
PHYSICAL REVIEW E 85, 016304 (2012)

Generalized nonequilibrium capillary relations for two-phase flow through heterogeneous media
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2Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia
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For two-phase flow in porous media, the natural medium heterogeneity necessarily gives rise to capillary
nonequilibrium effects. The relaxation to the equilibrium is a slow process which should be introduced in
macroscopic flow models. Many nonequilibrium models are based on a phenomenological approach. At the same
time there exists a rigorous mathematical way to develop the nonequilibrium equations. Its formalism, developed
by Bourgeat and Panfilov [Computational Geosciences 2, 191 (1998)], is based on the homogenization of
the microscale flow equations over medium heterogeneities. In contrast with the mentioned paper, in which the
case of a sufficiently fast relaxation was analyzed, we consider the case of long relaxation, which leads to the
appearance of long-term memory on the macroscale. Due to coupling between the nonlinearity and nonlocality
in time, the macroscopic model remains, however, incompletely homogenized, in the general case. At the same
time, frequently only the relationship for the nonequilibrium capillary pressure is of interest for applications.
In the present paper, we obtain such an exact relationship in two different independent forms for the case of
long-term memory. This relationship is more general than that obtained by Bourgeat and Panfilov. In addition, we
prove the comparison theorem which determines the upper and lower bounds for the macroscopic model. These
bounds represent linear flow models, which are completely homogenized. The results obtained are illustrated by
numerical simulations.
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I. INTRODUCTION

Among the various new approaches used in an attempt to
improve the classical theory of two-phase flow in porous media
and which are now in fast development, the concept of capillary
nonequilibrium plays one of the most important roles. For
porous media, it was first introduced by Barenblatt [1] and then
developed further by a number of authors. It is closely related
to the concept of capillary movement, self-redistribution of
phases in space, and medium heterogeneity.

The objective of the present paper is to obtain a general
relationship for the nonequilibrium capillary pressure, which
is considered now as the main problem of the theory. The
phenomenological approaches study only the weak nonequi-
librium, which may be described by some relaxation equations.
However, even in this case the phenomenological theory is
incapable of answering the question of how the nonlinearity
of two-phase flow influences the relaxation process and
its parameters. The case of high nonequilibrium should be
analyzed in a different way. In the present paper we study it
by means of the homogenization techniques.

A. Capillary nonequilibrium, capillary relaxation,
and self-redistribution of phases

For a two-phase fluid, the interfaces between the phases
generate the field of surface forces called the capillary forces
which act on both fluids. The free surface of water in a thin

*brahim.amaziane@univ-pau.fr
†pina.milisic@fer.hr
‡mikhail.panfilov@ensem.inpl-nancy.fr
§leonid.pankratov@univ-pau.fr

vertical glass tube immersed in a basin is the simplest classical
example illustrating such a situation. It is well known that
the level of water in the tube is usually different from the
water table in the basin, which proves the existence of a
capillary force applied to the interface between water and air in
the tube. This force is proportional to the curvature of the
interface and may be positive, negative, or nil. For a general
interface geometry, the capillary force is applied to any point
of the surface and is determined by its local curvature. Thus, a
drop of liquid surrounded by another liquid or gas undergoes
the action of a vector field of surface capillary forces, as shown
in Fig. 1.

If the resulting force is nonzero, as in Fig. 1(b), then the
drop is in a nonequilibrium state and will deform its shape
with the objective of reaching the equilibrium [Fig. 1(a)].
For a fluid in the bulk, the relaxation to the equilibrium
represents a very fast process of drop deformation which
may be practically neglected. However, in porous media, the
situation is sufficiently different.

In a thin pore tube two fluid phases create the special type
of interfaces shown in Fig. 2 and called the menisci. They
are the curvilinear surfaces crossing the tube, whose curvature
is inversely proportional to the tube radius. Thus, the thinner
the tube, the higher the capillary force applied to the meniscus.
The equilibrium shape of the phase cluster is determined by the
equilibrium between the capillary forces applied to all menisci.
In the homogeneous medium shown in Fig. 2, practically any
imaginable shape of phase cluster is in equilibrium [as seen,
the resulting horizontal and vertical forces are zero for both
examples; see Figs. 2(a) and 2(b)].

However, a heterogeneous porous medium causes capillary
nonequilibrium. The medium shown in Fig. 3 consists of large
and small tubes. As seen, the gray fluid in Fig. 3(a) undergoes a
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AMAZIANE, MILIŠIĆ, PANFILOV, AND PANKRATOV PHYSICAL REVIEW E 85, 016304 (2012)

FIG. 1. Capillary forces applied to the interface between two
fluids (shown by arrows): (a) equilibrium case and (b) nonequilibrium
shape of the liquid drop.

force which pushes it to the right until it reaches the equilibrium
configuration shown in Fig. 3(b).

Therefore, the relaxation to the equilibrium in a porous
medium state represents the fluid flow within the pore network
(and not the simple deformation as in the bulk). As the flow in
thin tubes is highly retarded by the friction against the walls,
the capillary relaxation in a porous medium is expected to be
slow, so it cannot be neglected. Moreover, the equilibrium state
seems to be difficult to reach. During the process of relaxation
the fluid cluster permanently changes its geometry, which
means that the macroscopic hydrodynamic characteristics of
both fluids should also change in time. Already in the 1950s it
was known that the geometry of a phase cluster may change
the flow characteristics at the same fixed phase saturation
S [2]. Thus, the macroscopic characteristics of two-phase
flow should depend explicitly on time (and not only on the
saturation).

This was confirmed by a number of experimental and nu-
merical data obtained by scientists and petroleum engineers. In
a number of papers published long ago, the main characteristic
functions of two-phase flow, such as the relative permeabilities
(RP) and the capillary pressure pc(S) (PC), were shown to
be variable in time, with a very slow stabilization [3–5].
These authors calculated numerically RP and PC by using the
network models of porous media. The same result was obtained
experimentally by Topp et al. [6], who measured pc(S)
curves for quasistatic, steady state, and dynamic conditions.
The capillary pressure was shown to be dependent on phase
saturation S and time.

FIG. 2. Gray and white fluids in a homogeneous porous medium.
Two different phase clusters are in equilibrium.

FIG. 3. Gray and white fluids in a heterogeneous porous medium:
(a) nonequilibrium phase repartition and (b) equilibrium phase
repartition.

However, this conclusion is in clear contradiction with the
classical two-phase theory which is based on the assumption of
the local capillary equilibrium. By definition, any equilibrium
state is described by thermodynamic relationships. Further-
more, the characteristic functions of two-phase flow are time
and rate independent. In the classical theory, they depend on
the phase saturation S only.

Thus, the capillary nonequilibrium causes the self-
redistribution of both phases in space. The time of capillary
relaxation to the equilibrium state is the characteristic time of
fluid self-redistribution within the porous network.

This short physical analysis determines several approaches
through which the nonequilibrium might be introduced in
the macroscopic flow models: (i) through the introduction
of the concept of self-redistribution of phases, (ii) through
the introduction of medium heterogeneity, (iii) through the
introduction of interface movement, and so on. They are all
practically equivalent to one another and, hence, reduce to the
similar mathematical formalism.

B. Relaxation model of self-redistribution of phases in space

The first series of papers which developed the time-
dependent, nonequilibrium capillary relationship was done
by Barenblatt [1] with modifications in Refs. [7,8]. The
authors accepted that the relative permeabilities and the
capillary pressure depend on an apparent saturation σ which
corresponds to the equilibrium value that might be reached
by the system during the time τ ∗ after phase redistribution in
space. Time τ ∗ is the phase redistribution time and is saturation
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dependent. The difference between the true saturation S and
σ is determined only by the local rate of saturation variation
∂S/∂t , and this dependence was assumed to be linear:

S − σ = −τ�

∂S

∂t
. (I.1)

Assuming that the relaxation τ� is sufficiently small (a weak
nonequilibrium) one can obtain for capillary pressure or any
other function of saturation:

pc(S) = pc(σ ) − τ�p
′
c(σ )

∂S

∂t
+ · · · , (I.2)

or

pdyn
c − peq

c = −τ (S)
∂S

∂t
, (I.3)

where p
dyn
c and p

eq
c are the nonequilibrium (dynamic) and

equilibrium (static) capillary pressures, and τ is the new kinetic
(or relaxation) time which depends on the saturation.

This fundamental relationship shows that the capillary
pressure becomes rate dependent, or “dynamic.”

In Ref. [8] the authors defined the redistribution time as the
characteristic time of rearrangement of the phase clusters and
consequent modification of their flow properties. Namely, any
change of the capillary pressure results in the rearrangement of
both phase clusters resulting in changes of their connectivity
and their overall hydraulic conductances for the fluids flowing
in them. The value of the redistribution time τ depends on
the saturation. For example, at low saturation, water flows
through the narrowest clusters in the corners of pore space,
and the capillary pressure is high. Therefore, the time needed
to reconfigure water distribution is small and the capillary
relaxation time goes to zero as the water saturation approaches
its minimal value. On the other side, as the oil saturation is
approaching its residual value, the capillary forces weaken
and the connectivity of oil grows sparse. Consequently, the
redistribution time increases infinitely. Finally, according to
Barenblatt and Vinichenko, the relaxation time between the
endpoint saturations is roughly inversely proportional to the
derivative of capillary pressure, which is close to a constant
value.

The theoretical justification of the heuristic relation-
ship (I.3) has been obtained in several papers by using
the approach of nonequilibrium thermodynamics: first by
Nikolaevsky et al. [9], and later by Marle [10]. More precisely,
the relationship for entropy production was formulated in the
bilinear form, which consists of the products between ther-
modynamic forces and fluxes, and by assuming the Onsager
linear relationships between the forces and fluxes of the same
tensor dimension. The development of the relationship for the
entropy production is based on the conservation equations and
several assumptions regarding the microscopic behavior of the
system, which determines the fact that various authors obtain
frequently different results. In particular, [11] used the same
approach as [10] but obtained a slightly different definition for
the relaxation time as well as for the static capillary pressure.
He also gave an original interpretation for the kinetic term
τ∂tS by considering it as the contribution of the viscous forces
to the pressure drop.

The attempts to define the relaxation time τ were performed
in Refs. [12–14], but the data obtained concerned a single

porous medium. Using the experimental evidence Stauffer [15]
came up with the relationship (I.3). Moreover, he suggested
a formula for the coefficient of proportionality which was
considered to be constant, whereas τ in Eq. (I.3) is saturation
dependent. Reference [16] investigated experimental aspects
of the dependence of the capillary pressure on the flow rate
for two-phase (water-oil) flow in porous media. The authors
suggested a relationship identical to (I.3). The dynamic term
τ∂tS was interpreted as the contribution of the viscous forces
to the pressure drops, because the parameter τ has exactly the
dimensions of viscosity.

General principles of construction of nonequilibrium mod-
els which remember their history were studied by Entov [17].
The author extended the ideas of Barenblatt [1] concerning the
noninstantaneous phase redistribution in space by additionally
including its dependence on the direction of fluid displace-
ment. As a result, the process should depend on all its history
and should be described by integral operators. However, this
paper has not suggested any concrete mathematical model.
Note that the dependence of the characteristics of displacement
on its history were studied by Dodd and Kiel [18] where the
long-term-memory effects were taken into the account in the
numerical model of capillary networks.

C. Relaxation model of active and passive phases

In a series of papers, other physical assumptions were
used to develop the nonequilibrium model. For each phase,
the existence of an active and passive (trapped in pores)
component was assumed, with an exchange between them
(i.e., the probable immobilization of the active phase and vice
versa).

Barenblatt and Entov [19] assumed this exchange process
to be noninstantaneous and its rate to be proportional to the
difference between the active and passive saturations. After
mathematical developments, it was shown that this approach
yields the same formal mathematical relationship (I.3).

Thus, different physical mechanisms lead to the same math-
ematical model. The physical interpretation of the parameter
τ becomes the exchange time.

The extremal version of this model was proposed by
Zarubin [20], who eliminated entirely the concept of RP and
PC and considered the exchange terms between the passive
and active components as an alternative to them.

The same ideas were presented by Bulygin [21] in terms
of the dynamic effective porosity with respect to the active
component. This dynamic porosity was studied experimentally
by Pleshinskii et al. [22], but the data obtained were
insufficient to estimate the exchange time τ . The main defect
of this model consists of assuming the same time τ for phase
mobilization and trapping. However, these two processes are
nonsymmetric.

Another approach to obtain long-term memory was de-
veloped by Buevich and Mambetov [23] as the extension
of the exchange model. Instead of the passive and active
phase components, each phase was presented as the system of
several clusters of different scales. Between the clusters there
exists an exchange process. Only the exchange between the
neighboring cluster was kept. Each exchange was described
by the kinetic law. It was expected that the macroscale model
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would give integrodifferential equations. However, only the
general methodology was presented.

A more general model of the same class was suggested by
Hilfer et al. in Refs. [24–26] who introduced the connected and
disconnected elements of the same phase and the exchanges
between them. Since this concept is more general than the
active and passive phases, it enabled the authors to relate the
macroscopic two-phase-flow theory to the percolation theory.

D. Relaxation model with transport of interfaces

As mentioned above, saturation alone is insufficient to
describe the geometry of phase repartition in space. The
second parameter might be the specific area of the interface
between the phases, usually noted by a. In the Ref. [27], a
system with a number of interfaces was examined within the
framework of a phenomenological approach, and a new idea
was suggested to examine the highly dispersed interface as
an individual continuum, while formulating the mass- and
momentum-balance equations for it. To homogenize such a
system with multiple discontinuities, the author applied the
technique of distributions. In a particular case, the author
obtained the known model with cross relative permeabilities,
which proved the validity of this new approach.

In Refs. [28–30], the authors introduced two theoretical
concepts simultaneously: the additional continuum of Marle
representing the ensemble of interfaces, and Barenblatt’s
concept of the capillary nonequilibrium. By applying the
technique of nonequilibrium thermodynamics, the authors
obtained the new model of two-phase flow which contained
the same relationship (I.3), but in which the relaxation time
and the capillary pressures depend on the saturation S and the
specific area a:

pdyn
c − pstat

c = −τ (S,a)
∂S

∂t
. (I.4)

For the specific area a, the authors obtained the new
momentum-balance equation. The function a was also studied
on the basis of capillary network modeling. It was shown that
this function is related with the saturation, but not in a unique
way. The authors gave estimates of τ for air-water systems
(soil type: sand; type of experiment: drainage), as well as for
oil-water systems (soil type: sandstone or limestone; type of
experiment: imbibition) by interpreting their own data and the
data obtained by several authors in a period from 1967 to 1993.

The authors showed that their model was free of contra-
dictions proper for other publications based on the relaxation
model (I.3).

The more developed form of the model with transport of
interfaces was suggested in Ref. [31] where the system of
interfaces was considered as the new continuum (M contin-
uum) having specific physical properties and generating the
vector field of capillary forces associated with each individual
meniscus. Therefore, the concept of capillarity changed its
topological dimension. Such a model is qualitatively different
from the approach related to capillary nonequilibrium.

E. Relaxation model of flow in heterogeneous medium

The processes of fluid self-redistribution in space or the
exchange between passive and active components of fluid

have the same origin: medium heterogeneity on a small
scale. In particular, it is sufficient to consider a medium
consisting of two components: highly permeable fractures
and low-permeability inclusions (“blocks”). The higher the
difference in permeability of block and fractures, the higher
the capillary nonequilibrium will be.

Consequently, the general nonequilibrium model may
be obtained by homogenizing the flow in a heterogeneous
medium with highly different permeabilities of medium
components.

Such model was developed by Panfilov [32] and Bourgeat
and Panfilov [33] by the asymptotic homogenization of two-
phase flow in the medium described below. The blocks formed
a periodic field with a period ε which was much smaller
than the macroscopic size of the domain (a double-porosity
medium). The heterogeneity degree was described by two
parameters: the ratio ω of the low and high permeability
and the ratio δ of the mean value of the capillary pressure in
blocks versus that in fractures. The case of high heterogeneity,
ω ∼ ε2, is characterized by a significant non-neglecting
nonequilibrium, which leads to the appearance of the long-
term memory. In order to avoid the problem of coupling
between the nonlinearity of two-phase flow equations and
the long-term memory, the authors considered the case of
low nonequilibrium, intermediate between ω ∼ 1 and ω ∼ ε2;
more exactly, the following class of media was studied:

ω � 1, κ � δ � 1, with κ ≡ ε2

ω
. (I.5)

For this case they deduced the completely homogenized
model by formal asymptotic expansions. In particular, the fol-
lowing nonequilibrium relationship between capillary pressure
in fractures and blocks was obtained:

1

δ
pI

c(SI) − pII
c (SII) = −τ�(SI)

∂SI

∂t
, (I.6)

where SI and SII are the macroscopic water saturation in
blocks and fractures, respectively, and capillary pressure pc is
dimensionless (divided by the mean value of capillary pressure
in blocks and fractures, respectively) and of order unity.

Taking into account the fact that the process in blocks is
in nonequilibrium with respect to that in fractures, Eq. (I.6) is
evidently identical to (I.3).

The capillary relaxation term τ� depends on SI and is
proportional to κ = ε2/ω. It is defined through a cell problem
which has an explicit analytical solution when the block shape
is spherical.

In the same paper, the exact relationship for the relax-
ation time was obtained. The hypothesis of Barenblatt and
Vinichenko [8] mentioned in Sec. I B was not confirmed:
the dependence of τ on the saturation was shown to be a
nonmonotonic function increasing to infinity when the system
becomes single phase.

F. Models with long-term memory: complete and
incomplete homogenization

The mentioned relaxation models of various types describe
the case of weak nonequilibrium which leads to the appearance
of short-term memory in macroscopic models. This means
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that, strictly speaking, the model of (I.3) is valid only for
short relaxation time τ . Physically, this means that the process
remembers only the last instants of its history, but not the
entire history. The question that remains open, however, is what
mathematical model of capillary nonequilibrium for the case
of long-term memory should be proposed when the process
depends on the overall history. In this case the appearance of
some integrodifferential relationships is expected.

Long memory may appear in the model of flow in a
heterogeneous medium if the ratio ω between the block and the
fracture permeabilities were very small: ω ∼ ε2. For instance,
such a model appears in the case of single-phase flow in
double-porosity media [34,35]. This case corresponds to a
delay of the process in blocks that is longer than the case
described in Sec. I E. Attempts to develop a similar model for
two-phase flow have been undertaken in Refs. [36–38]. The
formal mathematical results were obtained, but in the form
which will we call “incompletely homogenized.”

We call a model incompletely homogenized if the fast y

and slow x variables are not totally separated. In contrast, a
completely homogenized model contains functions dependent
only on slow variables, while the coefficients are calculated
only through cell problems independent of slow variables.

The typical example of the incomplete homogenization
corresponds to the case when the zero approximation of
the asymptotic expansion over ε depends on y: Sε(x,y,t) =
S0(x,y,t) + ε · · · . In this case, the macroscopic model will
contain the function S0(x,y,t) whose dependence on y is
determined through a cell problem also containing the slow
variable x. The completely homogenized model might be
obtained if a transition from the function S0(x,y,t) to the
averaged function Ŝ(x,t) would be possible. Unfortunately, for
nonlinear problems, such a transition frequently does not exist.

An incompletely homogenized model, when rigorously
justified, is sufficient for mathematics, but it is useless for
physics in the majority of cases just due to the fact that the
microscopic and macroscopic scales are not separated and, as
the result, an incompletely homogenized model is not sim-
pler than the original microscopic equations. The difference
between completely and incompletely homogenized models
is the main difficulty which causes some incomprehension
between physicists and mathematicians.

In the case of double-porosity media, we will show that the
limit term of the asymptotic expansions S0(x,y,t) is given by
two functions: SII

0 (x,t) in fractures, which is the homogenized
value over fractures, and SI

0 (x,y,t), which is incompletely
homogenized in blocks. The saturation in blocks is described
by a nonlinear boundary-value cell problem for a nonlinear
diffusion equation which is interpreted in mechanics and
engineering as the capillary imbibition problem. This problem
has no analytical solutions, nor explicit integral representations
that could be used to transit from S0(x,y,t) to the averaged
saturation in blocks ŜI(x,t).

In these cases the unique way to develop completely
homogenized models consists of introducing some approxi-
mations or analyzing some asymptotic cases.

We will develop two types of complete models: the asymp-
totic case, which corresponds to the weak nonequilibrium, and
the linearized case, which corresponds to the upper and lower
bounds of the nonlinear homogenized model.

G. Models with long-term memory:
linearization and approximate solutions

An example of linearization for the long-memory case is
given in Ref. [39]. The author linearized the boundary-value
imbibition problem obtained for SI

0 (x,y,t) in blocks and solved
it analytically through Green’s functions, which leads to the
completely homogenized model. The admissibility of the
linearization was justified by the comparison of numerical
results obtained for the exact incompletely homogenized
model and the linearized approximation. It was shown that
the simulation results assess any loss in accuracy. Moreover,
it was shown that the simplified model approximates the
capillary effects quite well, which is important for our
analysis.

Such a linear problem in blocks was solved and used to
close the macroscopic flow model in Ref. [40].

Much more recent papers in the field of petroleum engi-
neering were devoted to finding good approximations for the
solution of the problem in blocks. The main attention focused
on the exchange term between blocks and fractures and not
on the capillary nonequilibrium relationship, although these
two concepts are closely related with one another. Indeed,
the exchange rate q is equal to φI∂tS

I where SI is the mean
saturation in a block. Using the main formula (I.3), we obtain
the relationships for the difference between the equilibrium
and dynamic capillary pressure: p

dyn
c − pstat

c = −qτ/φI.
The relationship for the exchange rate q was obtained

from the approximative analytical solution of the linearized
one-dimensional (1D) problem of imbibition into a block.
Such a solution of the Dirichlet problem for the linear
diffusion equation represents a Fourier series of a function
exponentially decreasing in time. The simplest approximation
consists of keeping only the main eigenmode, which leads to
the relationship suggested by Skvortsov [41]:

q(x,t) � N0
exp (−λ0 [t−t0(x)])√

t−t0(x)
, t > t0(x),

where λ0 is the main eigenvalue of the Laplace operator,
and N0 is a constant parameter. Function t0(x) represents the
moment at which the displacement front reaches the point
x. This function may be obtained as the solution of the
Buckley-Leverett problem in a homogeneous medium without
exchange processes.

Other correlations were suggested in Refs. [42,43]. They
represent q as the difference between two exponential func-
tions responsible respectively for two inverse processes: the
transfer of the cumulative oil mass from the block center
towards the interface, and the transfer of the same oil mass
in the opposite direction, which have different eigentimes. In
Ref. [44] the rate q was presented in the form of the convolution
of the mentioned difference between two exponential functions
with the derivative ∂tS.

The simplest exponential correlation was suggested in
Ref. [45].

The development of the nonequilibrium theory was suc-
cessful because it explained several phenomena. For instance,
the nonequilibrium theory forecasted that oil recovery from
reservoir might be a nonmonotonic function of the recovery
rate as it was observed in practice. On the other hand, this was
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not explained by the classical theory, which is invariant with
respect to the flow rate.

H. Some theoretical and numerical results concerning
dynamic capillary pressure

Recently, the mathematical study of the immiscible two-
phase flow model in porous media with a dynamic capillary
pressure-saturation relationship started to attract the interest
of the scientific community. These studies are based either on
the full two-phase flow model, or on Richards’ equation which
is the limiting case of two-phase flow when the viscosity and
density of one phase are assumed to be zero (flow of water and
air).

First, we mention a series of papers devoted to Richards’
model with the nonequilibrium term in the form of the third-
order mixed derivative:

∂t s = div(k(s)[−P ′
c(s)∇s + τ∇∂t s]). (I.7)

In Ref. [46], Mikelić used entropy techniques to prove the
existence of an appropriate weak solution of equation (I.7)
with square-integrable first derivatives in time and space and
square-integrable time derivatives of the gradient, for any time
interval. The existence of a weak solution to a closely related
model was proven by Cancès et al. [47]. The existence of
traveling wave solutions for equation (I.7) was extensively
studied (see, e.g., Refs. [48–50]).

The capillarity limit for the linear relaxation model (the
relaxation time τ is constant) was studied by Duijn et al. [51].
It leads to the Buckley-Leverett equation with discontinuous
solutions which do not satisfy Oleinik’s entropy condition
[52]. Next, the results obtained were extended for linear
higher-order terms in Ref. [53] where the existence of traveling
-wave solutions in the nonlinear and degenerate case was also
investigated. Cases considered may lead to nonsmooth travel-
ling waves, as well as to a discontinuous capillary pressure.

The homogenization of the pseudoparabolic equation in
periodic media was studied by Peszynska et al. [54]. They
obtained upscaled limits by asymptotic expansion and two-
scale convergence in various linear cases for both the classical
binary medium model and the highly heterogeneous case.
Moreover, the double-porosity limit of Richards’ equation with
dynamic capillary pressure is obtained.

Numerical treatment of dynamic capillary pressure effects
in heterogeneous porous media were studied by Helmig
et al. [55]. The authors were able to integrate the dynamic
capillary function into the finite volume discretization scheme.
The paper of Peszynska and Yi [56] considered numerical
aspects of the Richards’ equation as well as the full two-phase
flow model. For the discretization, they used two classes
of methods: a cell-centered finite differences method and a
locally conservative Eulerian-Lagrangian method. Moreover,
they discussed convergence of the methods and extensions to
heterogeneous porous media with different rock types. Finally,
they concluded that, in convection-dominated cases and for
large dynamic effects, some instabilities may arise.

I. Results obtained in present paper

In the present paper we study the capillary nonequilibrium
by using the approach based on introducing the medium

heterogeneity. As shown in Sec. I A, the medium heterogeneity
necessarily causes the capillary nonequilibrium. We consider a
more complicated case than the case (I.5) analyzed in Ref. [33],
which causes the appearance of the long-term memory. For
this case, the macroscopic model was proven in Refs. [57,58].
These models, being mathematically strictly justified, remain,
however, incompletely homogenized, and thus play a limited
role for physics.

We present the following results:
(i) Two general nonequilibrium relationships are presented

for the macroscopic dynamic capillary pressure and its rela-
tionship with equilibrium capillary pressure. We also present
the exact method of calculating this relationship which requires
solving three cell problems.

(ii) We show that the nonequilibrium relationship of
Bourgeat and Panfilov [33] results from our general relation-
ship as a particular asymptotic case which corresponds to the
small relaxation time.

(iii) The theorem of comparison for the macroscopic nonlin-
ear model is presented, which establishes its lower and upper
bounds. These bounds represent the linear mathematical sys-
tem of equations. The completely homogenized macroscopic
model for these bounds proves explicitly the long-memory
effects and allows the explicit calculation of the relaxation
kernel.

(iv) We show a number of numerical simulations that
compare our homogenized results with the direct numerical
data, as well as with the results of Bourgeat and Panfilov [33].

II. MICROSCOPIC MODEL

A. Medium structure

We consider a reservoir � ⊂ Rd (d = 2,3) which is
assumed to be a bounded, connected domain with a periodic
microstructure scaled by a parameter ε that represents the
ratio of the period to the whole region. We assume that ε > 0
is a small parameter tending to zero. The unit cell of this
microstructure is Y = (0,1)d and consists of two subdomains
(corresponding to two types of rock): a connected subdomain
Y II (“the fracture”) and another subdomain Y I (“the block”)
which is surrounded by Y II.

We denote by � the interface between the two subdomains

in Y and �T
def= � × (0,T ). Thus, Y = Y I ∪ Y II ∪ �.

Let 1I(y) be the characteristic function of Y I extended Y -
periodically to the whole Rd . Then the medium � contains
two subdomains �ε,I and �ε,II, which represent two different
types of rock and satisfy the conditions

�ε,II ⊂
{
x ∈ �:1ε,II

(
x

ε

)
= 1

}
,

(II.1)
�ε,I = � \ �

ε,II
.

We introduce the notation

�T
def= � × (0,T ), �

ε,
T

def= �ε, × (0,T ),
(II.2)

�ε def= ∂�ε,I ∩ ∂�ε,II ∩ �,

�ε
T

def= �ε × (0,T ), (II.3)

where T > 0 is fixed and  = I,II.
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B. Flow equations

The main assumptions of this paper are
(i) The flow is two phase and completely immiscible.

(ii) Both phases are incompressible, so that their densities
and viscosities are constant.

(iii) The porous medium is nondeformable.
(iv) The system is locally in capillary equilibrium; that is,

the difference of phase pressures is equal to the local capillary
pressure function at any point on the microscale.

Under these assumptions, the mass conservation for
each phase is formulated in the classical way (see, e.g.,
Refs. [41,59–61]); the momentum conservation equations are
formulated through Darcy-Muskat’s equations in �T :

0 = φε

(
x

ε

)
∂sε

∂t
+ div�v ε

w,

0 = −φε

(
x

ε

)
∂sε

∂t
+ div�v ε

o ,

�v ε
w = −Kε,κ

(
x

ε

)
λw

(
sε,

x

ε

)(∇pε
w − γw�eg

)
,

(II.4)

�v ε
o = −Kε,κ

(
x

ε

)
λo

(
sε,

x

ε

)(∇pε
o − γo�eg

)
,

λw

(
sε,

x

ε

)
def= kw

(
sε, x

ε

)
μw

,

λo

(
sε,

x

ε

)
def= ko

(
sε, x

ε

)
μo

,

and the condition of the local capillary equilibrium,

pε
o − pε

w = pc

(
sε,

x

ε

)
. (II.5)

The conditions on the interface �ε
T are those of continuity of

the normal phase fluxes and pressures:[�v ε
w · �ν] = 0,

[�v ε
o · �ν] = 0,

[
pε

w

] = 0,
[
pε

o

] = 0,

(II.6)

where pε
i is the pressure of the phase i = w,o, sε ≡ sε

w is the
water saturation (the volumetric fraction of water in porous
volume), sε

o = 1 − sε is the oil saturation, �v ε
i is the Darcy

velocity, γi is the given gravity number, μi is the given dynamic
viscosity, �eg is the unit vector of the gravity field, kw(sε,x) and
ko(sε,x) are the given functions of the relative permeability of
water and oil, respectively, pc(sε,x) is a given local capillary
pressure, φε(x) is the given medium porosity, Kε,κ(x) is the
given absolute permeability tensor, the symbol [·] means a
jump, and �ν is the unit vector outer normal to �ε.

All equations are assumed to be formulated in dimension-
less form through dimensionless rescaled variables. The scale
for the space coordinates is the domain macroscopic length
L, the scale for the pressure is the characteristic pressure
difference �P reached at the domain boundary, the scales
for the absolute permeability and porosity are their arithmetic

mean values in fractures K
II

and φ
II
, and the scale for the

viscosities is the mean value between the viscosity of water and
oil M. Finally, the dimensionless gravity numbers are defined
as γi = ρiLg/�P where ρi is the true density with dimension

and g is the absolute value of the acceleration due to gravity.
The time scale is

t∗
def= L2φM

K�P
, (II.7)

which is the characteristic intrinsic time of perturbation
propagation over length L through the porous medium having
average parameters and saturated by an average fluid.

Each function f ε ≡ sε, pε
w, pε

o, �v ε
w, �v ε

o is defined as

f ε def= f ε,I(x)1ε,I(x) + f ε,II(x)1ε,II(x),

where 1ε,(x) = 1( x
ε
) is the characteristic function of the

subdomain �ε,,  = I,II.

C. Boundary and initial conditions

For the sake of simplicity, we assume:
(i) �ε,I ∩ ∂� = ∅ (i.e., the boundary ∂� passes only

through fractures),
(ii) the boundary consists of two parts ∂� = ∂�inj ∪ ∂�imp,

such that ∂�inj ∩ ∂�imp = ∅.
For t ∈ (0,T ), the boundary conditions are given by

pε,II
w (x,t) = pw∗(x,t),

sε,II(x,t) = S∗(x,t), x ∈ ∂�inj, (II.8)

�v ε,II
w · �ν = �v ε,II

o · �ν = 0, x ∈ ∂�imp,

where the function pw∗ determines the pressure of the water
injection in the reservoir, while S∗ determines the fraction of
water in the injected fluid.

Finally, the initial conditions read

sε,II(x,0) = SII
0 (x) in �ε,II,

(II.9)
sε,I(x,0) = SI

0(x) in �ε,I.

If these initial values do not verify the local capillary equilib-
rium, then the formulated problem describes the relaxation of
an initially nonequilibrium system to an equilibrium state.

D. Main conditions on parameters

We assume that all physical medium properties are different
in two domains and verify the following conditions:

A.1: Double-porosity conditions

Porosity. The function φ = φ(y) is Y periodic and given by

φε(x)
def=

{
φI in �ε,I

φII in �ε,II,
(II.10)

where φI and φII are positive parameters that do not depend
on ε.

Absolute permeability. The ratio between the absolute
permeabilities of block and fractures is ε2/κ, where κ is an
independent parameter. Then the permeability tensor may be
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presented as

Kε,κ(x)
def=

{
ε2Kκ,I def= ε2

κ
K II in �ε,I

K III in �ε,II,
(II.11)

where I is the unit tensor, while K I, K II, and κ are positive
parameters that do not depend on ε.

We will deal with the classical double porosity medium, or
ε2 medium, when κ ∼ 1 [which is different from (I.5)].

Capillary pressure. The ratio between the mean values of
the capillary pressure curves in fractures and blocks is δ, so
the function pc may be presented as

pc

(
sε,

x

ε

)
def=

{
pI,δ

c

def= δ−1pI
c(sε,I) in �ε,I

pII
c (sε,II) in �ε,II,

(II.12)

with functions p
c(s) ( = I, II) of order unity.

Physically, the capillary pressure is inversely proportional
to the square root of the absolute permeability (the lower
the pore size, the higher the capillary pressure); that is,
pc ∼ 1/

√
K . Hence, it follows that δ ∼ ε. We will assume

however, as in Ref. [33], that the parameter δ is independent
of ε, which covers the most general probable case.

As the dimensionless capillary pressure behaves as pII
c ∼ 1,

then the mean capillary pressure in fractures is of the same
order as the macroscopic pressure drop �P. In other words,
the macroscopic capillary number (the ratio between the
macroscopic pressure drop and the mean capillary pressure)
in fractures is of order unity.

Functions p
c(s) ( = I, II) in Eq. (II.12) belong to the space

C1((0,1];R+) and satisfy the following conditions:

dp
c

ds
(s) < 0 in (0,1] and p

c(s = 1) = 0.

Remark 1. In contrast to the functions pε
o, p

ε
w, the saturation

sε may have a jump at the interface �ε. Namely, from the
transmission conditions (II.6), the following holds for the
phase pressure:

pII
c (sε,II) = pI,δ

c (sε,I) on �ε
T , (II.13)

which gives the discontinuity of the saturation at the interface.

1. A.2: Behavior of the relative permeability or mobility

The relative phase mobilities are defined as

λj

(
sε,

x

ε

)
def=

{
λI

j (sε,I) in �ε,I

λII
j (sε,II) in �ε,II,

(II.14)

with j = w,o.
Functions λ

w(s) and λ
o(s) ( = I, II) belong to the space

C([0,1];R+) and satisfy the following properties:
(i) λ

w(s) increases while λ
o(s) decreases within [0,1];

(ii) 0 � λ
w(s), λ

o(s) � 1 for s ∈ [0,1];
(iii) λ

w(0) = λ
o(1) = 0;

(iv) there exists values s∗ and s∗, called the percolation
thresholds, such that λw(s) ≡ 0 when 0 � s � s∗, and λo(s) ≡
0 when s∗ � s � 1. This means that each phase remains

immobile if its own saturation is too low (due to the loss
of the phase connectivity).

(v) there exists a value L0 > 0 such that

λ(s)
def= λ

w(s) + λ
o(s) � L0 > 0 for s ∈ [0,1]. (II.15)

Physically, this means that both fluids cannot be simultane-
ously immobile.

A.3: Moderate gravity number

We assume that both gravity numbers γw and γo are of
order unity, which means physically that the gravity force is
assumed to be of the same order as the external pressure drop
�P and the mean capillary pressure in fracture.

A.4: Nondegeneration of two-phase flow

For the sake of simplicity, we will assume that a constant
c0 exists such that

0 < c0 < SI
0, SII

0 , S∗ < 1 − c0. (II.16)

III. HOMOGENIZED MODEL

Using the results of Ref. [58] we can formulate the limit
of problem (II.4)–(II.6), (II.8) and (II.9) as ε → 0. The small
parameters δ, κ are fixed in the homogenization process.

A. Formulation of homogenization equations

The homogenized model is formulated in terms of two
series of macroscopic functions; one part of them being
independent of the fast variable y:

SII(x,t), P II
w(x,t), P II

o (x,t), P II
c (x,t),

while the other part remains dependent on y:

SI(x,y,t), P I
w(x,y,t), P I

o(x,y,t), P I
c (x,y,t),

which are the two-scale limits of the microscopic variables:

sε,II = SII(x,t) + ε · · · , sε,I = SI(x,y,t) + ε · · · ,

pε,II
w = P II

w(x,t) + ε · · · , pε,I
w = P I

w(x,y,t) + ε · · · ,

pε,II
o = P II

o (x,t) + ε · · · , pε,I
o = P I

o(x,y,t) + ε · · · ,

pII
c (s) = P II

c (s) + ε · · · ,

pI,δ
c (s) = P I,δ

c (s) + ε · · · = δ−1P I
c (s) + ε · · · .

The homogenized problem for (II.4)–(II.9) can be obtained by
various methods. For example, it is obtained in Refs. [57,58]
by the method of two-scale convergence (see Ref. [62] for
the method). According to the mentioned papers, the vector
function 〈pε

w,pε
o,s

ε〉, which satisfies (II.4)–(II.9), conditions
A.1–A.4, and several additional conditions, converges in the
two-scale sense to the vector function 〈P I

w,P I
o,P

II
w,P II

o ,SI,SII〉,
which is a weak solution to problem (III.1)–(III.8).
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In �T ,

φ̂II ∂SII

∂t
− div

(
KλII

w(SII)
(∇P II

w − γw�eg

)) = −φ̂I ∂〈SI〉I

∂t
,

−φ̂II
∂SII

∂t
− div

(
KλII

o(SII)
(∇P II

o − γo�eg

)) = φ̂I
∂〈SI〉I

∂t
,

(III.1)

P II
c (SII) = P II

o − P II
w.

In Y I × �T ,

φI ∂SI

∂t
− divy

(
Kκ,IλI

w(SI)∇yP
I
w

) = 0,

−φI ∂SI

∂t
− divy

(
Kκ,IλI

o(SI)∇yP
I
o

) = 0, (III.2)

P I,δ
c (SI) = P I

o − P I
w.

On � × �T ,

P I
w(x,y,t) = P II

w(x,t), P I
o(x,y,t) = P II

o (x,t). (III.3)

Herein, |Y | denotes the measure of the set Y ,

〈u〉 def= 1

|Y |
∫

Y 

u(y)dy,  = I, II, (III.4)

are the average porosities, and the effective permeability
tensors are given by their entries:

φ̂I def= φI|Y I|, φ̂II def= φII|Y II|,
(III.5)

Kij
def=

∫
Y II

K II[∇yξi + �ei] · [∇yξj + �ej ]dy,

for i,j = 1, . . . ,d, where ξj is the solution of the following
problem:

−�yyξj = 0 in Y II,

∇yξj · �ν = −�ej · �ν on �, (III.6)

y �−→ ξj (y), Y periodic,

with �ej being the j th coordinate vector.
The initial conditions read

SII(x,0) = SII
0 (x) in �,

(III.7)
SI(x,y,0) = SI

0(x,y) in � × Y I.

The boundary conditions for system (III.1) are given by

P II
w(x,t) = pw∗, SII(x,t) = S∗ at ∂�inj × (0,T ),

(III.8)�Vw · �ν = �Vo · �ν = 0 at ∂�imp × (0,T ),

where ∂�inj and ∂�imp are two parts of the boundary ∂�

that correspond to the fluid injection into the domain and to
the impermeability, respectively. Finally, the macroscopic flow
velocities are defined as

�Vj = −KλII
j (SII)

(∇P II
j − γj �eg

)
, j = w,o. (III.9)

As seen, the model obtained is not entirely homogenized
since the problem (III.2), formulated through the fast variable
y, also contains, however, the slow variable x through the
boundary condition (III.3). So the cell problem (III.2) must
be solved for various points x, which determines the coupling
between the slow and the fast variables.

B. Equivalent formulation of problem in blocks (III.2)

Problem (III.2) and (III.3) may be reformulated with respect
to the single function SI by eliminating the pressures:

φI ∂SI

∂t
= 1

κδ
divy(K IDI(SI)∇yS

I) = 0 in �T × Y I,

SI(x,y,t) = S
I(SII) in �T × �, (III.10)

SI(x,y,0) = SI
0 in � × Y I.

The capillary diffusion is defined as

DI,δ(s)
def= − λI

w(s)λI
o(s)

λI
w(s) + λI

o(s)

dP I,δ
c (s)

ds
(III.11)

and

DI(s) = 1

δ
DI,δ(s)

def= − λI
w(s)λI

o(s)

λI
w(s) + λI

o(s)

dP I
c (s)

ds
.

The symbol SI(SII) means that the the saturation in blocks is in
the equilibrium with SII. Consequently, it is the solution of the
following nonlinear algebraic equation:

P I,δ
c (SI(x,t)) = P II

c (SII(x,t)). (III.12)

The differential equation (III.10) results directly from the
lemma (IV.6), which is proven further.

The latter relationship results from (III.3) and the last
equation in systems (III.1) and (III.2).

C. Appearance of long-term memory

The macroscopic model formulated proves memory effects
in the implicit form. Just in order to show the mentioned
effects explicitly, in this section we consider the case when
the coefficients of the problem (III.10) are weakly variable,
so the model can be linearized. We will also linearize the
boundary condition by taking

S
I(SII) = aSII(x,t) + b.

By introducing a new function U = SI − SI, we easily obtain
the similar differential equation for U as in Eq. (III.10) but
with the right-hand side f (x,t) ≡ −∂tS

I = −a∂tS
II and homo-

geneous boundary and initial conditions. The solution of such
a problem represents the convolution of the Green’s function G

of the diffusion operator with the function f : U = ∫ t

0 G(t − τ )
f (τ )dτ . Then SI = aSII + b − a

∫ t

0 G(t − τ )∂τS
IIdτ . Substi-

tuting this explicit relationship into equation (III.1), we obtain
the following for the exchange term in the right-hand sides:

aφ̂I

{
∂SII(x,τ )

∂t
− ∂

∂t

∫ t

0
〈G(t − τ )〉I

∂SII

∂τ
(x,τ )

}
dτ,

(III.13)

which contains a convolution operator.
Finally, from (III.1) follows the system of completely

homogenized integrodifferential equations formulated with
respect to the three functions P II

w, P II
o , and SII. The kernel of

the integral operators represents the average Green’s function
of the diffusion operator in a block that does not allows for
reducing the convolution integral to a differential operator
of higher order. The appearance of such operators physically
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means the long-term memory (i.e., the dependence of the
process on its overall history).

IV. GENERAL THEOREM ON NONEQUILIBRIUM
CAPILLARY PRESSURE

A. Two nonequilibrium relationships for capillary pressure

The presented homogenized model enables us to obtain the
main result of the paper.

Theorem IV.1. Under our standing assumptions, the follow-
ing two nonequilibrium relationships between the capillary
pressures hold true in �T :

1

δ

〈
P I

c (SI)
〉
I − P II

c (SII) = −κ

〈
φI∂SI

∂t
ζ

〉
I

(IV.1)

and

1

δ
P I

c

(
〈SI〉I − κ δ

〈
φI ∂SI

∂t
ψ

〉
I

)
= P II

c (SII), (IV.2)

where the functions ζ and ψ are the solutions of the following
cell problems:

∇y

(
K I λ

I
o(SI)λI

w(SI)

λI(SI)
∇yζ

)
= 1 in Y I,

(IV.3)
ζ = 0 on �.

and

∇y[K IDI(SI)∇yψ] = 1 in Y I,
(IV.4)

ψ = 0 on �.

Theorem IV 1 is proven in Appendix.
Remark 2. Due to the assumption (II.16) and the principle

of maximum, the coefficients of differential equations in (IV.3)
and (IV.4) are positive definite, which ensures the correctness
of the corresponding problems.

Corollary. From (IV.1) and (IV.2) follows

〈
P I,δ

c (SI)
〉
Y I = −κ

〈
φI∂SI

∂t
ζ

〉
Y I

+P I,δ
c

(
〈SI〉Y I − κδ

〈
φI ∂SI

∂t
ψ

〉
Y I

)
. (IV.5)

B. Physical interpretation of relationships obtained

As the process in the fracture is always in equilibrium, the
obtained relationship (IV.1) may be rewritten as

P dyn
c (Sdyn) − P eq

c (Seq) = −∂ 〈aSmic〉
∂t

,

where P
dyn
c and P

eq
c are dynamic and equilibrium macroscale

capillary pressures, respectively, Sdyn and Seq are the nonequi-
librium and equilibrium saturations, respectively, Smic is
the microscale saturation, a is a coefficient, and angular
brackets mean averaging over heterogeneity. The previous
expression represents the generalization of the Barenblatt
relationship (I.3).

C. Lemma on zero total flux in blocks

First of all, we reveal a fundamental property of prob-
lem (III.2), which consists of the following result:

Lemma IV.1. The total flux at any point of the block Y I is
zero; that is,

λI∇yP
I
w + λI

o(SI)∇yP
I,δ
c = 0 in Y I × �T . (IV.6)

The proof of Lemma IV.1 is moved to the Appendix.
The physical interpretation of this property is very clear. If

one phase enters in the block, then another phase has to leave
it (as the fluids are incompressible). In addition, all functions
at the block boundary � do not depend on y. Consequently,
the fluxes are identical at any point along the boundary. Thus,
the total flux as the vector will be zero at any points. Such a
process is called the counter-current capillary imbibition.

V. COMPLETELY HOMOGENIZED CASE I:
SHORT-TERM MEMORY

A. Weakly nonequilibrium capillary pressure

Let us consider the case of a small parameter κ. From the
problem (III.10) it follows that the smallness of κ is the same as
the large-time asymptotics of the process at κ ∼ 1. So, the
asymptotics κ → 0 and t → ∞ are expected to lead to the
same results.

According to the definition of κ (II.11), it means that the
ratio between the block and fracture permeability is

K I

K II
∼ ε2

κ

� ε2.

Therefore, we deal with a medium with a lower heterogeneity
than the classic ε2 double-porosity medium. In particular, this
might be the case of K I/K II ∼ ε. Let the parameter δ be of
order unity, which means that the heterogeneity with respect
to capillary effects is low.

The fact that the degree of medium heterogeneity is not
very high means that the flow rate in the blocks will be not
much lower than that in the fractures. Consequently, the delay
in block behavior is not expected to be very high. Thus, we
deal with the case of low nonequilibrium.

All functions in Eqs. (IV.1) and (IV.2) may be expanded in
asymptotic series over κ:

SI(x,y,t) = SI
0(x,t) + κSI

1(x,y,t) + κ
2 · · · ,

SII(x,y,t) = SII
0 (x,t) + κSII

1 (x,t) + κ
2 · · · , (V.1)

ζ (y,x,t) = ζ0(y,x,t) + κ · · · .

The fact that the zero-order term SI
0(x,t) does not depend

on the fast variable y is justified by the weak nonequilibrium
and, consequently, by the sufficiently fast stabilization of the
saturation field in blocks. Moreover, the fact that the first-order
term SII

1 (x,t) does not depend on y is due to the fact that the
fluctuations over the mean values in fractures are very low. In
Ref. [33] such a structure of the asymptotic expansions was
proven analytically.
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Then relationship (IV.1) gives the following expansion:

1

δ

〈
P I

c

(
SI

0(x,t) + κSI
1(x,y,t)

)〉
I

= P II
c

(
SII

0 + κSII
1 (x,y,t)

) − κ〈φIζ0〉I
∂SI

0(x,t)

∂t
+ O(κ2).

(V.2)

Let us introduce the average saturations:

ŜI = SI
0(x,t) + κ

〈
SI

1(x,y,t)
〉
I ,

ŜII = SII
0 (x,t) + κSII

1 (x,t).

Next, for the first term in Eq. (V.2), one obtains〈
P I

c

(
SI

0(x,t) + κSI
1(x,y,t)

)〉
I

= 〈
P I

c

(
ŜI(x,t) + κ

(
SI

1(x,y,t) − 〈
SI

1(x,y,t)
〉
I

))〉
I

= P I
c (ŜI(x,t)) + κ

(〈
SI

1(x,y,t)
〉
I − 〈

SI
1(x,y,t)

〉
I

)
= P I

c (ŜI(x,t)).

Then (V.2) yields

1

δ
P I

c (ŜI) − P II
c (ŜII) = −κ〈φIζ0〉I

∂ŜI

∂t
+ O(κ2). (V.3)

The function ζ0 is obtained from the problem (IV.3):

ζ0 = − λI
(
SI

0

)
λI

w

(
SI

0

)
λI

o

(
SI

0

)ϕ(y),

where ϕ(y) is the solution of the following problem:

∇y(K I∇yϕ) = −1 in Y I,

ϕ = 0 on ∂Y I.
(V.4)

Definitely, relationship (V.3) becomes

1

δ
P I

c (ŜI) − P II
c (ŜII) = τ�(ŜI)

∂ŜI

∂t
, (V.5)

with

τ�
def= κ

〈φIϕ〉Iλ
I (ŜI)

λI
w(ŜI)λI

o(ŜI)
. (V.6)

Expression (V.6) is exactly the nonequilibrium relationship
(38c) of Bourgeat and Panfilov obtained in Ref. [33].

In the mentioned paper relationship (V.6) was obtained even
for δ � 1, i.e. for higher degree of heterogeneity with respect
to capillary effects, when the structure of asymptotic expan-
sions becomes more complicated. The necessary condition of
validity of relationship (V.6) is

κ � δ � 1 (V.7)

In a similar way the same relationship may be obtained
from (IV.2).

Thus, the weak nonequilibrium, which corresponds to
sufficiently weak nonstationary effects within the blocks, leads
to appearance of a short-term memory in the averaged system
(with small relaxation time τ�).

B. Homogenized model

According to Ref. [33], the homogenized model (III.1) in
the considered case (V.7) becomes

φ̂
∂ŜII

∂t
− div

(
KλII

w(ŜII)
(∇P II

w − γw�eg

)) = −φI ∂ŜI

∂t
(x,t),

−φ̂
∂ŜII

∂t
− div

(
KλII

o(ŜII)
(∇P II

o − γo�eg

)) = φI ∂ŜI

∂t
(x,t),

(V.8)

P II
c (ŜII) = P II

o − P II
w.

This system, being completed with the nonequilibrium rela-
tionship (V.6), represents the closed completely homogenized
model with respect to the functions ŜII, ŜI, P II

o , and P II
w.

VI. UPPER AND LOWER BOUNDS FOR NONLINEAR
MODEL: COMPLETELY HOMOGENIZED CASE 2

For the problem in the block, it is possible to obtain
the useful result which is usually called the theorem of
comparison. It establishes the upper and lower bounds for the
macroscopic nonlinear model. The advantage of these bounds
is that they represent linear models. Due to this, they may be
represented in completely homogenized form.

A. Theorem of comparison

For the problem (III.10), let us introduce the upper and the
lower bounds for the nonlinear coefficient DI,δ(SI):

DM
def= max

s∈[0,1]
DI,δ(s), Dm

def= min
s∈[0,1]

DI,δ(s), (VI.1)

and two linear bounds for the nonlinear function SI(SII) which
may be defined in various ways; for instance, as

Sj(S
II) = αj(S

II − s∗), j = m,M
(VI.2)

αj =
⎧⎨⎩

dP II
c

dSII

( dP I,δ
c

dSI

)−1∣∣
SII=s∗

for j = M

1
1−s∗

, for j = m,

where s∗ is the percolation threshold mentioned in property
A.2 in Sec. II D. Their plot is shown in Fig. 4.

Notice that, due to (II.16) and the definition A.3 of the
capillary diffusion, it holds that Dm, DM > 0.

Therefore, for any x,y,t one has

lDm � DI,δ(SI) � DM,
(VI.3)

Sm(SII) � S
I(SII) � SM(SII).

Using these four bounds we can formulate four linear cell
problems in a block for four new functions SI

i,j(x,y,t), i,j =
M,m:

φI
∂SI

i,j

∂t
− ∇y

(
Kκ,IDi∇yS

I
i,j

) = 0 in �T × Y I,

SI
i,j = Sj(S

II) in �T × �,

SI
i,j(x,y,0) = SI

0(x) in � × Y I.

(VI.4)

Finally, we can formulate the comparison theorem.
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FIG. 4. Equilibrium saturation in blocks SI and its upper and
lower linear bounds as functions of saturation in fractures SII.

Theorem VI.1. Let SI and SI
i,j be the solutions of the cell

problems (III.10), and (VI.4), respectively. Then the following
inequalities hold true in �T × Y I:

if SI
0 � S

I then SI
m,m � SI � SI

M,M,
(VI.5)

if SI
0 � S

I then SI
M,m � SI � SI

m,M.

Thus, in any case, the solution of the nonlinear problem (III.10)
is located between the solutions of four linear problems (VI.4).

The proof of theorem VI 1, being too technical, is moved
out of the main text to the Appendix.

B. Physical meaning of theorem of comparison

Figure 5 illustrates the typical behavior of two functions,
SI

M,M(y,t) and SI(y,t), over a square block, as the numerical
solution of two cell problems, (VI.4) and (III.10).

The initial and boundary data were: SI
0 = 0, SI = SM = 0.3

so that, according to the principle of maximum, SI
0 � SI � SI.

These functions are calculated numerically as the numerical
solution of the problems (III.10) and (VI.4) for the following
values of parameters: DI,δ(s) = s(1 − s) + 0.1, DM = 0.25 +
0.1 = max{DI,δ(s)}. The domain is represented by a unit
square. The lower surface (b) corresponds to the solution of
the nonlinear problem (III.10), while the upper surface (a) is

FIG. 5. Illustration to the theorem of comparison: functions (a)
SI

M,M(y,t) and (b) SI(y,t) for a fixed time t . The case SI
0 � SI.

the solution of the linear problem (VI.4) with maximal value
of the diffusion coefficient, which corresponds to the theorem
of comparison.

Such behavior explains the meaning of the theorem. Indeed,
the process in a cell represents a monotonic tendency of the
initially perturbed saturation field which has the shape of
a mountain to become plane and equivalent to its uniform
boundary value. The saturation function, which has the higher
rate of dissipation, will be flatter. The rate of such a dissipation
is proportional to the diffusion parameter. So, for the maximum
diffusion parameter, the saturation surface will be closer to a
plane. Due to this the surface SI

M,M(y,t) will be always situated
above SI(y,t) (i.e., SI

M,M � SI). This result is valid even in the
case SI = SM, which is shown in Fig. 5. Obviously it will be
more assured if we move the whole left-hand figure up (i.e.,
apply the strict inequality SI < SM).

In a similar way, for the case SI
0 � SI, the function SI

M,m,
which corresponds to the maximal diffusion and has the
maximal rate of dissipation, will be situated below the surface
SI (i.e., SI

M,m � SI).

C. Completely homogenized model for linear bounds

Let us consider the homogenized equations (III.1) in which
we will replace function SI defined through the nonlinear prob-
lem (III.10) by SI

i,j defined through the linear problem (VI.4).
Then we obtain four macroscopic models for various values
of i and j. Each of them may be reduced to the completely
homogenized model, for i,j = M,m:

φ̂II
∂SII

i,j

∂t
− div

(
KλII

w

(
SII

i,j

)(∇P II
w;i,j − γw�eg

))
= φ̂Iαj

∫ t

0

∂〈Gi〉I(t − τ )

∂t

∂SII
q,i

∂τ
dτ,

− φ̂II
∂SII

i,j

∂t
− div

(
KλII

o

(
SII

i,j

)(∇P II
o;i,j − γo�eg

))
= −φ̂Iαj

∫ t

0

∂〈Gi〉I(t − τ )

∂t

∂SII
q,i

∂τ
dτ,

P II
c

(
SII

i,j

) = P II
o;i,j − P II

w;i,j. (VI.6)

Herein the average porosity φ̂ and the effective permeability
tensor K are given by the same equations (III.5) and (III.6).
The kernel of the integrodifferential operator, Gi, is the Green’s
function defined for i = M,m as

ω
∂Gi

∂t
− Di�yyGi = −δ(x − y)δ(t − τ ) in �T × Y I,

Gi(x,y,t) = 0 in �T × �; (VI.7)

Gi(x,y,0) = 0 in � × Y I,

where ω
def= φI/Kκ,I.

The presented system of integrodifferential equations is
closed with respect to the three functions P II

w;i,j(x,t), P II
o;i,j(x,t),

and SII
i,j(x,t). This model is completely homogenized, because

system (VI.6) does not contain fast variables any longer, while
the cell problem (VI.7) is independent of slow variables.

According to the theorem of comparison, we can expect
that the solution of the nonlinear model (III.1) and (III.10)
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is bounded by a combination constructed from four linear
models (VI.6):

SII
min(x,t) � SII(x,t) � SII

max(x,t), (VI.8)

where

SII
min

def= min
i,j=m,M

{
SII

i,j

}
, SII

max
def= max

i,j=m,M

{
SII

i,j

}
. (VI.9)

The nonequilibrium relationship between two average
capillary pressures, (IV.1) or (IV.2), becomes useless for the
linear bounds.

For completeness, we show how one can obtain the com-
pletely homogenized model (VI.6). The linear problem (VI.4)
can be solved analytically by means of a Green’s function. By
introducing a new function: U = SI

i,j − Sj, we easily obtain a
similar differential equation for U as in Eq. (III.10), but with
the right-hand side being f (x,t) ≡ −∂tSj = −αj∂tS

II
i,j and the

following homogeneous boundary and initial conditions (it is
assumed that the boundary and initial functions are compatible;
Sj|t=0 = SI

0):

φI∂tU = ∇y

(
Kκ,IDi∇yU

) − αj∂tS
II
i,j, y ∈ Y I,

U (x,y,t) = 0, y ∈ �,

U (x,y,t) = 0, t = 0.

The solution of such a problem represents the convolution
of the Green’s function Gi of the diffusion operator with the
function f [i.e., U = ∫ t

0 Gi(t − τ )f (τ )dτ , where Gi is defined
as the solution of (VI.7)]. Then we obtain

SI
i,j(x,y,t) = αj

[
SII

i,j(x,t) − s∗
]

−αj

∫ t

0
Gi(x,y,t − τ )

∂SII
i,j

∂τ
(x,τ )dτ. (VI.10)

Substituting this explicit relationship in equations (III.1)
instead of SI we obtain (VI.6).

VII. NUMERICAL SIMULATIONS

A. Data description

The theorem of convergence determines strictly the domain
of the validity of the result obtained. However, several
restrictions on the parameters have no clear physical meaning
and are sufficiently difficult to control in practice. Another way
to check the validity is to calculate numerically the microscopic
problem and all homogenized parameters. In the present paper
we will analyze only the validity of the general nonequilibrium
relationship for the capillary pressure, (IV.1) and compare
it with the simpler asymptotic equation (V.6). For this, it is
sufficient to calculate the cell problem in blocks (III.10) under
a given boundary function SII(x,t).

The simulation was performed by applying the finite
element method and an implicit approximation with respect to
time. The block was a homogeneous two-dimensional square
of area 0.8. The initial saturation in blocks SI

0 is assumed to
be constant in space. The following closure relationships were
assumed:

P II
c (s) = α

√− ln s, P I,δ
c (s) = α

δ

√− ln s,

λI
w(s) = s2, λI

o(s) = (1 − s)2.

FIG. 6. Microscopic capillary pressure-saturation functions for
blocks and fractures.

The nonequilibrium is introduced into the system through the
boundary value SII(x,t), if it is selected in such a way that

P II
c (SII) �= P I,δ

c

(
SI

0

)
. (VII.1)

The shape of the capillary pressure-saturation functions
is shown in Fig. 6 for δ = 0.2. Several parameters were
fixed: δ = 0.8, α = 0.1, and K I/φI = 2. The selected value
of δ corresponds to the moderate difference between the
microscopic capillary pressure-saturation curves in the blocks
and in the fractures.

We consider two main scenarios of variation of the bound-
ary function: (i) the monotonic-in-time boundary condition,
which corresponds to the permanent injection of water into the
reservoir initially saturated with oil, and (ii) the nonmonotonic
variation in time of the saturation SII, which corresponds to the
alternated injection of water and oil. In engineering practice,
the water injection is called imbibition, while the oil injection is
drainage. Within the framework of each scenario we analyzed
the case of high nonequilibrium, κ ∼ 1, and the case of low
nonequilibrium, κ � 1.

B. Example 1: monotonic perturbation

The first example corresponds to the monotonic perturba-
tion carried out through the boundary function SII. This is
the case of a simple history. In the initial state, the medium
was occupied by oil (the initial water saturation was 0.2),
after which one starts to inject water in fractures at constant
saturation 0.9. The imposed variation of the saturation in
fractures is shown in Fig. 7 for two cases: κ = 0.1 and κ = 1.
The same figure also contains the saturation in the block which
was calculated by numerically solving the problem (III.10).

The difference between the average capillary pressure in
blocks and in fractures equals〈

P I,δ
c (SI)

〉
I − P II

c (SII). (VII.2)

It was calculated in three different ways and are all presented in
Fig. 8. First of all we calculated (VII.2) by numerically solving
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FIG. 7. Variation of saturation in fractures and blocks for (a) weak
nonequilibrium, κ = 0.1 and (b) high nonequilibrium, κ = 1.

the problem in a block (III.10) and by averaging the numerical
data obtained for the function P I,δ

c (SI). We call these data the
“exact” data. They are presented by red dashed curves.

Second, we calculated the mentioned difference by using
the relationship (IV.1). For this, we numerically solved the
cell problems (IV.3) and (IV.4) to obtain the functions ζ (y)
and ψ(y). The data for the factor ∂tS

I were obtained from
the numerical solution of problem (III.10). These results are
presented by the black curve in Fig. 8.

Third, we calculated the difference (VII.2) by using the
asymptotic equation obtained in Ref. [33] (the blue curve).

FIG. 8. Difference between average capillary pressures in frac-
tures and blocks for (a) weak nonequilibrium, κ = 0.1, and (b) high
nonequilibrium, κ = 1 calculated in three different ways.

FIG. 9. Variation of saturation in fractures and blocks for (a) weak
nonequilibrium, κ = 0.1 and (b) high nonequilibrium, κ = 1.

One sees that the relationship (IV.1) obtained in the present
paper gives good results in both cases. The asymptotic
relationship of [33] rapidly converges to the exact solution
in the case of weak nonequilibrium [Fig. 8(a)], but gives non-
neglecting quantitative error in the case of high nonequilibrium
[Fig. 8(b)].

C. Example 2: nonmonotonic perturbation

In the second example we consider a complicated history,
when the system was perturbed several times. At the initial
state the medium was occupied essentially by oil at water
saturation 0.2. At t = 0 one starts to inject water in fractures
at constant saturation 0.9. At t = 0.2, 0.4, 0.6, and 0.8

FIG. 10. Difference between average capillary pressures in frac-
tures and blocks for (a) weak nonequilibrium, κ = 0.1 and (b) high
nonequilibrium, κ = 1, calculated in three different ways.
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one sharply changes the boundary conditions by imposing
the values 0.05, 0.95, 0.07, and 0.97, respectively, to SII,
alternating the imbibition and drainage. The variation of the
saturation in fractures SII is shown in Fig. 9 for two cases:
κ = 0.1 and κ = 1. The saturation in the block, which is
also presented in these figures, was calculated by solving
numerically the problem (III.10).

Due to repetitive perturbations, the system does not have
sufficiently time to reach the equilibrium in both cases.

The difference between the averaged capillary pres-
sure (VII.2) calculated in three different ways is presented
in Fig. 10 relationship (IV.1) gives good results with respect
to the exact solution in both cases, as in the previous sections.
The asymptotic relationship (V.6) is satisfactory for the case of
weak nonequilibrium, but causes significant quantitative error
for the case of high nonequilibrium.

As mentioned in Sec. V A, the asymptotic relationship (V.6)
is invalid for small times after perturbation. If the perturbation
is significant and repetitive, as in the considered case, then
the asymptotic relationship (V.6) becomes invalid in the
vicinity of perturbation points. If one simply cuts in all
zones corresponding to small times after perturbation, then
the obtained solution may be considered as satisfactory for
approximate calculations.

The memory effects are clearly manifested in terms of the
average capillary pressure P c as the function of the average
saturation S which are defined as

S ≡ 〈S〉Iθ + SII(1 − θ ), P c ≡ 〈
P I

c

〉
I θ + P II

c (1 − θ ).

Figure 11 illustrates the behavior of the mean capillary
pressure for the analyzed example of nonmonotonic per-
turbation when the initial imbibition is alternated with the
secondary drainage, and next with the secondary imbibition
and the ternary drainage. The hysteresis behavior is the explicit
proof of the appearance of the long-term memory. The mean
capillary pressure is not a unique function of saturation, but
depends on the overall history of the process.

FIG. 11. Hysteresis behavior of the average capillary pressure
depending on the process direction for an alternation of imbibition
and drainage (black curve).
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APPENDIX: PROOFS OF SOME TECHNICAL RESULTS

1. Proof of Theorem IV.1

(1) Let ζ ∗ be an arbitrary function such that ζ ∗ = 0 on �.
Then, from the first equation of system (III.2), it follows that∫

Y I
φI ∂SI

∂t
ζ ∗dy = −

∫
Y I

Kκ,IλI
w∇yP

I
w · ∇yζ

∗dy. (A1)

Using (IV.6) we obtain∫
Y I

φI ∂SI

∂t
ζ ∗dy =

∫
Y I

Kκ,IλI
wλI

o

λI
∇yP

I,δ
c · ∇yζ

∗dy

=
∫

Y I

Kκ,IλI
wλI

o

λI
∇y

(
P I,δ

c − P II
c

) · ∇yζ
∗dy,

because P II
c is independent of y. Integrating by part the last

term we obtain∫
Y I

φI ∂SI

∂t
ζ ∗dy =

∫
�

Kκ,IλI
wλI

o

λI

(
P I,δ

c − P II
c

) ∂ζ ∗

∂ν
dy

−
∫

Y I

(
P I,δ

c −P II
c

) ∇y

(
Kκ,IλI

wλI
o

λI
∇yζ

∗
)

dy.

The first term disappears due to (III.12). In the second
term we assume that the function ζ ∗ = ζ which verifies the
problem (IV.3). Then we obtain∫

Y I
φI

κ

∂SI

∂t
ζdy = −

∫
Y I

(
P I,δ

c − P II
c

)
dy, (A2)

which yields (IV.1).
(2) The second relationship (IV.2) is obtained in the follow-

ing way: First of all, the relationship (A2) may be formulated
in the equivalent form∫

Y I
φI ∂SI

∂t
ζ ∗dy =

∫
Y I

Kκ,IλI
wλI

o

λI

dP I,δ
c

dSI
∇y(SI−S

I) · ∇yζ
∗dy

= −
∫

Y I
Kκ,IDI,δ(SI)∇y(SI−S

I) · ∇yζ
∗dy,

(A3)

because SI is independent of y. Integrating by parts we obtain∫
Y I

φI ∂SI

∂t
ζ ∗dy = 1

δ

∫
Y I

(SI − S
I)∇y(Kκ,IDI∇yζ

∗) dy. (A4)

Assuming that ζ ∗ = ψ , we have

κδ

〈
φI ∂SI

∂t
ψ

〉
Y I

= 〈SI〉Y I − S
I. (A5)
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Then,

P I,δ
c

(
〈SI〉Y I − κδ

〈
φI ∂SI

∂t
ψ

〉
Y I

)
= P I,δ

c

(
S

I
)
,

and, using (III.12), we obtain (IV.2).

2. Proof of Lemma on zero total flux in blocks IV.1

(1) From the two first equations of (III.2) one obtains

∇y

(
Kκ,IλI(SI)∇yP

I
w + Kκ,IλI

o(SI)∇yP
I,δ
c

) = 0. (A6)

(2) Let ψ(x,y,t) be so that ψ = 0 on �. Then the last
relationship multiplied by ψ and integrated over Y I becomes

0 =
∫

Y I
Kκ,IλI

(
∇yP

I
w + λI

o

λI
∇yP

I,δ
c

)
∇yψdy

=
∫

Y I
Kκ,IλI∇yPI · ∇yψdy, (A7)

where

PI def= P I
w −

∫ 1

s

λI
o(ξ )

λI(ξ )

dP I,δ
c

dξ
dξ

is the global pressure [60]. Let us define the new function ψ as

ψ = PI − PI
� , where PI

�

def= PI|y∈� . According to (III.12), the
boundary saturation SI does not depend on y; thus, the value
PI

� also is independent of y. Then we obtain from (A7) the
following:

0=
∫

Y I
Kκ,IλI∇yPI · (∇yPI − PI

�

)
dy =

∫
Y I

Kκ,IλI|∇yPI|2dy.

(A8)

Using property (II.15), we obtain

0 =
∫

Y I
Kκ,IλI|∇yPI|2dy � Kκ,I

minL0

∫
Y I

|∇yPI|2dy, (A9)

which means that ∇yPI ≡ 0. This proves relationship (IV.6).

3. Proof of Theorem of comparison VI.1

We restrict ourselves to the proof of the right-hand side
of the first inequality in Eq. (VI.5). Other inequalities can be
proven by using the same arguments.

First, let us formulate the cell problems (III.10) and (VI.4)
in the equivalent form:

φI ∂SI

∂t
− Kκ,I�yyβ

I,δ(SI) = 0 in �T × Y I,

SI = S
I(SII) in �T × �, (A10)

SI(x,y,0) = SI
0(x) in � × Y I.

φI
∂SI

i,j

∂t
− Kκ,I�yyβi

(
SI

i,j

) = 0 in �T × Y I,

SI
i,j = Sj(S

II) in �T × �, (A11)

SI
i,j(x,y,0) = SI

0(x) in � × Y I.

where

βI,δ(s)
def=

∫ s

0
DI,δdξ = −

∫ s

0

λI
wλI

o

λI

dP I,δ
c

dξ
dξ, (A12)

βM(s)
def=

∫ s

0
DMdξ, βm(s)

def=
∫ s

0
Dmdξ. (A13)

(1) Consider the case SI
0 � SI. From the principle of maxi-

mum and minimum for parabolic equation, it results that the
solution of (A10) and (A11) may be only located between the
boundary and the initial values

SI
0 � SI � S

I. (A14)

(2) Consider the weak formulation of the cell prob-
lem (A10). It reads∫

�t×Y I
φI ∂SI

∂τ
ϕdxdydτ

+
∫

�t×Y I
Kκ,I∇yβ

I,δ(SI) · ∇yϕdxdydτ = 0, (A15)

where �t
def= � × (0,t). The corresponding weak formulation

of the cell problem (A11) for i,j = M reads

0 =
∫

�t×Y I
φI ∂SI

M,M

∂τ
ϕdxdydτ

+
∫

�t×Y I
Kκ,I∇yβM

(
SI

M,M

) · ∇yϕdxdydτ. (A16)

(3) Taking the difference of equations (A16) and (A15) we
obtain

0 =
∫

�t×Y I
φI ∂

∂τ

(
SI

M,M − SI
)
ϕdxdydτ

+
∫

�t×Y I
∇y

(
βM

(
SI

M,M

) − βI,δ(SI)
) · Kκ,I∇yϕdxdydτ.

(A17)

Since SI and SM do not depend on y, then we rewrite
equation (A17) as follows:

0 =
∫

�t×Y I
φI ∂

∂τ

(
SI

M,M − SI
)
ϕdxdydτ

+
∫

�t×Y I
∇y� · Kκ,I∇yϕdxdydτ, (A18)

with

�
def= βM

(
SI

M,M

) − βM(SM(SII))

− [βI,δ(SI) − βI,δ(SI(SII))]

=
∫ SI

M,M

SM

DMdξ −
∫ SI

SI
DI,δdξ

=
∫ SI

M,M

SM

(DM − DI,δ)dξ +
∫ SI

SM

DI,δdξ +
∫ SI

M,M

SI
DI,δdξ.

(A19)

016304-16



GENERALIZED NONEQUILIBRIUM CAPILLARY . . . PHYSICAL REVIEW E 85, 016304 (2012)

Integrating by parts in the second term, we get:

0 =
∫

�t×Y I
φI ∂

∂τ

(
SI

M,M − SI
)
ϕdxdydτ

−
∫

�t×Y I
�∇y(Kκ,I∇yϕ)dxdydτ. (A20)

(4) Assume now that

SI
M,M(x,y,t) � SI(x,y,t), (A21)

then, according to (A14) and (VI.3) we reveal that all
three terms in the right-hand side of (A19) are nonpositive.
Thus:

� � 0. (A22)

(5) Let us introduce the function ϕ�, solving the following
problem for all (y,t) ∈ �t :

∇y(Kκ,I∇yϕ
�) = S� in Y I,

(A23)
ϕ� = 0 on �,

with

S� def=
{

SI
M,M − SI when SI

M,M < SI

0 when SI
M,M � SI.

(A24)

Notice that

ϕ� ≡ 0 when SI
M,M � SI. (A25)

In equation (A18) we set ϕ = ϕ�. Then (A20) becomes∫
�t×Y I

φI ∂

∂τ

(
SI

M,M − SI
)
ϕ�dxdydτ =

∫
�t×Y I

�S�dxdydτ.

(A26)

Taking into account (A25) and (A22), we get the following
inequality:∫

�t×Y I
φI ∂

∂τ

(
SI

M,M − SI
)
ϕ�dxdydτ � 0 for all S�.

(A27)

(6) Let us develop inequality (A27) by using (A23):

0 �
∫

�t×Y I
φI ∂S�

∂τ
ϕ�dxdydτ

=
∫

�t×Y I
φI ∂

∂τ
[∇y(Kκ,I∇yϕ

�)]ϕ�dxdydτ

= −
∫

�t×Y I
φIKκ,I ∂

∂τ
(∇yϕ

�) · ∇yϕ
�dxdydτ

= −
∫

�t×Y I
φIKκ,I ∂

∂τ

(
1

2
|∇yϕ

�|2
)

dxdydτ

= −1

2

∫
�×Y I

φIKκ,I|∇yϕ
�(t)|2dxdy

+ 1

2

∫
�×Y I

φIKκ,I|∇yϕ
�(0)|2dxdy.

Thus, we get the following inequality:∫
�×Y I

φIKκ,I|∇yϕ
�(t)|2dxdy �

∫
�×Y I

φIKκ,I|∇yϕ
�(0)|2dxdy.

(A28)

Since it follows from (A23) that

ϕ�(0) ≡ 0, (A29)

then from (A28) we get finally∫
�×Y I

φIKκ,I|∇yϕ
�(t)|2dxdy � 0. (A30)

Thus, taking into account (A23) and (A30), we have that, for
any t ∈ [0,T ],

ϕ� ≡ 0 in �T × Y I. (A31)

This means that

SI
M,M � SI in �T × Y I, (A32)

which contradicts the original assumption (A21). Thus, this
assumption is invalid, and the true result is

SI
M,M � SI. (A33)

The left-hand side of the first inequality (VI.5) is proven. The
right-hand side may be proven in the same way. Theorem VI. 1
is proven.
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