) > 0 in the bottom fluid and G(x,7) < 0 in the top
fluid layer. Differentiating Eq. (3) with respect to time yields
the level-set equation
G
— +u-VG =0. 4)
ot
The interface curvature « can be expressed in terms of the
level-set scalar as

k=-v. YO 5)

IVG]

We solve and evaluate all level-set-related equations following
the refined level-set grid method in a separate globally conser-
vative level-set solver [47] using an auxiliary high-resolution
G grid with a fifth-order weighted essentially nonoscillatory
scheme [48] in conjunction with a third-order total-variation-
diminishing Runge-Kutta time discretization [49]. Neumann
boundary conditions for G on the cylinder side wall impose
a 90° contact angle there. The phase interface curvature « is
evaluated on the G grid using a second-order-accurate interface
projection method [47].

The balanced force algorithm for finite-volume solvers [47]
is used to solve Eq. (1). The algorithm has been implemented
in the flow solver NGA [50], which solves the Navier-
Stokes equations using a second-order-accurate fractional step
method on a staggered grid layout. The location of the phase
interface essentially impacts directly three different terms in
these equations. The first two, p and u, can be calculated for
finite-volume solvers by

p =acv + (1 —acv)por, (6)

n=oacy+ 1 —acv)u,, @)
where acy is the bottom fluid phase volume fraction of a
control volume,

acv =1/Vey H(G)dV, (8)

Vev
with Vey the volume of the control volume and H the
Heaviside step function. Equation (8) is evaluated on the fine
G grid using an algebraic expression [51].

The third term impacted by the location of the interface is
the surface force, represented by the term «§fi/We in Eq. (1),
which in the staggered grid layout used here needs to be
evaluated at the cell faces. Following the continuum surface
force model [52], dn is approximated by én = Vacy. This
results in the surface force calculated by

1

1
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with all terms being evaluated at the cell faces due to the
staggered grid layout.

In this paper we are presenting a study of the basic state,
which is steady and axisymmetric, and so we restrict our
simulations to the axisymmetric Navier-Stokes equations.
Nevertheless, this basic state is highly nontrivial with a
deformed interface and thin boundary and interfacial shear
layers. Numerical grid convergence studies are presented and
discussed in the Appendix, which also contains the code
verification test case of a two-phase solid-body rotation.

III. RESULTS

We present results for two classes of scenarios. In the first,
we limit ourselves to physical systems that are easy to realize
in order to provide comparison data for future experiments. In
Sec. III A we analyze the effect of increasing the disk rotation
rate and in Sec. IIIB we analyze the impact of viscosity
ratio between the fluids by varying the silicone oil. In the
second class, we analyze the impact of individual characteristic
numbers on the system by varying only the Reynolds number
in Sec. III C, only the Weber number in Sec. III D, and only
the Froude number in Sec. Il E. These analyzed systems can
still be physically realized, however, they involve significantly
more experimental effort.

A. Effects of increasing the disk rotation rate

We begin by examining the flow, starting from rest,
for different rates of rotation of the bottom disk 2. In
nondimensional terms, this means considering various values
of Re. Since Fr and We also depend on €2, these will also
vary. In this section, we consider all properties to correspond
to a bottom fluid of Flourinert FC-75 and a top fluid of
DOW-Corning DC-200 silicone oil with nominal viscosity
10 cS. The material property ratios are p, = 0.5284 and
W, = 6.9124 and the surface tension between the two fluids is
o=70x1073 N/m [53]. Further, we shall set H/R = 1.5
and h/R = 0.75. To determine the parameters, we consider
a cylinder of radius R =0.5 cm on Earth (gravitational
acceleration g = 9.806 65 m/s?).

Although the flow is computed using the velocity formula-
tion as described in Sec. I1, since the flows are axisymmetric, it
is convenient to describe them in terms of the stream-function—
vorticity formulation. The velocity field in the cylindrical polar
coordinates (r,0,z) isu = (u,v,w) = (—y,/r,y/r, ¥, /r) and
the corresponding vorticity field is V x w = (—y,/r,n,y, /1),
where subscripts denote differentiation. Contours of ¢ in
a meridional plane (r,z) depict streamlines and contours
of y = rv in that plane depict vortex lines. The azimuthal
component of vorticity is related to the stream function by

Yoo + Y — Y /T = —n/T. (10)

The steady states for various Re (and corresponding Fr
and We) are illustrated in Fig. 1, which shows the vortex
lines (top panels), streamlines (middle panels), and contours
of the azimuthal component of vorticity (bottom panels).
The results for Re = 1200 and 1800 are qualitatively similar.
Following the impulsive start of the bottom rotating disk,
the disk boundary layer is rapidly established within about
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one disk rotation (by about t = 6). This is seen best in how
the n contours adjacent to the disk reach a steady state in the
associated online movie [54]. The fluid in this boundary layer is
centrifuged radially outward, carrying the angular momentum
acquired from the rotating disk with it (evidenced by the
bending of the vortex lines radially outward in the layer),
and a weak secondary meridional flow is established that
replaces the centrifuged fluid with fluid from the interior. The
streamlines illustrate this large-scale meridional circulation.
As the centrifuged fluid is turned upward by the presence of
the cylinder sidewall, a sidewall boundary layer is established
on a slower time scale in which the angular momentum is
advected upward. The sidewall layer is established by about
t = 35. Since the flow has finite Re, there is some viscous
diffusion of the advected angular momentum. As this sidewall
boundary layer flow reaches the vicinity of the interface, there
is some upward displacement of the interface, but for the
most part, the fluid in the bottom layer is turned radially
inward at the interface. Having a more viscous top layer of
fluid, the inward radial velocity decreases as it gets closer to
the interface, establishing a boundary layer that has much in
common with that at a rigid no-slip wall; the structure of the n
boundary layer at the interface is very similar to that at a no-slip
wall in comparable parameter regimes (compare with results
in Ref. [30]). Of course, the interface is not rigid or no slip and
so there is nonzero flow tangential to the interface (the flow
normal to the interface goes to zero as the flow asymptotically
approaches a steady state, which is reached by about r = 120).

The velocity is continuous across the interface and the fluid
in the top layer is dragged radially inward with the meridional
flow in the bottom layer, thereby establishing a large-scale
meridional flow in the top fluid. The top meridional flow is
much weaker and has an opposite sense of circulation to that
in the bottom layer. Of particular note, the radial velocity in
both the top and bottom fluids near the interface is directed
radially inward. The top layer of fluid is also spinning due to
its contact with the interfacial layer that has acquired angular
momentum. However, the top layer spins considerably less
than the bottom layer in the vicinity of the interface as the
vortex lines, while being continuous across the interface, are
refracted and also undergo significant bending in the interfacial
layer, where they are almost tangential to the interface over a
good portion of it.

As Re is increased, the interface deforms more as the
sidewall boundary-layer flow is stronger and can push
the lower-denser fluid further up and to conserve mass the
interface is lowered at the axis. Also, with increased Re,
less of the angular momentum acquired in the rotating-disk
boundary layer is dissipated as the fluid is advected faster to
the interface and consequently the interfacial fluid is rotating
faster with increased Re. The appropriate measure of how fast
the interface is rotating is v/r along the interface. On the
rotating disk, v/r =1 for all Re. Figure 2(c) shows that v/r
along the interface increases with Re and is largest at the axis
and zero at the sidewall. At Re = 3000, for » < 0.2 the fluid
in the bottom layer is close to solid-body rotation, as can be
seen in Fig. 1 from the vortex lines (contours of v), with weak
meridional circulation (the streamlines are almost vertical and
spaced widely apart, indicative of a slow effusive axial flow
into the bottom disk boundary layer). The flow in the bottom
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(a) Re = 1200 (b) Re = 1800
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(c) Re = 2400 (d) Re = 3000

FIG. 1. (Color online) Contours at a steady state of vortex lines rv (top row), streamlines ¥ (middle row), and azimuthal vorticity 1 (bottom
row) at (a) Re = 1200, Fr = 0.887, and We = 41.0; (b) Re = 1800, Fr = 2.00, and We = 92.3; (c) Re = 2400, Fr = 3.55, and We = 164; and
(d) Re = 3000, Fr = 5.55, and We = 256; these Fr and We numbers correspond to flow of Flourinert FC-75 (bottom fluid) and DOW-Corning
DC-200 silicone oil (top fluid) in a cylinder of radius 0.5 cm on Earth. There are 15 positive (black) and 15 negative (gray) contour levels,
given by £; = £(i /15)> max, where £ denotes level and max = 0.005 for v and max = 3 for 5. For rv, £; = (i/15)? as rv is non-negative

and has a maximum value of 1 (see associated online movies [54]).

fluid for » 2 0.2 has a strong meridional circulation. This
division into an inner-radius solid-body rotating flow and an
outer-radius swirling flow with strong meridional circulation
has been observed previously in experiments and simulations
with both a stress-free interface and a surfactant-influenced
interface [8,9,29]. The flow in the upper fluid is now influenced
by the swirling interfacial flow. It is spun up in a fashion
similar to that explored in Ref. [55] for the flow in a cylinder
driven by a disk of smaller radius on the bottom end wall. The
swirling interface for r < 0.2 now is able to centrifuge the

upper fluid adjacent to it radially outward, thereby establishing
ameridional circulation cell of opposite sense to the meridional
circulation that is driven by the interface along r 2 0.2 [see
the streamlines for Re = 3000 in Fig. 1(d)].

For all the Reynolds numbers considered, Re < 3000, the
interface displacement and curvature vary self-similarly with
Re, as can be seen in Figs. 2(a) and 2(b). In fact, Fig. 3
shows that the curvature distribution collapses as kRe ™. The
interface rotation rate v/r also collapses self-similarly over
the range of Re considered according to Re~"%v/r. However,
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FIG. 2. Radial variations of the (a) interface height, (b) interface curvature, (c) rotation rate of the interface, and (d) meridional velocity
tangential to the interface, for the corresponding steady-state solutions in Fig. 1.

the meridional velocity tangential to the interface v, does not
vary self-similarly with Re, as is evident from Fig. 2(d). The
maximum negative v, does not vary significantly with Re,
remaining at about 2% of the maximum disk velocity, while in
contrast v/r increases by 50% over the same range of Re. A
maximum negative v, also saturates at larger r as Re increases
while v, tends to zero over an increasing range of r out from the
axis as Re increases. This is a consequence of the fluid in the
top layer adjacent to the interface being centrifuged radially
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outward at the higher Re at small r as it rotates faster with
increasing Re, leading to the counterrotating meridional flow
near the axis and interface commented on earlier.

B. Effects of viscosity ratio u,

By utilizing a variety of silicone oils with different
viscosities as the top layer, it is possible to keep all of
the governing parameters other than p, essentially constant

(b)
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FIG. 3. Radial variations of the (a) interface curvature and (b) rotation rate of the interface for the corresponding steady-state solutions in

Fig. 1.
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in a physical experiment. In this section, we shall keep
Re = 2000, Fr = 2.46, We = 114, p, = 0.5284, H/R = 1.5,
and /R = 0.75 while varying u, from 100 down to 0.2 (for
the silicone oil used in the preceding subsection, , = 6.9124,
which we simply refer to as the p, = 7 case for now). For
comparison purposes, we also consider the flow where the
interface between the top and bottom fluids is replaced by a
rigid no-slip boundary and we solve for the flow in the bottom,
with Re = 2000 and H/R = 0.75 (for this single-phase flow,
Re and H/R are the only governing parameters).

The vortex lines rv, streamlines v, and azimuthal vorticity
n for various u, are shown in Fig. 4, along with the no-slip
interface case. Comparing the no-slip case with the flow in
the bottom fluid of the w, = 100 case [Figs. 4(a) and 4(b)],
we find that the flows are essentially the same except for the
nontrivial deformation of the interface. The deformation leads
to a stretching of the vortex lines near the sidewall where
the interface height is largest, resulting in a slightly faster
azimuthal velocity there compared with the no-slip case, while
the reduced interface height near the axis leads to the vortex
lines being axially compressed and the solid-body rotation near
the axis is slightly slower than in the no-slip case. The vortex

(a) Half Cylinder

(b) g1y = 100

PHYSICAL REVIEW E 85, 016308 (2012)

lines are almost tangential to the interface, so that the top fluid,
which is 100 times more viscous, is hardly spun up. Since
the interface is not no slip, the meridional tangential velocity
along the interface is also not zero and via the viscous coupling
there is a weak meridional circulation in the top fluid as the top
fluid adjacent to the interface is also dragged radially inward.
In the limit of , — o0, itis expected that v — 0 and v; — 0
on the interface, corresponding to the no-slip, rigid boundary
condition. However, with everything else finite (in particular
with finite Fr), there is still significant interface deformation at
large ;.

For pu, > 7, the flows are qualitatively similar; the interface
is slightly more deformed, the meridional tangential velocity is
faster, and the meridional circulation in the top fluid is stronger
for smaller u,. Of particular note, as p, is decreased, the vortex
lines in the bottom fluid meet the interface at a larger angle,
indicating that the interface is swirling faster with smaller
1y, and this leads to an increasingly spun-up upper layer of
fluid. On reducing p, to about 5, the interface is sufficiently
spun up, especially near the axis, so as to centrifuge the fluid
in the top layer adjacent to the interface radially outward,
thus creating a meridional flow of the opposite sense in the

(d) pr =5 (e) pr =2 (f) pr =02

FIG. 4. (Color online) Contours at a steady state of vortex lines v (top row), streamlines ¥ (middle row), and azimuthal vorticity (bottom
row) at Re = 2000, Fr = 2.46, We = 114, and viscosity ratios as indicated. The contour levels are the same as in Fig. 1 (see the associated

online movies [54]).
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—0.04

FIG. 5. (Color online) Radial variations of the (a) interface height, (b) interface curvature, (c) rotation rate of the interface, and (d) meridional
velocity tangential to the interface, for the corresponding steady-state solutions in Fig. 4 at Re = 2000 and the indicated values of u, (the

u, = 7 case is shown in red).

upper fluid. As w, is further reduced, this counter meridional
flow dominates in the upper fluid and the original meridional
circulation that at larger u, was driven by the meridional
circulation in the lower fluid is now confined to an increasingly
thinner boundary-layer-type flow over the outer radial part of
the interface at the smallest u, [see Fig. 4(f)]. At the smallest
- considered, the flow in the bottom fluid is most intense due
to the reduced viscous damping from the upper fluid and the
flow begins to resemble the swirling flows with a free upper
surface, i.e., idealized flows with the upper fluid having zero
viscosity and density and the interface having zero surface
tension. In particular, Fig. 4(f) shows the development of a
recirculation zone attached to the interface away from the
axis, which is typical in free-surface swirling flow models as
well as in experiments with air as the upper fluid and water
as the lower fluid [2,3,5,15]. This recirculation zone tends to
form near where the inner radial flow is in solid-body rotation
and the outer radial flow is dominated by the meridional
circulation [8,9].

The temporal evolutions from rest are affected by the
viscosity ratio, as can be seen from the online movies [54]
associated with Fig. 4. For large w,, the top fluid adjusts
quickly to flow changes in the bottom fluid so that both reach a
steady state essentially at the same time. In contrast, for small

Wy, the top fluid is slower to adjust to changes as the bottom
fluid evolves, and then the delayed adjustments in the top fluid
result in further adjustments in the bottom fluid, and so the
transient flow is a damped oscillation.

Figures 5(a) and 5(b) show that in the outer radial region, the
interface height and curvature are little affected by variations
in . However, in the inner radial region, there are significant
changes with the interface height dropping and the interface
curvature becoming more negative as (, is decreased. This is
attributable to the strengthening counter meridional flow and
increased swirl in the upper fluid as u, is decreased. Notice
from the contours of rv in Fig. 4 that the top fluid is spinning
faster with decreasing u,, but that as u, is decreased below
about 1, the stronger counter meridional flow in the top fluid
advects the angular momentum to larger radii, leaving the
inner radial region spinning slower as p, is decreased, while
at the same time the interface is spinning faster [Fig. 5(c)]. It
is this fast-spinning inner radial section of the interface that
drives the counter meridional flow; its effect on the tangential
meridional velocity at the interface v, is shown in Fig. 5(d),
where we find that v; becomes positive (radial outflow) for
ny < 1 with r < 0.35 while there is an increasingly strong
radial inflow (v, negative) along the interface for r > 0.35 as
1, is decreased.
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C. Effects of varying Reynolds number

Up to now, we have considered parameter variations that
are readily reproduced in laboratory experiments. However,
these protocols vary the relative strengths of several forces,
making it difficult to determine their individual contribution
on the observed phenomena. In this section, we isolate the
effect of inertia by varying only Re and keeping the other
parameters fixed at We = 114, Fr = 2.46, u, = 6.9124, p, =
0.5284, H/R = 1.5, and h/R = 0.75 (corresponding to the
two-fluid system considered in Sec. IITA).

Figure 6 depicts radial variations in interface height, inter-
face curvature, rotation rate, and meridional velocity tangential
to the interface at a steady state for Re € [1200,3000]. The
degree by which the top fluid is spun up is similar to the case
of varying Q2 at the same Reynolds numbers. However, the
interface at the same Re is significantly less deformed here.

As in the varying-rotation-rate case, the interface curvature
and rotation rate of the interface collapse with a Reynolds
number scaling (see Fig. 7). However, here, the best-fit
exponents are —0.5 in both cases compared to —2.5 (curvature)
and —0.75 (rotation rate) in the varying-2 case. The reason
for the change in fitting exponent, especially for the interface
curvature, is the following. In the varying-$2 case, an increase
in €2 results in an increase not only in Re, but also in We and

0.80 ; : : :
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Fr. The decrease in relative importance of surface tension (due
to increasing We) leads to larger deformations of the interface
and hence larger interfacial curvatures (see Figs. 2 and 6).
This compares to the case here where only Re is varied and
the relative importance of surface tension is kept constant. To
collapse the larger curvature variations in the varying-$2 case
thus required a higher power than in the constant-We-number
case.

These results indicate that surface tension effects are of
significance in the analyzed system, a point further analyzed
in Sec. IIID.

D. Effects of varying Weber number

In this section, we explore the effects of surface tension.
Surface tension enters into the nondimensional system via
the Weber number only. We set Re = 2000, Fr = 2.42, u, =
6.9124, p, =0.5284, H/R = 1.5, and h/R = 0.75 (corre-
sponding to the two-fluid system considered in Sec. IIT A) and
consider four cases for different values of We: (a) We = 50,
(b) We = 114 (corresponding to the Flourinert and silicone
oil system), (¢) We = 500, and (d) We = oo (zero surface
tension). Physically, these variations in We may be obtained
by choosing an appropriate silicone oil and heating the system

(b)
10 T T T T
Re=1200
rrrrrrrrrrrr Re=1800
05T ——_ Re=2400
—-— Re=3000

0.0 |
|
l , |
7

1.0 ... //’//// -
T ,/

-1.5 | I I I
0 0.2 0.4 . ) |

pe
—0.020 | ——— Re=2400 \\\,,,,,, / ]
—-— Re=3000 o
~0.025 L L L .
0 0.2 0.4 0.6 0.8 1

FIG. 6. Radial variations of the (a) interface height, (b) interface curvature, (c) rotation rate of the interface, and (d) meridional velocity
tangential to the interface, for the steady-state solutions at Fr = 2.42, We = 114, and Re as indicated. These Fr and We numbers correspond
to flow of Flourinert FC-75 (bottom fluid) and DOW-Corning DC-200 silicone oil (top fluid) in a cylinder with a radius of 0.5 cm on Earth at

Re = 2000.
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FIG. 7. Radial variations of the (a) interface curvature and (b) rotation rate of the interface for the same steady-state solutions as in Fig. 6.

to a uniform temperature such that the desired Re, Fr, and We
are achieved.

Although meridional contour plots do not show much
variation with Weber number, a close examination of the
interfacial profiles show significant We dependences. These
profiles are shown in Fig. 8 depicting radial variations
in interface height, interface curvature, rotation rate, and
meridional velocity tangential to the interface at a steady
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0.82 T T T T
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r
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&~
B N
0.1 b
0 A P P P
0 0.2 0.4 0.6 0.8

r

state for various We as indicated. In particular, the surface
deformation increases as We increases and the curvature not
only increases in magnitude but also shows large amplitude
undulations reminiscent of a shear driven wave. In contrast,
the interface rotation rate and meridional velocity tangential to
the interface are quite insensitive to Weber-number variations.

Surface tension effects are important in determining the
steady-state shape of the interface in these flows. The question

—— We=co

We=500
——~ We=114
—-— We=50

=0.010

—0.015

—0.020

0025 L
0

FIG. 8. Radial variations of the (a) interface height, (b) interface curvature, (c) rotation rate of the interface, and (d) meridional velocity
tangential to the interface, for the steady-state solutions at Fr = 2.42, Re = 2000, and We as indicated. These Fr and Re numbers correspond to
flow of Flourinert FC-75 (bottom fluid) and DOW-Corning DC-200 silicone oil (top fluid) in a cylinder with a radius of 0.5 cm on Earth.
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FIG. 9. Profiles of interface height for the case of two-phase
solid-body rotation for the case with zero surface tension, physical
surface tension, and analytical solution. The analytical solution is
z = h/R[1 + Fr(2r* — 1)/4], with h/R = 0.75 and Fr = 2.42.

then is whether this is due to the peculiarities of the chosen flow
configuration with high shear. To analyze this, Fig. 9 shows the
two-phase solid-body rotation test case used in the Appendix
to verify the code, but now with the addition of surface tension.
As clearly shown, an increase in surface tension (lower We)
results in significantly different interface shapes, flattening the
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interface. This raises a concern of trying to reproduce these
results experimentally using so-called essentially immiscible
fluids, i.e., fluids that are miscible on a much slower time scale
than the time scale on which experiments are conducted, since
such systems lack surface tension.

E. Effects of varying Froude number

In this section, we explore the effects of gravity, which
only enters into the nondimensional system via the Froude
number. Physically, one could explore such Froude num-
ber variation effects by conducting the same experiment
in a low-gravity environment. Numerically, we set Re =
2000, We = 114, p, = 0.5284, u, = 6.9124, H/R = 1.5,and
h/R = 0.75 (corresponding to the Flourinert and silicone oil
system considered in Sec. III A) and consider three Fr cases:
(i) Fr = 6.3 x 107>, corresponding to a very large gravity so
that the interface is essentially flat; (ii) Fr = 2.46, correspond-
ing to the Earth’s gravity; and (iii) Fr = 0o, corresponding to
Zero gravity.

There are very few consequences beyond interfacial cur-
vature to having a change in gravity. The Fr &~ 0 case has
the least deformation, with the interface being essentially
flat, and the Fr = oo case has the maximum deformation.
The amount of deformation, even at Fr = oo, is limited by
surface tension effects (We = 114), as is evident in Figs. 10(a)
and 10(b), which show the interface shape and curvature,

| Fr=0.000063

I Fr=2.46

0.00 <

—0.02

FIG. 10. Radial variations of the (a) interface height, (b) interface curvature, (c) rotation rate of the interface, and (d) meridional velocity
tangential to the interface, for the steady-state solutions at Re = 2000, We = 114, and Fr as indicated.
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respectively. The flows not very close to the interface are very
similar, especially in the upper fluid. Near the interface the
flows simply adjust to the change in shape of the interface.
However, more careful inspection near the interface does
reveal some curvature effects. In particular, the way in which
the vortex lines rv meet and cross the interface is affected
by the curvature and this results in the interface rotation
v/r varying with Fr. Figure 10(c) shows that the interface
rotation increases by about 50% from the flat interface case
to the most deformed interface case. This increase in interface
rotation is in the inner radial section where the bulk flow in
the bottom fluid is nearly in solid-body rotation. However,
the meridional tangential velocity v, is affected very little
by the interface deformation [Fig. 10(d)]. This all indicates
that the interface deformation primarily affects how the vortex
lines meet and bend at the interface and any effects on the
meridional flows are primarily a consequence of the vortex line
bending.

Comparing the flat interface case (Fr ~ 0) with the rigid lid
case, we find that the flow in the lower fluid is very similar.
The main distinction is that the n-boundary layer in the rigid
lid case has approximately uniform thickness, whereas that in
the small-Fr case is considerably thinner for r < 0.25. This
is attributable to the difference in the behavior of the vortex
lines in this region. With the rigid lid case, the vortex lines are
bent in the boundary layer to be tangential to the stationary lid,
whereas for the small-Fr case, the vortex lines are not bent very
much. Where the bulk lower fluid is in near solid-body rotation,
the vortex lines cross the interface and the interface spins.
Where the bottom fluid is primarily overturning meridionally,
the vortex lines are almost tangential to the interface and its
rotation is greatly reduced. The vortex line bending is a local
source of azimuthal vorticity [3,56] and is responsible for the
establishment of the interfacial shear layer.

IV. CONCLUSION

We have studied numerically the swirling flows of two
immiscible fluids within a stationary enclosed cylinder driven
by the uniform rotation of the bottom end wall. Initially,
everything is at rest with the denser fluid in a bottom layer
of equal volume to that of the lighter top fluid. Since only
the bottom fluid is in contact with the rotating end wall, the
top fluid is only driven into motion via the viscous coupling
between the two fluids. The interface is deformable and its
motion is determined by the balance between flow inertia,
viscous stresses, gravitational buoyancy, and surface tension.
We have considered a wide range of viscosity ratios of the
two fluids w, and found that this plays an important role in
determining the dynamics in the two fluids. When the top fluid
is significantly more viscous than the bottom fluid, the top
fluid adjusts quickly to the bottom flow, whereas for top fluids
with smaller viscosity, the top fluid adjusts more slowly and
this delay is fed back to the lower fluid, which then needs to
readjust, leading to oscillatory transients. The viscous coupling
between the two fluids is accomplished via the establishment of
an interfacial shear layer due to the difference in the rotations
of the top and bottom fluids.

As noted from theoretical analysis [40] and experiments
[36] for the spin up of two essentially immiscible fluids, the

PHYSICAL REVIEW E 85, 016308 (2012)

interfacial shear layer is dynamically important. We also find
this to be the case in the present problem. Much of the structure
of the interfacial shear layer results from vortex line bending
in the interfacial region and the amount of vortex line bending
is strongly influenced by the viscosity ratio. Two extremes
are typically well studied: u, — oo, where the top fluid then
acts like a no-slip boundary for the lower fluid and the vortex
lines are bent to be tangential to the boundary, and @, — 0,
which corresponds to a vacuum above the lower fluid and the
vortex lines are normal to the interface in the lower fluid (this
often provides a good model when the upper fluid is a gas).
In this study, we have considered finite u, € [0.2,100], over
which the amount of vortex line bending in the neighborhood
of the interface varies considerably. As observed in Ref. [36],
if the dynamics of the interfacial shear layer is not included,
as in the theory of Ref. [39], then the lack of surface stresses
leads to vortex stretching being the primary mechanism by
which the interface moves. In our problem, vortex stretch-
ing effects are negligible compared with vortex bending
effects.

Vortex stretching occurs when the vortex lines are stretched
due to changes in the fluid depth, i.e., via interface deformation,
which would correspond to increased or decreased axial
vorticity, i.e., the vortex lines would be closer together or
further apart. However, this is not evident from the results with
Fr = 0 and large Fr, which affect only the degree of interface
deformation, and in and of itself does not contribute to the
development of the interfacial layer, which is characterized by
large concentrated azimuthal vorticity. In contrast, vortex line
bending is clearly observed over all parameter ranges and the
bending of vortex lines is a direct source of azimuthal vorticity.
The vortex line bending is predominant in the interfacial layer
as well as in the end-wall boundary layers. Another source
of azimuthal vorticity at the interface is due to the surface
tension term, but this is a small contribution compared to
the vortex line bending. This is born out by the comparison
between the Fr = 0 case (where there is no surface tension term
contribution to the azimuthal vorticity) and the large-Fr cases
(leading to large deformations). The intensity of the interfacial
layer’s azimuthal vorticity is comparable for all Fr and hence
primarily due to vortex line bending.

Pedlosky [40] included the interfacial shear layer due to
finite w,, but took the limit of Fr — 0 so that the interface
remained flat during the spin-up process and so his theory
did not include surface tension effects (due to zero interfacial
curvature). He concluded that the frictional coupling between
the two fluids is vital for the spin-up process, which we find to
be true here as well, but interfacial deformations and surface
tension effects limiting the deformations are also critically
important in the regimes we have studied.

TABLE 1. Grid convergence for kinetic energy at Re = 3000.

n, E, Error Order
150 5.66 x 1072 1.00 x 1073

300 5.58 x 1072 2.38 x 1074 2.07
450 5.57 x 1072 5.55 x 107 3.59
600 5.56 x 1072
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TABLE II. Grid convergence for interface displacement Ah at
Re = 3000.

PHYSICAL REVIEW E 85, 016308 (2012)

TABLE IV. Grid convergence for velocity fields at (r,z) =
(0.98,0.02).

n, Ah Error Order n, u Error Order
150 3.104 x 107! 8.106 x 1073 150 4.761 x 1072 1.451 x 1073
300 3.030 x 107! 6.960 x 10~* 3.54 300 4.646 x 1072 2.991 x 10~* 2.28
450 3.025 x 107! 2.260 x 10~* 2.77 450 4.622 x 1072 5.956 x 1073 3.98
600 3.023 x 107! 600 4.616 x 1072
n, v Error Order
150 6.064 x 107! —6.122 x 1072
ACKNOWLEDGMENTS 300 6.478 x 10! ~1.982 x 1072 1.63
This work was supported by the US National Science 450 6.611 x 107! —6.568 x 107 2.72
Foundation Grants No. DMS-0808045 and No. DMS-0922864 600 6.676 x 107!
and Korea Science and Engineering Foundation WCU Grant n; w Error Order
No. R32-2009-000-20021-0. Computations were performed 150 4.920 x 1072 6.287 x 1073
using the ASU Advanced Computing Center (A2C2) and the 300 4.448 x 1072 1.573 x 1073 2.00
NSF Teragrid Ranger cluster (TG-DMS090031). 450 4.337 x 1072 4.665 x 10~ 3.00
600 4291 x 1072

APPENDIX: NUMERICAL RESOLUTION TESTS

To determine the appropriate numerical resolution, a grid
convergence study was conducted for Re = 3000 with the four
resolutions: (n,,n;) = (100,150), (200,300), (300,450), and
(400,600). Having the thinnest viscous boundary layer, the
Re = 3000 case requires the highest resolution of the cases
considered in this paper. As such, any grid that is in the asymp-
totic convergence regime for the Re = 3000 case will also be
in that regime for the other parameters studied in this paper.

The largest difference between fg0 and fi59 occurs in
the viscous boundary layer at the rotating bottom wall,
suggesting that the coarsest grid (100 x 150) does not provide
adequate resolution in this region. However, as the resolution is
increased, the error rapidly decreases. The kinetic energy E; =
7w JiF [P + v + w?rdr dz is a useful global metric to
determine convergence. Table I shows the kinetic energy
for the indicated grid resolution. The error and order of
convergence are computed using the results from the finest grid
as the exact solution. The errors decrease with increasing grid

TABLE III. Grid convergence for velocity fields at (r,z) =
(0.99,0.01).

n, u Error Order
150 2.071 x 1072 5.117 x 1073
300 1.667 x 1072 1.083 x 1073 2.24
450 1.588 x 1072 2.850 x 10~* 3.29
600 1.559 x 1072

n, v Error Order
150 3.422 x 107! —2.055 x 107!
300 4.751 x 107! —7.261 x 1072 1.50
450 5.231 x 107! —2.463 x 1072 2.66
600 5.477 x 107!

n, w Error Order
150 1.606 x 1072 5.641 x 10~*
300 1.585 x 1072 3.555 x 10~* 0.67
450 1.561 x 1072 1.130 x 10~* 2.83
600 1.549 x 1072

resolution. The obtained order of convergence is slightly better
than expected. This is most likely because kinetic energy is not
directly simulated but is rather the sum of the squares of simu-
lated variables, which leads to fortuitous cancellation of errors.

The interface position can also be used to determine the
asymptotic convergence regime. The interface profiles of the
finest grids lie directly on top of each other, while that
of the coarsest grid is different from the others, demonstrating
that the coarsest grid may not be in the asymptotic convergence
regime. Table II shows the overall interface displacement
for the indicated grid resolutions. The error and order of
convergence are computed using the results from the finest
grid as the exact solution.

To demonstrate grid convergence using local quanti-
ties, the velocity field at two points near the bottom
right corner is examined. The points chosen are (r,z) =
(0.99,0.01), which is inside the viscous sublayer, and (r,z) =

125 —m———F— 77—

* analytic solution
— We=co

100 |
z 075

0.50 |

0.25

7

FIG. 11. Profiles of interface height for the case of two-phase
solid-body rotation with zero surface tension. The analytical solution
isz = h/R[1 + Fr(2r* — 1)/4], with h/R = 0.75 and Fr = 2.42.
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(0.98,0.02). The convergence test results, summarized in
Tables III and IV, demonstrate that a numerical resolution
of n, x n, =200 x 300 is sufficient to ensure that the so-
lution is within the asymptotic convergence regime. This is
the grid resolution employed for results presented in this
paper.

Having established that a grid converged solution can be
reached, next we address the question whether convergence to

PHYSICAL REVIEW E 85, 016308 (2012)

the correct solution is achieved. To verify this, we compare our
numerical results to an analytical solution in the case of solid-
body rotation of two immiscible fluids. Figure 11 shows the
radial profiles of the analytic interface (open symbols) and our
computed profile (solid line). The analytical solution is derived
assuming zero surface tension. The agreement between the
analytical and numerical solutions is excellent, thus providing
additional verification of the numerical code.
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