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Instability of a charged non-Newtonian liquid jet
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A three-dimensional instability analysis of an electrified non-Newtonian liquid jet is performed in this paper so
as to understand the competition between viscoelastic stresses, electric force, and surface tension. The analysis
employs the leaky-dielectric model to account for the charge transport process and the Oldroyd-B model to
take the viscoelastic effect into account. Results show that the viscoelastic stresses play a stabilizing role
while electrification destabilizes the disturbances with shorter wavelength and higher azimuthal wave numbers.
However, the viscoelastic stabilizing effect is not so significant on the sinuous mode (with azimuthal wave number
m = 1) compared with the other modes, which thus promotes sinuous disturbances. This result is consistent with
the presence of bending motion in most experimental observations.
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I. INTRODUCTION

A charged liquid jet subjected to electrical instability has
been known to be more unstable than an uncharged jet. The
electrostatic repulsive force caused by free charges on the jet
surface tends to trigger the growth of nonaxisymmetric distur-
bances with shorter wavelength than those in the uncharged
cases, causing the breakup into atomized droplets [1]. This
related technique is widely applied to electrostatic spray [2]
for industrial or agricultural purposes.

The theoretical work was pioneered by Rayleigh [3],
who developed a theory of stability for electrified inviscid
jets moving in vacuum subjected to disturbances of infinite
wavelength. Basset [4] studied the stability of axisymmetric
disturbances on charged Newtonian jets taking the effects of
viscosity and the ambient gas into account. Errors in Basset’s
analysis were later corrected by Taylor [5]. Schneider et al.
experimentally verified the axisymmetric theoretical results
by observing the breakup of a charged water jet through
a grounded cylindrical electrode [6]. Huebner conducted a
series of experiments of charged water jets and showed that
increasing the amount of electrical charge enhances the growth
of sinuous nonaxisymmetric disturbances [7]. Particularly,
when using isopropyl alcohol instead of distilled water, he
observed that at sufficiently high electrification, the circular
jet may develop a fanlike configuration [8]. To explain
the phenomena associated with nonaxisymmetric motions,
Huebner developed the Lagrangian equation of motion to
analyze the three-dimensional instability of charged inviscid
jets with arbitrary wave number [9]. His analysis elucidated
how the electrical force amplifies short-wavelength distur-
bances and stabilizes the long waves driven by surface tension.
Nevertheless, the axisymmetric varicose mode is found to
be predominant for all cases, which thus cannot explain the
sinuous motion observed in experiments. Saville [10] took
the fluid viscosity into account and found that the viscous
damping effect provides significant resistance to the growth
of axisymmetric disturbances more than that of the sinuous
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one. At a sufficiently high ratio of viscous to electrical forces,
the sinuous mode may prevail over the axisymmetric one,
which successfully explains the bending instability observed
in experiments.

So far in most theoretical studies of electrified jets, the
liquid is usually assumed to be a perfect conductor with
equipotential surface and zero electric field in the bulk.
This assumption, however, could have overestimated the
growth rate of disturbances. In fact, the assumption of perfect
conductor can hold only when the electrical relaxation time is
much shorter than the hydrodynamic characteristic time. For
example, the ratio of characteristic time to electrical relaxation
time for water jets is usually as large as 104, even in the last
stages of pinch-off. However, in many practical applications,
such as food and pharmacy technologies, the liquid used is
usually of poor conductivity, allowing free charges to persist
in the fluid bulk, inducing electrical body forces to affect the
flow motion. Furthermore, the interfacial electric stresses are
no longer perpendicular to the jet surface because the surface
of the imperfect conducting liquid is not equipotential. For
such a liquid, the Taylor-Melcher leaky-dielectric model is
appropriate for the description of the relaxation process of
free charges [11,12]. Recently, this model has been extensively
used in subsequent studies. For example, López-Herrera
et al. [13] performed an axisymmetric instability analysis
for a leaky-dielectric liquid jet flowing through a coaxial
grounded electrode; Li et al. [14,15] investigated the instability
of electrified compound jets of which the outer liquid is
considered to be a leaky dielectric, and Ruo et al. [16] studied
the stability of charged semiconducting jets in the presence of
axial magnetic field.

In ink-jet printing technology, polymeric materials are
usually added in the ink solution to change the physical
and chemical properties [17,18]. This motivates us to extend
the study toward that of viscoelastic jets. However, unlike
a vast amount of literature on the study of Newtonian fluid
jets, the theoretical work of viscoelastic jets is relatively
limited. The main reason for this is the mathematical difficulty
in dealing with nonlinear rheological constitutive equations.
Incipient studies on the instability of non-Newtonian jets
[19–24] showed that a viscoelastic jet is always less stable
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than its Newtonian counterpart and the elastic force plays a
destabilizing role on the onset of instability, whatever form
of rheological constitutive equation is used [23,24]. However,
this result disagrees with most experimental evidence because
the addition of polymers generally stabilizes the jet and
delays the breakup due to high extensional viscosities. In
particular, once the strain-hardening effect prevails over the
pinching effect caused by surface tension, the jet will not break
up at all, forming a “beads-on-string” structure observed in
experiments. To resolve this discrepancy, Goren and Gottlieb
[25] first suggested that for a viscoelastic liquid ejected
from a capillary tube subject to hydrodynamic pressure, the
elastic stresses generated at the nozzle due to the stretching
of entangled polymeric chains can persist along the jet for
a long distance downstream far from the exit, which may
provide a resistance to the instability of viscoelastic jets. With
such a concept, Goren and Gottlieb demonstrated how the
presence of unrelaxed axial tension suppresses the surface-
tension-driven instability. Later, Bousfield et al. [26] also
followed this concept to perform a numerical simulation of
axisymmetric deformation of a viscoelastic cylindrical column
to confirm that the unrelaxed tension indeed provides signif-
icant resistance to instability, thereby delaying the breakup
time.

The present work aims to examine the three-dimensional
instability of a charged non-Newtonian liquid jet by consid-
ering the interaction between electric force and viscoelastic
stresses. This subject is of fundamental importance to the
understanding of the instability phenomena occurring in con-
tinuous ink-jet printing or electrospinning processes. Despite
the nonlinear nature of most of the phenomena, the linear
features appearing upstream provide important information
for the subsequent behaviors developing downstream. In
the following sections, we first develop a mathematical
formulation to describe the three-dimensional motion of
a charged viscoelastic jet subjected to electrical forces,
surface tension, aerodynamic interaction, and viscoelastic
stresses. The leaky-dielectric model is adopted to account
for the effects of finite electrical relaxation time as well as
nonzero tangential electric stresses at the jet surface, and the
Oldroyd-B model [27] is used to describe the viscoelastic
effect due to the presence of polymeric molecules. Then
we use normal mode analysis to linearize the governing
equations and yield a nonlinear eigenvalue problem, which
is solved by employing the Chebyshev collocation method
[28] with a matrix transformation. Finally, the instability
mechanisms are elucidated by depicting a series of dispersion
diagrams.

II. FORMULATION OF THE PROBLEM

A. Governing equations

Consider a charged capillary viscoelastic jet of radius a,
density ρ, electrical conductivity σ , and permittivity ε, moving
at a uniform velocity U through a quiescent surrounding gas of
density ρa . A schematic description of system configuration
is shown in Fig. 1. For an incompressible isothermal liquid
of arbitrary rheology in the presence of electrostatic field, the
equations governing the conservation of mass and momentum

FIG. 1. (Color online) A schematic description of local instability
analysis for a charged viscoelastic jet ejected by hydrodynamic
pressure from a capillary tube. The onset of instability occurs in
the segment circled by the dashed line.

in terms of cylindrical coordinates (r,θ,z) can be acquired
according to references [11,12,27]:
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where V = urer + uθeθ + uzez is the velocity field, P is
the pressure, q is the volumetric density of free charges,
φ is the electrical potential, and τij with the subscripts
i,j = r,θ,z represents the components of viscoelastic stress
tensor τ .

The electrical potential φ is governed by Poisson’s
equation:

∇2φ = ∂2φ

∂r2
+ ∂φ

r∂r
+ ∂2φ

r2∂θ2
+ ∂2φ

∂z2
= −q

ε
. (5)

The conservation of free charges obeying Ohmic law is
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For the rheological relation between τ and V, we employ
the Oldroyd-B equation, which is the simplest constitutive
equation useful for describing dilute polymer solutions at high
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rates of deformation [27,29]:

τ + λ1

[
∂τ

∂t
+ V · ∇τ − (∇V)T · τ − τ · ∇V

]
= μγ̇

+ μλ2

[
∂ γ̇

∂t
+ V · ∇γ̇ − (∇V)T · γ̇ − γ̇ · ∇V

]
, (7)

where λ1 is the stress relaxation time, λ2 is the deformation
retardation time, μ is the zero-shear-rate viscosity, and γ̇ =
∇V + (∇V)T is the rate-of-strain tensor. The use of the
Oldroyd-B model implies that the present analysis is valid
only for Boger fluids, which are known as a kind of liquid
with constant shear viscosity and different degrees of elasticity
[30–33]. In many academic researches, the employment of
Boger fluids has the advantage of removing the mask of the
non-Newtonian viscous effects (e.g., shear thinning), so as to
exclusively manifest the elastic effects on the flow stability
of viscoelastic liquids [30]. For example, Mun et al. [34]
conducted a series of experiments using Boger fluids to
investigate the elastic effect on the instability and breakup
of uncharged capillary jets. Yu et al. [35]. investigated the
role of elasticity in the formation of electrospun fibers for
a series of solutions having the same surface tension, zero-
shear viscosity, and conductivity but different degrees of
elasticity.

As for the surrounding gas, the governing equations are
basically the same as Eqs. (1)–(7) except that the viscoelastic
stress tensor τ and free charge density q disappear since both
viscosity and conductivity of the gas are neglected in this
analysis. Note that the inviscid assumption of the gas allows
the basic flow profile to be flat, thus simplifying the present
analysis. However, this assumption restricts the scope to the
flow configuration in the first wind-induced regime, where the
effect of viscous boundary layer at the jet surface is negligible
and the aerodynamic interaction is accounted for only in terms
of pressure fluctuation [13].

B. Boundary conditions

The boundary conditions at the interface between the liquid
and the gas, r = R(θ,z,t), are described as follows. First, the
kinematic condition at the interface is

D

Dt
[r − R(θ,z,t)] = 0, (8)

and the normal and tangential stress balances at the interface
are described by

n · (−PaI − T) · n = γ∇ · n, (9)

n · T · t = ∇γ · t, (10)

where the subscript “a” denotes the physical quantities of
the gas, γ is the surface tension coefficient, I is the identity
matrix, n and t denote the unit vectors normal and tangential
to the interface, and T is the stress tensor. Note that since
no temperature gradient is considered in the present problem,
the surface tension gradient is zero and the right-hand term
of Eq. (10) disappears. For flows in quasistatic electric fields,
the stress tensor T consists of mechanical and electrostatic
Maxwell stress tensors [12]:

T = −P I + τ + ε
(∇φ∇φ − 1

2 |∇φ|2 I
)
. (11)

The electric conditions at the interface are

(ε∇φ − εa∇φa) · n = Q, (12)

∇φ · t = ∇φa · t, (13)

where εa is the permittivity in vacuum, and Q = Q(θ,z,t) is
the surface charge density, which must satisfy the conservation
of charge at the interface:

∂Q

∂t
+ [∇ − n(n · ∇)] · K + σ∇φ · n = 0, (14)

where K is surface current density [11,12]. For an imperfect
conducting fluid, the surface current due to conduction is neg-
ligible, and hence the contribution from the current transported
by the fluid motion will be dominant (i.e., K ≈ QV) [16].

III. LINEAR INSTABILITY ANALYSIS

A. Base-state solutions

Before the onset of instability, the jet is assumed to be
perfectly cylindrical and the velocity is axisymmetric (i.e.,
plug flow) and unidirectional with an axial elastic tension τ̄zz

retained as shown in Fig. 1. In such a condition, no free charge
exists in the bulk of the jet or in the gas (i.e., q̄ = 0) and the
charges uniformly distribute on the jet surface with a surface
charge density Q0. Solving Eq. (5) based on this state, the
electrical potentials of the liquid and the gas can be obtained
as

φ̄(r) = ϕ0, (15)

φ̄a(r) = −Q0a

εa

ln
r

a
+ ϕ0, (16)

where ϕ0 is the electrical potential applied on the jet surface.
On the other hand, the constitutive Eq. (7) can be solved to
obtain the base-state elastic tension:

τ̄zz(z) = τ̄zz(0) exp(−z/λ1U ), (17)

which implies that the elastic tension will eventually fade away
downstream. However, the presence of the spatial dependence
on the base-state solution makes the subsequent analysis
difficult. A simplification is necessary for further analysis.
Following the approach proposed by Goren and Gottlieb [25],
we focus the analysis on a segment of the jet where the
elastic tension can be assumed to be constant (i.e., τ̄ ≈ τ0ezez).
This assumption is valid only if λ1 � L/U (where L is the
wavelength of a disturbance). This inequality, in terms of
the dimensionless parameters introduced in Table I, can be
rewritten as De � 2π/k. This means that to neglect the spatial
dependence of the basic-state solution, the analysis must be
limited at high Deborah number.

B. Linearization and normal mode analysis

The governing equations are nondimensionalized using the
quantities a, U , a/U , Q0a/εa , and ρU 2 as the characteristic
length, velocity, time, electrical potential, and pressure scales.
The procedure introduces nine dimensionless parameters as
listed in Table I. Then, we perturb the dimensionless base-state
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TABLE I. The definition of dimensionless parameters.

Dimensionless parameter Definition

Density ratio of the gas to the liquid ρ̄ = ρa/ρ

Reynolds number Re = ρUa/μ

Weber number We = ρU 2a/γ

Deborah number De = λ1U/a

Dimensionless elastic tension Te = τ0/ρU 2

Rheological time ratio λ̃ = λ2/λ1

Dimensionless electrostatic force Ge = Q2
0/ρU 2εa

Dimensionless electrical relaxation time α = aσ/εU

Dielectric constant of the liquid ε̄ = ε/εa

solutions with small disturbances in the form of the normal
mode:

f = f̄ + f̂ (r)exp(st + imθ + ikz), (18)

where f represents arbitrary dimensionless physical quanti-
ties, s is the eigenfrequency of disturbance with azimuthal
wave number m and axial wave number k.

The dimensionless governing equations for the gas layer
are then linearized as below:
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Note that Eq. (19) is a modified Bessel equation in terms
of φ̂a , which has a solution subject to the condition of finite

physical quantities at r = ∞:

φ̂a (r) = A1Km(kr), (22)

where A1 is an integration constant and Km is the mth-order
modified Bessel function of the second kind. Combining
Eqs. (20) and (21) gives a modified Bessel equation in terms
of pressure, which also yields a solution:

P̂a (r) = A2Km(kr), (23)

where A2 is an integration constant. Substituting this solution
into Eq. (21), the velocity field for the ambient gas can be
obtained as
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For the liquid jet, the linearized perturbation equations are
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+ ikûθ 2ikûz
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with

β1 = 1

Re

1 + Deλ̃(s + ik)

1 + De(s + ik)
, β2 = DeTe

1 + De(s + ik)
. (32)

Note that the term involving β2 results from the presence of the unrelaxed elastic tension. If the stress relaxation time is
extremely small (i.e., De → 0), Eq. (32) gives β1 ≈ 1/Re and β2 ≈ 0, which recovers the case of Newtonian fluid jets. Now, we
use Eq. (31) to rewrite the momentum equations (28)–(30) as

(s + ik)ûr = −dP̂

dr
+ β1

(
d2ûr

dr2
+ dûr

rdr
− 1 + m2

r2
ûr − k2ûr − 2im

ûθ

r2

)
− k2β2ûr , (33)

(s + ik)ûθ = − imP̂

r
+ β1

(
d2ûθ

dr2
+ dûθ

rdr
− (1 + m2)ûθ
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ûr
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)
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(s + ik)ûz = −ikP̂ + β1

(
d2ûz

dr2
+ dûz

rdr
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r2
ûz − k2ûz

)
− k2β2ûz. (35)
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Since Eq. (26) implies q̂ = 0, Eq. (25) has a solution subject
to finite condition at r = 0:

φ̂ (r) = A3Im(kr), (36)

where A3 is an integration constant and Im is the mth-order
modified Bessel function of the first kind.

By inspecting Eqs. (25) and (33)–(35), one can see that
the electrified effects in the fluid bulk and flow motion
are decoupled after linearization. In fact, the interaction
between electric forces and viscoelastic stresses occurs only
on the jet surface. The coupling of physical quantities at the
disturbed interface, r = 1 + η̂est+ikz+imθ , can be provided by
the boundary conditions (8)–(14) and their linearized forms
are written as follows:

ε̄
dφ̂

dr

∣∣∣∣
r=1

− dφ̂a

dr

∣∣∣∣
r=1

− Q̂ − η̂ = 0, (37)

φ̂(1) − φ̂a(1) + η̂ = 0, (38)

−αε̄
dφ̂
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+ dûr

dr

∣∣∣∣
r=1

− ikQ̂ = sQ̂, (39)

ûr (1) = (s + ik)η̂, (40)

ûr,a(1) = sη̂, (41)

P̂ (1) − P̂a(1) − 2β1
dûr

dr
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+ 1
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(1 − m2 − k2)η̂
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(
ε̄
dφ̂
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)
= 0, (42)

β1

(
ikûr (1) + dûz

dr
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r=1

)
+ ikGeφ̂(1) + ikβ2ûr (1) = 0,

(43)

β1

(
dûθ

dr

∣∣∣∣
r=1

− ûθ (1) + imûr (1)

)
+ imGeφ̂(1) = 0. (44)

Here Eqs. (43) and (44) account for the tangential stress
balance between viscoelastic stresses (the terms involving
β1 or β2) and electrical traction (the terms involving Ge).
Additionally, the finite conditions at r = 0 can be written as

(i) for m = 0,

dP̂

dr

∣∣∣∣
r=0

= 0, ûr (0) = 0, ûθ (0) = 0,
dûz

dr

∣∣∣∣
r=0

= 0, (45)

(ii) for m = 1,

P̂ (0) = 0, ûr (0) + i ûθ (0) = 0, ûz(0) = 0, (46)

(iii) for m � 2,

P̂ (0) = 0, ûr (0) = 0, ûθ (0) = 0, ûz(0) = 0. (47)

C. Eigenvalue problem

The linearized equations (27) and (33)–(35) together with
the boundary conditions (37)–(47) form a complicate eigen-
value problem, which is solved by the Chebyshev collocation
method [28]. Note that the present analysis is restricted to the
cases of We � 1 such that absolute instability does not occur.
Literature indicates that for uncharged Newtonian jets, the

transition between convective and absolute instabilities occurs
at about We = 4 [36], above which convective instability is
consistent with the temporal analysis. With this restriction,
we can set the axial wave number k to be a real number to
determine the complex eigenfrequency, s. The real part of s

(denoted by sr ) accounts for the growth rate of disturbance
while the imaginary part represents the wave frequency. For
a given set of parameters, only the eigenvalues with positive
growth rates are collected to depict the spectrum diagrams for
the unstable disturbances.

The numerical procedure firstly entails transforming the r

coordinate to the ξ domain through r = (ξ + 1)/2, and then
expanding the variables using N -terms Chebyshev polynomi-
als as the set of basis functions:

P̂ (ξ ) =
N∑

n=0

cn+1�n(ξ ), (48)

ûr (ξ ) =
N∑

n=0

cN+1+n+1�n(ξ ), (49)

ûθ (ξ ) =
N∑

n=0

c2N+2+n+1�n(ξ ), (50)

ûz(ξ ) =
N∑

n=0

c3N+3+n+1�n(ξ ), (51)

where �n(ξ ) = cos(n cos−1 ξ ). The expansion must exactly
satisfy the boundary conditions at ξ = ±1 and at the interior
points ξj = cos(jπ/N ) for j = 1 to N–1. This demand yields
a quadratic eigenvalue problem:

Mx = sKx + s2Dx, (52)

where x = {c1,c2, . . . ,c4N+4,η̂,A1,A2,A3} ∈ C4N+8, and M,
K, and D are the coefficient matrices. This problem is solvable
if we create the following matrix transformation:

A =
(

M 0
0 I

)
, B =

(
K D
I 0

)
, v =

(
x
sx

)
. (53)

Applying the transformation to Eq. (52) yields a generalized
eigenvalue problem:

Av = sBv. (54)

Using a common matrix algorithm with N ≈ 35, we can
obtain efficient and accurate solutions for such an eigenvalue
problem. The numerical code has been validated by plotting
the dispersion diagrams (i.e., the growth rate sr against the
wave numbers m and k) and comparing the results with those
in previous studies for the cases with or without electrification
and viscoelastic stresses. On the other hand, in the zero-tension
limit (i.e., β2 = 0), Eqs. (33)–(35) have analytic solutions,
which eventually yield a dispersion relation in the form of
a determinant of 8 × 8 matrix. Excellent agreements have
been obtained for more reduced cases, which also supports
the validation of the present numerical code.
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IV. RESULTS AND DISCUSSIONS

A. Parametric ranges and basic
dispersion diagrams

According to the literature [30,34,35], most Boger fluids
have viscosities varying in the range of 10−3–1 Pa s with
density ρ ≈ 103 kg/m3 and dielectric constant ε̄ ≈ 10. The
stress relaxation time λ1 varies from 10−2 to 10 s, depending
on the polymeric molecular weight and concentration. The
value of surface tension is on the order of 10−2 N/m, but can
be further reduced by mixing surfactants into the polymeric
solutions. The electrical conductivity of common polymer
solutions varies in the range of σ = 10−8 − 10−5 S/m.
Generally, adding a certain amount of salts or conducting
polymers into solutions can improve the conductivity up
to 1 S/m or more. The axial tension τ0 varies from 1 to
10 Pa, estimated via the formulation proposed by Bousfield
et al. [26] for a capillary tube of diameter d0 ≈ 1 mm. If
we consider that the jet has a radius a ≈ 10−4 m, surface
charge density Q0 ≈ 10−5 C/m2, and moves at velocity
U = 1 − 10 m/s through the gas medium of ρa ∼ 1 kg/m3;
the parametric ranges can be estimated as follows: Re =
10−1 − 103, We = 10 − 103, ρ̄ ≈ 10−3, Ge = 10−4 − 0.1,
α = 10−1 − 108, De = 102 − 106, Te = 10−5 − 10−2. More-
over, the rheological time ratio λ̃ must be smaller than 1
and usually varies from 0.1 to 0.5 [21,22,25]. Therefore, we

choose

[Re, We,ρ̄,Ge,α,ε̄,De,λ̃,Te]

= [10,102, 10−3, 0.03, 103, 10, 104,0.5,0.002] (55)

as the basic case for consideration. This case is relevant to a
charged jet of Boger fluids moving through the air. Based on
this case, we show dispersion diagrams for several limiting
cases in Fig. 2.

Firstly, Fig. 2(a) illustrates the case of uncharged Newtonian
jets obtained by setting Ge = De = Te = 0. In this case, only
the axisymmetric disturbances with axial wave number smaller
than 1 can grow, which allows the jet to break up into a stream
of drops of diameter comparable to the circumference of the
unperturbed jet. As the jet is electrified to a certain extent
as shown in Fig. 2(d), the long-wavelength axisymmetric
disturbances are suppressed while the short-wavelength ones
are triggered. Particularly, the nonaxisymmetric sinuous mode
(m = 1) has growth rates much higher than that of the
axisymmetric mode, allowing a bending motion to develop and
eventually causing the so-called bending instability observed
in most experiments of electrified jets. Figures 2(b) and 2(e)
illustrate the cases of viscoelastic jet in the absence of the
unrelaxed tension i.e. (Te = 0). Carefully comparing Figs. 2(b)
and 2(e) with Figs. 2(a) and 2(d), we find that the growth
rates of disturbances of viscoelastic jets are less stable than
those of their Newtonian counterparts no matter whether

FIG. 2. The growth rate sr vs the axial wave number k for the cases using the parameters listed in Eq. (55): (a) Uncharged Newtonian jet
(Ge = De = Te = 0), (b) uncharged viscoelastic jets without unrelaxed tension (Ge = Te = 0), (c) uncharged viscoelastic jet, (d) electrified
Newtonian jet (Te = De = 0), (e) electrified viscoelastic jet without unrelaxed tension (Te = 0), (f) electrified viscoelastic jet with nonzero
axial tension.
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the jet is electrified or not. Because the difference between
the viscoelastic and Newtonian cases in the figures is not
obvious, we list the maximum growth rate, srmax, and the
corresponding wave number kmax for each unstable mode
in Table II to manifest this difference. It is seen that the
maximum growth rate and the related axial wave number
of the most dangerous disturbance for the viscoelastic jets
with Te = 0 are larger than those for the Newtonian jets. For
example, the srmax of the case in Fig. 2(b) is 0.0174 larger
than the value in Fig. 2(a), 0.0115. This result implies that
the elastic force has a destabilizing effect on the onset of
instability. However, once the unrelaxed axial tension increases
to a certain magnitude, both the cutoff wave numbers and the
growth rate of disturbances will decrease as shown in Figs. 2(c)
and 2(f). In this situation, the elasticity becomes a factor that
suppresses the growth of disturbances.

After examining more cases, we found that the reduction
in the growth rate of the most dangerous disturbance for
the sinuous mode (m = 1) is not as drastic as those for the
other modes, thus relatively promoting the sinuous disturba
nces. The phenomenon should be responsible for the bending
motion observed in experiments. The physical reason for the
bending instability caused by electrification can be briefly
explained via a faked “spring-damping-bead” configuration,
which was first introduced by Reneker [37] to replace the
real flow motion equivalently in a segment of a charged
polymer jet as demonstrated in Fig. 3. In this faked system,
each two adjoining rigid balls, carrying unequal charges, are
connected by a string and a damper in series. We suppose that
the system is subjected to a small perturbation; this causes
the middle ball to slightly depart from its initial unperturbed
position. The electrostatic repulsive forces provided by the
adjoining balls yield a transverse component Fe which keeps
on pushing the middle ball outward. As the transverse
displacement increases, the strength of the outward resultant
force rises and thus enhances the perturbation. Meanwhile,
the aerodynamic drag Fa is always opposite to the flow;
the surface tension force Fs , acting as an inward transverse
force, suppresses the amplification of the perturbation; the
viscoelastic forces Fv caused by the stretching of springs and
dampers also provide resistance to the transverse motion. In
summary, the electrical force and the aerodynamic drag pro-
vide destabilizing mechanisms, while the viscoelastic forces

FIG. 3. (Color online) Mechanisms analysis for the growth
of the sinuous mode. The segment of a charged polymer jet
is supposed to be a spring-damping-bead system, in which the
resultant electric force (Fe) and the aerodynamic drag (Fa) appear
to enhance the perturbation, while the viscoelastic force (Fv) and
surface tension (Fs) provide resistance to the transverse motion.
The unbalanced forces yield a bending moment that twists the
segment.

and surface tension have stabilizing effects. Nevertheless, due
to the asymmetry of forces, a bending moment is inevitably
generated to twist the system especially when the elongations
of the strings are nonuniform. Such a resultant moment will
greatly enhance the perturbation and finally cause the bending
instability.

B. Elucidation of physical mechanisms via parametric study

Although the mechanical analysis via the faked spring-
damping-bead system has provided a logical explanation for
the cause of the bending instability, some instability behaviors
such as the phenomena associated with the beads-on-string
structure are still not clearly understood. Actually, the physical
mechanisms in the real flow system exhibit a complex
interaction much more than those described in the faked
system. This section aims to investigate the individual effect
of each physical parameter on the jet instability. The variations
of the maximum growth rate and the corresponding axial wave

TABLE II. The information of the most dangerous disturbance of each unstable mode for the cases illustrated in Fig. 2.

Type of jet Mode srmax kmax

Figure 2(a): Uncharged Newtonian jet m = 0 0.0115 0.41
Figure 2(b): Uncharged viscoelastic jet (Te = 0) m = 0 0.0174 0.50
Figure 2(c): Uncharged viscoelastic jet (Te = 0.002) m = 0 0.0039 0.24

m = 0 0.0264 1.56
Figure 2(d): Electrified Newtonian jet m = 1 0.0797 0.81

m = 2 0.0046 0.88
m = 0 0.0472 1.60

Figure 2(e): Electrified viscoelastic jet (Te = 0) m = 1 0.0884 1.00
m = 2 0.0090 0.92
m = 0 0.0250 1.50

Figure 2(f): Electrified viscoelastic jet (Te = 0.002) m = 1 0.0815 0.91
m = 2 0.0056 0.70
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number are examined based on the basic case [i.e., Eq. (55)] in
a wide parameter space so as to elucidate the instability nature
of physical mechanisms.

1. Surface tension (effect of the Weber number)

Surface tension is a mechanism that tends to minimize
the surface area of liquid, thus having the capability of
suppressing the growth of nonaxisymmetric disturbances
and simultaneously enhancing the axisymmetric disturbances
with axial wave number smaller than 1. Incipient theoretical
works [3] have indicated that if an unelectrified capillary
jet is subjected to surface-tension instability only, it tends
to axisymmetrically disintegrate into a stream of drops of
diameter comparable to the circumference of the unperturbed
jet. In this paper, surface tension is characterized by the Weber
number We. An increase in We implies a decrease in surface
tension. The surface tension for a liquid can be adjusted by
either adding surfactants or mixing a different percentage of
solvents such as ethanol. Once the surface tension declines,
other mechanisms will be promoted relatively and then cause a
change in the type of instability. Figure 4 depicts the variations
in the srmax and kmax with We for each unstable mode to
illustrate the transition of the dominant mode due to a change in
surface tension. Note that more nonaxisymmetric modes with
larger azimuthal wave numbers growing with We are not shown
in the figure for simplification. At low We, the surface tension

FIG. 4. The variation in (a) srmax, (b) kmax with the Weber number
We for each unstable mode in the basic case.

prevails over the other destabilizing mechanisms, causing the
predominance of long-wavelength axisymmetric disturbances.
As We increases, the growth rate of axisymmetric disturbances
decreases, while the short-wavelength disturbances begin to
emerge because of the stimulation by electrostatic forces. Note
that the maximum growth rate srmax of the axisymmetric mode
encounters a minimum value occurring at about We = 56.
This value is associated with GeWe ≈ 1, implying that the
electrical forces are expected to overcome the surface tension.
At a larger value of We the aerodynamic interaction also
overcomes the surface tension and destabilizes the system by
triggering more modes with higher axial and azimuthal wave
numbers.

In view of practical applications such as continuous ink-jet
printing, the axisymmetric breakup is desired for creating
uniform charged drops. On the other hand, the technology
involving the production of uniform and continuous thin fibers
must avoid the growth of axisymmetric disturbances as far
as possible because it is responsible for the formation of
the beads-on-string structure. Adding surfactants into polymer
solutions for reducing surface tension seems to be a feasible
way to suppress the growth of axisymmetric disturbances.
Nevertheless, according to the results illustrated in Fig. 4, the
amount of surfactant must be controlled in a certain range to
achieve good inhibition. The main reason is that an excessively
low surface tension may relatively promote the electrical force,
resulting in the growth of shorter-wavelength axisymmetric
disturbances. Only when the surface tension is adjusted to a
certain extent that the axisymmetric mode is stable much more
than other modes can one efficiently suppress the formation of
beads.

2. Aerodynamic interaction (effect of the density ratio)

The aerodynamic interaction, arising from the relative
motion between the jet and the gas, is another factor that
amplifies disturbances [38–40]. In this paper, the aerodynamic
interaction is characterized by ρ̄. For an uncharged Newtonian
fluid jet, the onset of nonaxisymmetric disturbances can occur
only when the aerodynamic drag overcomes the surface tension
(i.e., ρ̄ We > 1) if no other mechanism such as swirling effect
comes in to act together. In most experiments of electrified
viscoelastic jets, the value of ρ̄ We is smaller than unity and
thus the aerodynamic interaction is insignificant relative to
the electrified effects. As shown in Fig. 5, the growth rates
of disturbances for ρ̄ = 0.003 are slightly higher than those
for ρ̄ = 0. Figure 6 shows that as ρ̄ increases, a significant
amplification can be predicted and some modes with higher
azimuthal wave number can be stimulated by aerodynamic
effect by increasing ρ̄ up to 0.025, which is relevant to a gas
pressure of 25 atm. Therefore, the aerodynamic interaction
in normal atmospheric conditions is safely negligible for the
onset of instability. Nevertheless, the aerodynamic drag could
become significant when the jet encounters large nonlinear
deformation.

3. Electrical mechanisms

Electrical effects in the present problem include the relax-
ation of free charges and the influences of dielectric constant
and the electrical stresses, which are characterized respectively

016306-8



INSTABILITY OF A CHARGED NON-NEWTONIAN LIQUID JET PHYSICAL REVIEW E 85, 016306 (2012)

FIG. 5. (Color online) The growth rate vs the axial wave number
for the cases 1: ρ̄ = 0; 2: ρ̄ = 0.001; 3: ρ̄ = 0.003; 4: ρ̄ = 0.005; 5:
ρ̄ = 0.008.

by α, ε̄, and Ge. As illustrated in Sec. IV A, electrification
stimulates the growth of nonaxisymmetric disturbances with
short wavelength because the electrical stresses acting on the
liquid surface tend to destabilize the flow in such a manner
that the total electrical potential is minimized fastest. If the
electrical relaxation time is infinitely small, the response of
deformation to the transport of charges is instantaneous. On
the contrary, if the liquid is of poor conductivity, the finite
electrical relaxation time will delay the growth of disturbances.
López-Herrera et al. [13] had performed an axisymmetric

FIG. 6. The variation in (a) srmax, (b) kmax with the density ratio
ρ̄ for each unstable mode in the basic case.

FIG. 7. The variation in (a) srmax, (b) kmax with the dimensionless
electrical relaxation time α for each unstable mode in the basic case.

instability analysis for a charged Newtonian jet. Their results
show that a perfectly conducting liquid jet is less stable than
a dielectric fluid jet and the growth rate increases with an
increasing dielectric constant. In the present analysis, we
use the following parameters, [Re,We,ρ̄,Ge,ε̄,De,λ̃,Te] =
[10,100,10−3,0.006,2,0,0,0], to fit their result and get good
agreement. However, when we increase the electrical force to
Ge = 0.03, the influence of α on the maximum growth rate
becomes negligible as shown in Fig. 7. This result implies
that the effect of charge transport is important only when the
charge amount is not high.

To illustrate the effect of electrical force, we depict in
Fig. 8 the variations of srmax and kmax with Ge for each
unstable mode based on the basic case. It is noted that when
Ge is small, the surface tension dominates the instability
and only the axisymmetric mode grows. As Ge increases,
the electrical force gradually overcomes the surface tension
and lowers the axisymmetric mode. The nonaxisymmetric
mode m = 1 first merges at about Ge = 0.002, and then the
other modes with higher azimuthal wave numbers appear in
sequence at larger values of Ge and rapidly rise to dominate the
instability in terms of the disturbances with higher axial wave
number. In particular, the curve of srmax for the axisymmetric
mode possesses a minimum approximately at Ge = 0.01
(or GeWe = 1), where the electrical force balances off the
surface tension due to the same physical mechanism as that
discussed in Fig. 4. We also note that the kmax of m = 1
increases with increasing Ge, implying that the whipping
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FIG. 8. The variation in (a) srmax, (b) kmax with the dimensionless
electric force Ge for each unstable mode in the basic case.

wavelength will be shortened once the amount of charges
increases.

4. Viscoelastic effects

Viscoelastic effects include viscous damping and the
relaxation and storage of elastic energy. The viscous damping,
characterized by Re, is a mechanism that stabilizes the flow by
dissipating the kinetic energy of disturbances. According to the
studies on the instability of uncharged Newtonian jets [38,40],
an increase in viscosity significantly reduces the growth rates
of axisymmetric and nonaxisymmetric disturbances. Never-
theless, the damping effect for the sinuous mode is relatively
weak compared with the other modes. In certain conditions, the
sinuous mode may become predominant even for unelectrified
jets due to the bending moment induced by the nonuniform
distribution of the viscous forces. Figure 9 illustrates the effect
of Reynolds number on the instability behaviors. It is found
that when the Reynolds number decreases, the growth rate of
the sinuous mode m = 1 diminishes slightly but the modes
m = 0 and m = 2 decrease rapidly. As a result, an increase in
the liquid viscosity can be expected to eliminate the formation
of beads efficiently but promote the long-wavelength sinuous
motion relatively.

The fluid elasticity can play a destabilizing or stabilizing
role depending on whether it relaxes or stores the kinetic
energy. For a weakly elastic liquid (i.e., De < 100), the stress

FIG. 9. The variation in (a) srmax, (b) kmax with the Reynolds
number Re for each unstable mode in the basic case.

relaxation time is small such that the elastic stress generated
at the capillary tube can relax immediately after ejection from
the nozzle (i.e., Te = 0). On the other hand, for a viscoelastic
jet with high De, the unrelaxed tension can persist for a long
distance from the nozzle exit and inevitably affect the flow
motion.

Note that in Sec. III A, we have restricted De � 1 to obtain
a constant initial elastic tension in order that the instability
analysis is feasible. Figure 10 shows the variations of srmax and
kmax with Te for each unstable mode. As seen in this figure,
although the modes m = 0 and m = 2 are greatly suppressed
with increasing Te, the growth rate of the sinuous mode m = 1
is almost unchanged but the wavelength of the most unstable
disturbance is elongated. Consequently, an increase in the fluid
elasticity relatively promotes the predominance of sinuous
disturbance.

The last parameter considered is to examine the effect
of the rheological time ratio λ̃ which actually represents the
deformation retardation time if the number De is held constant.
Physically, the deformation retardation time accounts for the
response of strain to viscoelastic stresses. When the retardation
time is long, the response speed is slow and thus delays the
deformation. Indeed, our numerical calculation shows that
an increase in λ̃ has a stabilizing effect on the instability as
displayed in Fig. 11. Here again, changing the time ratio merely
affects the sinuous mode slightly and the related instability
characteristics are quite similar as the results illustrated in
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FIG. 10. The variation in (a) srmax, (b) kmax with Te for each
unstable mode in the basic case.

Figs. 9 and 10. In summary, an increase in either the viscosity
or the elasticity will greatly suppress the formation of beads
and simultaneously promote the bending motion in electrified
viscoelastic jets.

V. CONCLUSIONS

We have performed a detailed three-dimensional instability
analysis of a charged non-Newtonian jet. In the present study,
we employ the Oldroyd-B equation to describe the viscoelastic
behavior and use the leaky-dielectric model to account for the
charge transport process. The resultant eigenvalue problem
was solved by the Chebyshev collocation method with a matrix
transformation. The coupling between the electrical forces,
viscoelastic stresses, surface tension, and aerodynamic inter-
action was completely investigated via a series of parametric
analysis. The instability features are summarized as follows:

(1) Electrification inherently enhances the growth of ax-
isymmetric and nonaxisymmetric disturbances with shorter
wavelengths. In most situations, the sinuous mode has the
largest growth rate, which is responsible for the bending
motion developing downstream of the jet.

(2) While viscous damping stabilizes the jet by dissipating
the kinetic energy of disturbances, elastic stresses appear to
suppress the growth of disturbances by restoring and relaxing

FIG. 11. The variation in (a) srmax, (b) kmax with the rheological
time ratio λ̃ for each unstable mode in the basic case.

elastic energy. This implies that an increase in the polymer
concentration can efficiently delay the breakup of jets.

(3) Surface tension is the key mechanism that prefers to
enhance axisymmetric disturbances with wavelength compa-
rable to the jet circumference while suppressing all of the non-
axisymmetric disturbances. The growth of the axisymmetric
mode is responsible for the formation of the beads-on-strings
structure. Decreasing surface tension has been regarded as a
feasible way to suppress the formation of beads. However,
excessively low surface tension may relatively promote the
electrical force to amplify the short-wavelength axisymmetric
disturbances. As a result, only when the electrical force
balances off the surface tension, can the beads be eliminated
completely.

(4) Aerodynamic interaction, arising from the relative
motion between the jet and the surrounding gas, has a
purely destabilizing effect on the instability. However, in the
presence of electrical stresses, its effect becomes relatively
insignificant.

The present analysis has provided a fundamental under-
standing of the instability phenomena occurring in electrified
viscoelastic jets. However, these results are restricted to the
cases associated with jets driven by hydrodynamic pressure,
which are applicable mainly for continuous ink-jet printing.
For technologies involving the production of nanofibers or
microdroplets via electrically driven jets ejected from the
so-called Taylor cone, the effect of axial electric field must
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be taken into account. In the future, a three-dimensional
instability analysis coupled with the effect of axial electric
field on the flow field in the Taylor cone should be an
imperative work that benefits the development of electrified
jet technology.
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