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Nonlinear bubble dynamics of cavitation
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For cavitation clouds generated in a standing sound wave driven by an ultrasonic horn, the nonlinear acoustic
wave equation governing cavitation dynamics is numerically solved together with the bubble motion equation
under an approximation. This conceptual calculation can qualitatively reproduce the observed characteristics of
cavitation.
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I. INTRODUCTION

Acoustic cavitation is a complicated phenomenon. In liquid,
some individual micron-sized gas bubbles generated by an
intense ultrasonic wave assemble to form luminescent gas
bubble clouds [1,2]. Driven by the intense acoustic wave,
every bubble vibrates violently by expanding with the negative
sound pressure phase and rapidly contracting with the positive
sound pressure phase and rebounding. These vibrating bubbles
produce acoustic radiation pressure and become sources of
sound waves. When a bubble is compressed to its minimum
size, its very high internal temperature and pressure cause
it to flash. The study of single-bubble vibration in addition
to the interaction between bubbles may achieve a good
understanding of cavitation phenomena [3]. Unfortunately,
this solution is very difficult for practical use. We have
to count on the nonlinear sound wave equation in bubbly
liquid to study cavitation dynamics [4]. In the present paper,
we recur to a theoretical framework for studying cavitation
dynamics. It consists of a nonlinear sound wave equation in an
acoustic cavitation environment together with the bubble radial

motion equation. Under an appropriate approximation, we
numerically solve the equations and compare the calculation
to observation.

II. THEORY AND FORMULAS

The bubbles interact with each other through the radiation
pressure. For any time t and any place �r , the radiation pressure
contributed by the cavitation bubbles [5] is

pint(�r,t) = ρl

∑
j

[
2Rj (t ′)Ṙ2

j (t ′) + R2
j (t ′)R̈j (t ′)

]∣∣
t ′=t− |�r−�rj |

cl

|�r − �rj | ,

(1)

where Rj (t) is the radius of the j th bubble placed at �rj , ρl

is the liquid density, and cl is the sound speed in the liquid
at ambient temperature and pressure (1 atm). Equation (1) is
only valid for |�r − �rj | � Rj (t), which is equivalent to a dilute
bubble distribution. If the bubble number density is assumed to
be N (�r,t), then the right terms in Eq. (1) may be approximately
expressed as the integral

pint(�r,t) = ρl

∫ N (�r ′,t ′)[2R(�r ′,t ′)Ṙ2(�r ′,t ′) + R2(�r ′,t ′)R̈(�r ′,t ′)]|
t ′=t− |�r−�r′ |

cl

|�r − �r ′| dV ′. (2)

We can make the analogy pint → electric potential and
ρlN (2RṘ2 + R2R̈) → electric charge density. Then, referring
to the electromagnetic equation, we find that the expression (2)
is the solution to the equation

∇2pint − 1

c2
l

∂2pint

∂t2
= −4πρlN (2RṘ2 + R2R̈). (3)

If there is no cavitation, the sound wave equation is

∇2p − 1

c2
l

∂2p

∂t2
= 0. (4)

Combining Eqs. (3) and (4), the acoustic wave equation in
the cavitation environment may be expressed as

∇2p − 1

c2
l

∂2p

∂t2
= −4πρlN (2RṘ2 + R2R̈), (5)

where p is the total acoustic wave pressure. Equation (5)
was derived earlier with the equations of fluid mechanics

under sound wave approximation [6]. Usually, there are many
different kinds of bubbles in the cloud, so we may sort the
number density of the bubble with the ambient radius R0i(�r,t)
as Ni(�r,t) and the bubble radius Ri(�r,t). Then, Eq. (5) turns
to

∇2p − 1

c2
l

∂2p

∂t2
= −4πρl

∑
i

Ni

(
2RiṘ

2
i + R2

i R̈i

)
. (6)

To solve Eq. (6) we need to know Ri(�r,t). In an acoustic
cavitation environment, bubbles usually move slowly [2].
Then, the ith bubble vibration equation should be [7,8]

(1 − Mi)RiR̈i + 3

2

(
1 − Mi

3

)
Ṙ2

i

= (1 + Mi)
1

ρl

[
pli − p∞ − psi

(
t + tRi

)] + tRi

ρl

ṗli − pint

ρl

,

(7)
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where p∞ is the ambient pressure, psi(t) is the driving acoustic
pressure at the ith bubble, ω is the angular frequency of
the sound wave, tRi

≡ Ri/cl , pli = pgi(Ri,t) − 4ηṘi/Ri −
2σ/Ri is the pressure on the liquid side of the ith bubble
wall, pgi(R,t) is the pressure on the gas side of the ith bubble
wall, η is the shear viscosity, and σ is the surface tension
coefficient of the liquid. Mi ≡ Ṙi/cl is the bubble-wall Mach
number. In the present work, we focus on the bubble dynamic
processes. This allows us to use an isothermal approximation
in the calculation (i.e., assume the pressure inside a bubble
to bepg = μR̄T

V −b
+ pv , where μ is the gas mole number, R̄ is

the gas constant, V is the bubble volume, b is the van der
Waals hard core volume, andpv is the vapor pressure of the
surrounding liquid). For the case of Mi = 0 in Eq. (7), since
tRi

∼ 0, we have

RiR̈i + 3

2
Ṙ2

i = pli − p

ρl

+ tRi

ρl

ṗli , (8)

where p = p∞ + psi(t) + pint is the total acoustic pressure in
Eq. (6). On the other hand, Eqs. (7) and (8) are only valid for
Mi 
 1. With the analogy of Eq. (7), we may expect a slightly
modified form of bubble pulsation equation to the first order
of Mi is

(1 − Mi)RiR̈i + 3

2

(
1 − Mi

3

)
Ṙ2

i = (1 + Mi)
pli − p

ρl

+ tRi

ρl

ṗli .

(9)

Thus, the sound wave in the cavitation environment is
governed by Eqs. (6) and (9). For a few simple cases, such
as a small bubble cluster or bubble filament, the radiation
pressure may be approximately calculated by Eq. (1) [8,9]. In
most other cases, however, we have to solve Eqs. (6) and (9),
which are not only more fundamental but also more practical.

III. NUMERICAL RESULTS AND DISCUSSIONS

Let us consider a case with a cylindrical ultrasonic horn
as the source of sound waves with its tip immersed in water
contained in a cylindrical flask. Suppose the diameter of the
flask is 8 cm, the water column is 16-cm high, and the horn
diameter is 1 cm. The tip of the horn dips 2 cm into the
top center surface of the water. The sound pressure is input
sinusoidally at the horn tip surfaceps = −pa sin ωt . In our
case, the frequency is set to 20 kHz. Since Ni is unknown, we
have to make an approximation to solve Eqs. (6) and (9). We
assume that only one kind of bubble forms cavitation clouds,
that the ambient radius R0i = R0 for all bubbles, and we
typically set R0 = 4.5μm. These bubbles are homogeneously
distributed in the cavitation clouds and do not move. We
also assume there are no bubbles outside the clouds. These
assumptions simplify Eq. (6) to Eq. (5) and allow us to ignore
the subscript i in Eq. (9). This approximation may seem too
simple to be realistic. However, when the calculated results are
compared to observation, the main physics seems preserved in
the approximation.

For highly degassed water at 20◦ C, suppose the amplitude
of the driving acoustic pressurepa = 2.5 atm is not intense
enough to induce cavitation. Then, solving Eq. (4), we obtain
a standing sound wave. In the calculation, we use cylindrical
coordinates with the downward z axis coinciding with the

FIG. 1. Contour of the relative intensity of sound wave for pa =
2.5 atm in water in the absence of cavitation. The black block is the
horn.

symmetric axis of the flask, and the horn tip surface is set
at z = 0. If we focus on the axially symmetric solutions
(axially asymmetric solutions are possible for a nonlinear
system), the problem may be simplified to two dimensions.
To describe the sound wave field, the relative intensity of
sound wave at any time t and any place �r is set as I (�r,t) =
2
∫ t+T

t
[p(�r,t ′)/p∞ − 1]2dt ′/T , where T is the period of the

driving acoustic wave. Figure 1 shows the distribution of the
relative intensity at a vibrating period.

For less degassed water, pa = 2.5 atm usually causes
cavitation when the number density of bubble N relates to the
sound pressure p in a very complicated way. In our calculation,
we simply let N rely on the calculated sound pressure when

FIG. 2. (Color online) (a) Color-fill (grayscale) contour of the
relative intensity of sound wave in water for pa = 2.5 atm, N =
1.0 × 109m−3. (b) Color-fill (grayscale) contour of RM/R0. The black
block is the horn.
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FIG. 3. For the case of Fig. 2, (a) the acoustic pressure p and
(b) R/R0 at different places on the axis (r = 0) as a function of time.

cavitation is ignored. We assume that bubbles survive when the
amplitude of sound pressure without cavitation is larger than
1.0 atm, and the bubble density N is set to be nonzero, which in
Fig. 1 corresponds to the region with a relative intensity larger
than 1.0. Suppose N = 1.0 × 109m−3(the average distance
between bubbles is 1 mm). Then, we can numerically solve
Eqs. (5) and (9) (ignoring the subscript i). Figure 2(a) shows
that the relative intensity of the sound wave is suppressed by
cavitation, specifically in the high-intensity region, compared
to Fig. 1. Such a standing acoustic wave drives every bubble in
the cavitation clouds, which disturbs the sound wave in return.
The violent extent of the bubble motion is usually related to the
ratio of the maximum bubble radius to the ambient radius (i.e.,
RM/R0) and is also related to the brightness of the bubble. In
water, if RM/R0< 8, the bubble is too dim to observe its flash,
and if RM/R0> 12, the bubble is bright. Figure 2(b) shows
that the vicinity of the horn tip surface is the only area where
lightening bubbles are observed. For more details of the sound

FIG. 4. (Color online) (a) Color-fill (grayscale) contour of the
relative intensity of sound wave in water for pa = 2.5 atm, N =
5.0 × 109m−3. (b) Color-fill (grayscale) contour of RM/R0. The black
block is the horn.

FIG. 5. (Color online) Color-fill (grayscale) contour of RM/R0 in
vicinity of the horn (black blocks) tip surface in water, for the cases
(a) pa = 2.5 atm, N = 1.0 × 109m−3, (b) pa = 2.5 atm, N = 5.0 ×
109m−3, (c) pa = 3.0 atm, N = 5.0 × 109m−3, and (d) pa = 3.5 atm,
N = 5.0 × 1010m−3.

wave and the bubble motion, we plot the acoustic pressure p,
in Fig. 3(a), and the ratio of the bubble radius to its ambient
radius R/R0, in Fig. 3(b), at different points of the axis (r =
0) as functions of time. Though the driving signal is purely
sinusoidal, the sound wave in the cavitation environment is
seriously distorted. The curve profile of R/R0 as a function
of time is also very different from the single-bubble case
except for a bubble in the vicinity of the horn tip surface.
We also find that the times at which a bubble is compressed
to its minimum size are different for bubbles at different
places (i.e., bubbles in different places flash at different
times).

FIG. 6. (Color online) Color-fill (grayscale) contour of RM/R0 in
vicinity of the horn (black block) tip surface in strong sulfuric acid,
in the cases (a) pa = 4.0 atm, N = 1.0 × 109m−3, (b) pa = 5.0 atm,
N = 2.0 × 109m−3, and (c) pa = 6.0 atm, N = 5.0 × 1010m−3. The
sulfuric acid column is 10-cm high, and the horn dips 2.5 cm into
the top center surface of the sulfuric acid. The parameters for strong
sulfuric acid used in the calculation are as follows: the density is
1778.6 kg/m3, the sound speed is 1000 m/s, the surface tension
coefficient is 0.0681 N/m and the shear viscosity is 0.0237N s/m2.
Other conditions are the same as in water.
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FIG. 7. Acoustic pressure p (left) and R/R0 (right) at r = 0.45 cm
and z = 0.1 cm as functions of time. (a)–(d) correspond to the same
cases as in Fig. 5.

If the gas concentration in water is higher, there are more
cavitation bubbles. Suppose N = 5.0 × 109m−3. Comparing
Fig. 4 to Fig. 2 (N = 1.0 × 109m−3), we see that the sound
wave intensity weakens a little but the violent extent of the
bubble motion is dramatically decreased, which shows that
the input power is spread by a larger number of bubbles. We
may roughly investigate how the light emission of bubbles
depends on the bubble density in the cavitation clouds and the
input intensity of the driving acoustic wave. Figure 5 shows
the contour of RM/R0 in the vicinity of the horn tip surface
for various pa and N . It is apparent that the bubble density N

suppresses the lightening area in the cavitation cloud. Since N

increases with pa , a simple increase of the input power may
not always favor the luminosity of a cavitation cloud. A similar
phenomenon occurs in strong sulfuric acid as well. Figure 6
shows the contour of RM/R0 in the vicinity of the horn tip
surface for three different pa and N in strong sulfuric acid
at 20◦ C. Since RM/R0 roughly reflects the luminosity of the
bubble, Fig. 6 may be thought to be qualitatively consistent
with observation [2]. To further understand how the sound
pressure and the bubble radius at the light-emitting region
change with time and how they behave with varying pa and

FIG. 8. Power spectral density of sound pressure in water for the
case of Fig. 2. (a) at P : r = 3.95 cm, z = 6 cm, (b) at Q: r = 0,
z = 13.95 cm.

FIG. 9. Power spectral density of sound pressure in water for the
case of Fig. 5(d). (a) at P : r = 3.95 cm, z = 6 cm, (b) at Q: r = 0,
z = 13.95 cm.

N , Fig. 7 shows p and R/R0 at r = 0.45 cm and z = 0.1 cm as
functions of time for the cases in Fig. 5. We see that for pa =
3.5 atm and N = 5.0 × 1010m−3 the sound wave is no longer
sinusoidal at all, and R/R0 represents symmetric profile, such
a phenomenon was observed experimentally [10].

The analysis of the acoustic signal is an important mean
in the experiment [11]. The next calculation provides the
power density of the sound pressure calculated by Eq. (5).
We choose two points in the sound wave field; the point P is
at a lateral middle of the water, r = 3.95 cm and z = 6 cm,
and the other point Q is at the bottom of the water, r = 0 and
z = 13.95 cm. Figure 8(a) shows the power spectral density
for the case in Fig. 2. We see prominent multiple-frequency
components in the weak noise background, but the basic
frequency is still dominant. Therefore, the acoustic pressure
roughly retains good periodicity. However, at Q [see Fig. 8(b)],
multiple-frequency components as well as noise are stronger
at high frequency, which represents strong nonlinearity. In our
calculation we also notice a cutoff frequency at ∼1.33 MHz
for those multiples and noises that is independent of R0, pa,

and N , but slightly depends on ω and the flask dimension.
Occasionally, for pa = 2.0 atm and N = 2.0 × 109m−3, we
observe bifurcation at low frequency. If the input signal is
stronger and there are more cavitation bubbles, both at P

and Q those multiples emerge into the noise background and
the sound pressure almost loses its periodicity and becomes
chaotic (see Fig. 9). Since the equation is nonlinear, both
bifurcation and chaos [11] are natural.

IV. CONCLUSION

The nonlinear sound wave equation together with the
bubble pulsation equation may describe cavitation dynamics.
However, this theoretical framework does not include a method
of determining the parameters Ni , which was simply set to be
some possible values in the numerical trials. Therefore, the
calculation is only conceptual, not simulative. Determining the
optimum Ni is finding the equation of state of the cavitation
cloud, which is an open problem. Furthermore, though the
bubbles move slowly in cavitation clouds and their direct effect
on the sound wave may be negligible, their motion affects
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Ni . We cannot yet determine whether this indirect effect is
negligible. However, the main physics is indeed included in
Eqs. (6) and (9), which can correctly describe the dynamics of
cavitation in our approximate calculation.
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