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Turbulent viscosity and turbulent magnetic diffusivity in a decaying spin-down flow of liquid sodium
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The free decay of a strong flow of liquid sodium (at Reynolds number defined via the maximal mean velocity
and the radius of the channel cross section up to Re ≈ 3 × 106 and the corresponding magnetic Reynolds number
up to Rm ≈ 30) generated by the sudden stop of a rapidly rotating toroidal channel is studied experimentally.
The toroidal and poloidal components of velocity are measured using a potential probe. We describe the onset
of motion, the evolution of strongly anisotropic fluctuations, and the homogenization and decay of turbulence
in the final period. We analyze the statistical characteristics of velocity fields in relation to the behavior of
effective magnetic diffusivity estimated from measurements of the phase shift between the induced and applied
magnetic fields. For the late (self-similar) decay of turbulent flow, turbulent viscosity is shown to be dependent
on the root-mean-square velocity pulsations and can be expressed as νt ∼ νRe1.3. The behavior of turbulent
magnetic diffusivity depends on the magnetic Reynolds number defined in terms of the root-mean-square velocity
pulsations. At low magnetic Reynolds numbers (Rmrms < 1), turbulent magnetic diffusivity grows rapidly with
increasing velocity pulsations (ηt ∼ η Rm2

rms). If the magnetic Reynolds number exceeds unity, the behavior
of turbulent magnetic diffusivity becomes similar to the behavior of turbulent viscosity. The highest values of
turbulent magnetic diffusivity are achieved at the end of braking, which corresponds to the transient stage of a
strongly anisotropic turbulent flow in which the poloidal velocity oscillations prevail.

DOI: 10.1103/PhysRevE.85.016303 PACS number(s): 47.35.Tv, 47.27.Jv, 47.27.tb

I. INTRODUCTION

The fully developed turbulent flow at very high Reynolds
number (say, Re = V L/ν ≈ 106 or more, where V is the
typical large-scale velocity, L is a scale, and ν is viscosity)
cannot be obtained by direct numerical simulation of the
Navier-Stokes equations. Therefore, different kinds of mean-
field models are generally used to describe the behavior of
large-scale fields. To overcome the closure problem, these
models introduce effective (turbulent) transport coefficients,
of which turbulent viscosity is the most well known [1,2].

For conducting fluids, the turbulent transport of magnetic
fields is of primary interest. Small-scale turbulence may
contribute to both the diffusion of magnetic fields and their
generation [3,4]. The magnetic Reynolds number Rm =
V L/η (where η is the magnetic diffusivity) characterizes
the efficiency of hydrodynamic induction mechanism and is
the parameter that defines the threshold of a hydromagnetic
dynamo. The ratio of two Reynolds numbers gives the
magnetic Prandtl number, Pm = Rm/Re = ν/η, which, for
liquid metals, is extremely small (of the order of 10−5 and
less). This means that the dynamo threshold (typically, of the
order of a few tens) can be reached in fully turbulent flows
only.

Over the past decade, substantial effort has been directed
toward the study of the magnetohydrodynamic (MHD) dy-
namo in laboratory experiments (for a review, see Ref. [5]).
The first-generation dynamo experiments were designed on
the basis of strictly specified large-scale flows. In Ref. [6]
the dynamo was generated by a cylindrical screw flow. The
dynamo studied in Ref. [7], defined as a two-scale dynamo,
was driven by a set of rigidly constrained helical jets inside
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52 tubes. In this sense, these laboratory dynamos can be
classified as quasilaminar (despite that, the Reynolds numbers
reached about 107) in which the role of turbulence was reduced
to a strong enhancement of momentum diffusion and to
a much weaker but notable enhancement of magnetic-field
diffusion, which at constant magnetic permeability can be
considered as an increase in the effective resistance of a liquid
metal. The von Kármán sodium experiment in Ref. [8] was
designed as a dynamo based on a mean flow generated by
two counterrotating disks, but revealed a variety of dynamo
regimes, in which the role of the turbulence is not yet
completely understood [9]. However, the growth of resistivity
can be crucial for any dynamo experiments because of the
corresponding reduction in the magnetic Reynolds number.

Direct measurements of turbulent magnetic diffusion, as
well as direct measurements of turbulent viscosity, are impeded
in dynamo experiments by numerous side effects, which
makes it difficult to isolate these effects. Therefore, in the
study of MHD-transport coefficients, the subcritical flows of
liquid metals are of main interest. Namely, we are interested
in the turbulent flows characterized by the high Reynolds
number and the moderate magnetic Reynolds numbers, i.e.,
1 < Rm < Rm∗, where Rm∗ denotes the dynamo threshold.

A method for designing high-Reynolds-number flows
(although, nonstationary) in the limited mass of liquids has
been proposed in Ref. [10], in which the flow was generated
by the abrupt braking of a fast-rotating toroidal channel.
Installation of diverters in the channel made it possible to
create a toroidal screw flow of liquid metal that is potentially
capable of generating a dynamo [11,12].

The spin-down flow of this type has been realized inside
a toroidal channel made of textolite and filled with liquid
gallium [13]. The large radius of the torus R = 0.0875 m,
the small radius of the torus r0 = 0.0225 m, and the net mass
of liquid metal was 5.6 kg. The channel rotation rate � reached
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55 rps and yielded a Reynolds number of the order of 106. The
Reynolds number was based on the radius of the channel cross
section and the initial toroidal speed. For gallium, the magnetic
Prandtl number, defining the ratio of kinematic viscosity to
magnetic diffusivity, Pm = ν/η = 1.5 × 10−6. Therefore, the
magnetic Reynolds number remained essentially less than
unity. Even at such a relatively low magnetic Reynolds
numbers the screw spin-down gallium flow allowed one to
observe the α effect produced by a joint action of the gradient of
turbulent pulsations and large-scale vorticity [14]. The study of
the dynamics of the no-screw spin-down flow of gallium in this
torus has shown that the development of the flow in the channel
is attended by a strong short-time burst of turbulent pulsations
with a peak in the range 500–1000 Hz [15]. This burst of
small-scale turbulence provides an opportunity to detect an
approximately 1% increase in the effective resistivity of liquid
metal [16].

The use of a similar experimental setup but with a titanium
toroidal channel of larger size and filled with sodium made
it possible to increase the magnetic Reynolds number by two
orders of magnitude. It was found that at the maximal rotation
rate � = 45 rps, corresponding to Rm ≈ 30, in the case of the
sodium spin-down flow the maximal deviation of magnetic
diffusivity from its laminar value reaches about 50% [17].

In this paper we present an experimental study of velocity
pulsations in the same no-screw spin-down flow of liquid
sodium as described in Ref. [17]. We analyze the onset of
the flow, the transient stage characterized by very sharp bursts
of turbulent pulsations, and the decay of the turbulent flow. We
estimate turbulent viscosity at all stages of flow evolution and
compare the behavior of turbulent magnetic diffusivity and
turbulent viscosity.

II. EXPERIMENTAL SETUP

The setup is a construction mounted on a rigid frame used
as a support for the rotating toroidal channel made of titanium
alloy [17]. The torus radius R = 0.18 m and the radius of
the channel cross section r0 = 0.08 m. The channel is filled
with sodium in vacuum and placed in an air thermostat. The
channel temperature can be stabilized in the range 50–150 ◦C.
A temperature sensor is mounted inside the channel and has
good thermal contact with sodium in both the liquid and solid
states.

The channel is fastened to the horizontal axis, which is
also used for mounting a driving pulley, a system of sliding
contacts, and a disk braking system. The rotation frequency
of the channel is up to 50 rps and the flow in the channel
is generated by abrupt braking. The braking time does not
exceed 0.3 s. The flow velocity reaches a maximum after the
channel stops and its toroidal component constitutes almost
70% of the linear velocity of the channel before braking. This
means that the Reynolds number Re = V r0/ν increases to
Re ≈ 3 × 106 at the most, which corresponds to the magnetic
Reynolds number Rm ≈ 30.

For velocity measurements, we use a two-axis local probe
designed to ensure good dynamical resolution of toroidal and
poloidal motion in liquid metals [15]. The probe schematic
and its position in the channel are shown in Fig. 1. A
small permanent magnet of size 2 × 2 × 10 mm3 is used to
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FIG. 1. (Color online) Torus channel with the coils wound around
and the schematic of the potential probe. The permanent NdFeB
magnet (size 2 × 2 × 10 mm3, in black) imposes a 2-kG magnetic
field at the surface. Four electrodes are made of tinned copper wires
(with a diameter of 0.8 mm) and allow a two-axis measurement of
the velocity in the plane perpendicular to the magnet axis (vx,vy).

locally apply a strong (2kG at the surface) magnetic field
B = B0ez and the nearby tinned copper electrodes of radius
0.8 mm are used to measure the induced electric potential
difference related to the local velocity of the fluid by Ohm’s
law j = σ (E + v × B). The potential difference between two
electrodes yields the average velocity

ϕx1 − ϕx2 =
∫

vyBzdx. (1)

Electric potential measurement can give an inaccurate de-
termination of velocity for large Rm, caused by a drift of
the probe magnetic field. Figure 2 shows the growth of the
potential difference during the braking. At the beginning the
fluid moves as a solid body and the relative velocity should be
proportional to the decrease of rotation rate. The potential
difference deviates from linear behavior for �s > 20 rps
(which corresponds to a velocity of about 23 m/s). However,
such deviations can be caused also by the actual flow slowdown
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FIG. 2. (Color online) Potential difference vs assumed solid body
rotation �s = �0 − �(t) during braking. The dashed line shows a
linear trend.
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due to turbulence development. In any case, the inaccuracy is
below 3% for velocities up to 20 m/s and does not exceed 15%
for v = 45 m/s.

Hence the spatial resolution of the measurement is provided
by the electrode spacing and, consequently, the size of the
magnet. The velocity is also averaged over the length of the
electrode (as in conventional hot-wire anemometry). This is
important because, even if the probe is mounted on the wall,
the measurement is not performed within the boundary layer,
whose thickness is less than 10 μm compared to the top of
the electrode immersed to a depth of approximately 1 mm in
the fluid. The probe is mounted on the channel wall and sticks
out inside the channel by 1.5 mm so that the measurements
are done away from the boundary layers for any phase of the
nonstationary flow evolution. Let us recall that in the case of a
straight smooth pipe the averaged velocity reaches half of its
value on the axis of the pipe at distance ≈0.001r0 for Re ≈ 106

and at distance ≈0.01r0 for Re ≈ 105 [1].
The primary (direct) output voltage is low, namely,

106μV/m s−1. It is immediately fed into a differential
amplifier AD8221 with a gain of 100, located inside the
probe. The signal is then digitized using a 16-bit NI 9215
digitizer with a sampling frequency of 100 kHz. Based on
the Taylor hypothesis (when applicable, i.e., if there is a
mean flow), this probe can access large- and small-scale
velocity fluctuations. Estimates in this flow (under traditional
turbulence relationships) lead to Reynolds numbers of the
order of Re ∼ 106, with integral turbulent scale L ≈ 0.1 m
and Kolmogorov’s scale lν ∼ 10−5 m. At advection velocity
U ∼ 20 m/s, this corresponds to the range of time frequencies
200 < f < 106 Hz. However, the smallest scale resolved by
the probe is fixed by the electrode spacing corresponding to
the upper frequency limit fup ∼ 40 kHz.

The probe is mounted on the wall so that one of its axes
is parallel to the local toroidal direction (along the channel)
and the other axis is in the poloidal direction (Fig. 1). Thus we
measure the local values of the toroidal vtor and poloidal vpol

components of velocity.
The magnetic diffusivity of the metal inside the channel

had been estimated by measuring the phase shift between
the currents in two coils wound around the channel (see
Fig. 1) [17]. A generator created in the toroidal coil a stabilized
sinusoidal current with frequency 30 < f < 1000 Hz, which
produced an alternating toroidal magnetic field inside the
channel. Besides the toroidal coil, two diametrically located
magnetic test coils were wound around the channel.

The change in the phase shift θ between the magnetic flux
through test coil and the alternating current in the toroidal
coil is a value that can be treated as a measure of logarithmic
changes of diffusivity of sodium [17],

	θ � −C
	σ

σ
= C

	η

η
, (2)

where C is a dimensional coefficient that depends on
the geometry and resistivity of the channel wall and on the
frequency of the applied magnetic field. The measured phase
shift is determined by the variation of the conductivity of
the metal and does not depend on large-scale distortions of
the magnetic field by the flow because they do not change the
total magnetic flux in the channel’s cross section.

The measurement system has been tested and calibrated
by measuring the temperature dependence of the sodium
resistivity (see, for details, Ref. [17]). The channel filled
with sodium was cooled down from 105 ◦C to 80 ◦C. This
temperature range includes the sodium freezing point, which
gives the best measure for calibration because the resistivity of
sodium decreases at that point by 31%, while the temperature
remains constant. This excludes the influence of resistivity
variation of titanium, coils, etc. The theoretical phase shift
in the skin layer of an infinite cylindrical solenoid [16],
which includes a titanium cylinder tube with sodium, fits the
experimental points well and allows us to define the factor
of proportionality in Eq. (2) for each applied frequency. At
f = 97 Hz, C = 102 ± 3 mrad.

All dynamical experiments concerning the study of the
turbulent flow of liquid sodium were performed at fixed
temperature T = (102 ± 1) ◦C. The estimation of sodium
heating caused by energy dissipation in the decaying turbulent
flow at the highest rotational rate � = 50 rps, provided the
entire kinetic energy is dissipated into heat, gives 	T ≈
0,8 ◦C, which corresponds to a variation in resistivity of less
than 0.5%.

III. FLOW EVOLUTION

We have performed more than 20 runs for each initial
rotation rate of the torus (� = 20, 30, 40, and 50 rps).
The corresponding variations of the toroidal and poloidal
velocities, averaged over 20 runs for each initial rotation
rate, are shown in Fig. 3. It could be seen that at the first
stage of braking the fluid toroidal velocity with respect to
the halting vessel increases (as the probe is attached to the
vessel, the measurement is performed in this initially moving
frame of reference and the initial zero value of the fluid
velocity corresponds to solid body rotation). The maximum
of the toroidal fluid velocity is reached as the vessel stops and
subsequent dynamics are measured in the frame at rest. In this
process, a transverse (poloidal) velocity has been developed.
The generation of poloidal velocity is provided by the curved
channel and becomes more effective with increasing thickness
of the torus r0/R. In our case r0/R = 0.44 and for the maximal
rotation rate � = 50 rps, at the end of braking the ratio
of poloidal to toroidal mean velocities reaches U pol/U tor =
0.18. The maximal toroidal velocity U tor = 0.69V0 = 39 m/s,
where V0 is the velocity of the sodium on the channel axis
before the brake. We can compare these results with the
measurements made in the gallium flow [15]: The torus in the
gallium experiment was thinner, r0/R = 0.26, and the poloidal
motion was weaker, (U pol/U tor)max = 0.08, while the toroidal
motion remained stronger, U tor = 0.80V0.

Our main interest concerns the decaying stage of flow
evolution. The decay starts at the end of braking and from here
on we take the end of braking as a reference time point, i.e.,
t = 0 when the channel stops. Figure 4 shows the decay of the
mean velocity on a log-log scale. The decay can be separated
in two stages, transient and final. The final stage starts at
t ≈ 1.5–2 s and displays a power-law decay for both velocity
components U tor ∼ U pol ∼ t−1. This law corresponds to a
mean quadratic friction force dU/dt ∼ −U 2 and also satisfies
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FIG. 3. (Color online) Evolution of the mean (a) toroidal and (b)
poloidal velocities for � = 20 rps [dash-dotted (green) line], 30 rps
[short-dashed (red) line], 40 rps [long-dashed (blue) line], and 50 rps
[solid (black) line]. Each line is the result of averaging over 20 runs.
Time t = 0 corresponds to the beginning of braking.

the Kolmogorov picture of free decaying homogeneous
turbulence with a fixed integral scale [d(U 2)/dt ≈ −ε ≈
−U 3L, where ε is the energy dissipation rate].
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FIG. 4. (Color online) Decay of mean toroidal (solid lines) and
poloidal (dashed lines) velocities in log-log coordinates. Here and in
the following t = 0 corresponds to the end of braking for � = 20,
30, 40, and 50 rps (bottom-up, the lighter the color of the curve,
the smaller the value of �). The dotted line corresponds to a power
law t−1.
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FIG. 5. (Color online) Temporal evolution of mean-root-square
pulsations of the toroidal (solid lines) and poloidal (dashed lines)
velocities for � = 20, 30, 40, and 50 rps (bottom-up, the lighter
the color of the curve, the smaller the value of �). The dotted line
corresponds to a power law t−1.

IV. SMALL-SCALE TURBULENCE DYNAMICS

In this section we discuss the characteristics of small-scale
turbulence. Figure 5 illustrates the evolution of toroidal and
poloidal pulsations, defined as the root-mean-square deviation
from the corresponding mean velocity obtained by averaging
over 20 individual runs. It could be seen that poloidal
pulsations are stronger at the transient stage and both the
poloidal and toroidal pulsations tend to the same power law of
evolution as the mean flow, i.e., urms ∼ t−1.

Figure 6 quantifies the tendency of the pulsation’s evolution
and shows the behavior of the turbulence level and the
coefficient of anisotrpy. The turbulence level is defined as
u

pol
rms/U tor and reaches its maximum near the end of the braking.

During the transient stage, the turbulence level goes down and
remains stable at the final stage of evolution, which means
that in the decay the rms pulsations are proportional to the
mean toroidal velocity. This is consistent with the analogous
decay law for the mean velocity and pulsations. The maximum
of the turbulence level coincides in time with the maximum
of anisotropy [see Fig. 6(b)]. At this moment the poloidal
pulsations exceed the toroidal pulsations by a factor of 2.4.
At the late stage of evolution, the small constant anisotropy
still remains valid (upol

rms/u
tor
rms ≈ 1.2), showing a weak dom-

inance of poloidal pulsations in the domain of velocity
measurements.

The wavelet transform of the time evolution of toroidal
and poloidal components for � = 50 rps averaged over 20
realizations is shown in Fig. 7. As could be seen in the figure,
the fluctuations at all scales increase rapidly as the channel
is halted. The end of breaking (t = 0 in the figure) also
corresponds to the widest spectral content with a maximum
at about 2.5 kHz, followed by a long decay. Using these
wavelet transforms, we have calculated the power spectral
density of velocity fluctuations by summarizing the energy of
the poloidal and toroidal velocities for a given frequency within
a fixed interval of time. Figure 8(a) presents the power spectra
for the sequence of time intervals 0 < t < 0.5, 0.5 < t < 1.5,
1.5 < t < 3.5, and 3.5 < t < 7.5. The time evolution of the
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FIG. 6. Temporal evolution of (a) turbulence level defined as
u

pol
rms/U tor and (b) anisotropy of velocity fluctuations defined as

u
pol
rms/u

tor
rms for � = 50 rps.

spectra indicates that the energy content is broadest at the
time when the channel has stopped and the motions slow
down with the development of a scaling region at later times.
The dotted lines correspond to a Kolmogorov slope of −5/3
within the high-frequency spectral range and to a slope of 1
in the low-frequency part. The picture is clearer in the spatial
spectral space, constructed using the Taylor hypothesis at the
local toroidal velocity [Fig. 8(b)]. In k space, the maximum
of the spectral power is fixed at the scale corresponding to
the length scale of 2r0 equal to the channel diameter. At time
exceeding 1.5 s, the spatial spectra show the range of scales
consistent with a −5/3 scaling characteristic of the decay of
three-dimensional turbulence.

Finally, we calculate the cross correlation of pulsations of
two measured velocity components 〈upolutor〉. Measurements
for different directions of channel rotation show that the
time evolution of the cross correlation strongly differs for
clockwise and counterclockwise channel rotations. Figure 9(a)
illustrates the evolution of the normalized cross correlation
c± = 〈upolutor〉/upol

rmsu
tor
rms, where the plus sign index denotes

the clockwise rotation and the minus sign index the counter-
clockwise rotation. These two curves are neither symmetric
nor asymmetric. Note that the mean toroidal velocity U tor

changes the sign together with the direction of rotation, while
the poloidal U pol does not. To separate the input of two
flow modes into the cross correlations, we plot the even
and odd contributions, defined as ceven = (c+ + c−)/2 and
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FIG. 7. (Color online) Wavelet spectrogram of velocity pulsa-
tions: (a) toroidal velocity and (b) poloidal velocity for � = 50 rps.

codd = (c+ − c−)/2 in Fig. 9(b). The even part, provided by
the poloidal velocity field, is maximal during the braking and
slowly decreases up to t ≈ 1 s. The odd part that can be
attributed to the toroidal velocity field starts to increase after
braking and reaches the value c− ≈ −0.35, which remains
stable in the decay.

V. TURBULENT TRANSPORT COEFFICIENTS

The turbulent viscosity νt appears if the Reynolds stress
tensor is written in a form similar to the form of the viscous
stress tensor

〈uiuj 〉 =
〈
u2

k

〉
3

δij − νt (∂jUi + ∂iUj ). (3)

A crude estimate of the turbulent viscosity in a given flow
can be obtained by assuming that νt is constant throughout
the flow. Then the Reynolds equation takes the form of the
Navier-Stokes equation with some additional viscosity,

∂tU + (U · ∇)U = −ρ−1∇P + (ν + νt )∇2U. (4)

This hypothesis implies that the turbulent flow exactly repro-
duces the laminar solution with an amplified value of viscosity.
For a straight pipe, it corresponds to the Poiseuille profile for
the averaged velocity U (r) = 2V (1 − r2/r2

0 ) (where V is the
mean velocity obtained from the flow rate Q = πr2

0 V ). In this
case, τ = 4ρνtV/r0 is the stress on the wall. Considering the
nonstationary flow in the channel as an inertial decelerating

016303-5



NOSKOV, DENISOV, STEPANOV, AND FRICK PHYSICAL REVIEW E 85, 016303 (2012)

100 1000 104

10 5

10 4

0.001

0.01

0.1

f s 1

P
S

D
m

2
s

10 100 1000 104

10 5

10 4

0.001

0.01

0.1

k m 1

P
S

D
m

3
s2

(a)

(b)

FIG. 8. (Color online) Power spectral density (PSD) of velocity
fluctuations. (a) Time spectra obtained as the vertical cross section
of the wavelet transforms shown in Fig. 7 averaged over time in the
four intervals between t = 0, 0.5, 1.5, 3.5, and 7.5 s (from top to
bottom). (b) Corresponding spectra of the spatial energy distribution.
The dotted line corresponds to the Kolmogorov −5/3 law for the
inertial range and to E(ω) ∼ ω for the low-frequency part of the
spectrum.

motion of the fluid cylinder under the action of the wall friction
(πr2

0 ρdV/dt = 2πr0τ ), we get

νt = r2
0

8V

dV

dt
. (5)

Under these assumptions, the time variation of the mean
velocity U (r,t) in each point follows the variations of V (t)
and thus Eq. (5) can be used to evaluate the turbulent viscosity
from the measured toroidal velocity U tor(t).

To gain more sophisticated estimates of turbulent viscosity,
we use the Kolmogorov-Prandtl expression [18]

νt = C
E2

t

ε
, (6)

where C is a dimensionless prefactor of the order of unity, Et =
(upol

rms)2 is an estimation of the energy of turbulent pulsations,
and ε = ∂(U tor)2/∂t is an estimation of the kinetic energy
dissipation rate.

Figure 10 shows the evolution of turbulent viscosity for
different rotation rates. We present the results obtained from
Eqs. (5) and (6). Equation (5) yields a strong overestimation of
the effective (turbulent) viscosity because it implies a parabolic
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FIG. 9. (a) Normalized cross correlation 〈upolutor〉 for clockwise
c+ (solid line) and counterclockwise c− (dashed line) channel
rotation. (b) Symmetric ceven (solid line) and asymmetric codd (dashed
line) parts of cross correlations for � = 50 rps.

velocity profile, which is obviously wrong for the Reynolds
numbers under consideration. Nevertheless, both definitions
provide similar behavior for the turbulent velocity, displaying
a power-law decay at the late stage of evolution. For t > 1 s,
we get νt ∼ t−1.3 (the corresponding slope is shown in the
figure by a dashed line).
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FIG. 10. (Color online) Evolution of turbulent viscosity, defined
by Eq. (5) (top group of lines) and (6) (bottom group of lines) for
different rotation rates: � = 20,30,40, and 50 rps (bottom-up, the
lighter the color of the curve, the smaller the value of �). The dashed
line corresponds to a power law t−1.3.
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FIG. 11. (Color online) Variation of the phase shift between the
applied and induced currents with flow evolution for a channel
rotation rate � = 20 rps [dash-dotted (green) line], 30 rps [short-
dashed (red) line], and 40 rps [long-dashed (blue) line]. The frequency
of the applied alternating field f = 97 Hz.

The evolution of the large-scale magnetic field in the tur-
bulent flow of electrically conducting media can be described
by the mean-field induction equations (see, e.g., Refs. [3,4]),
which are derived by applying the Reynolds approach to the
induction equation. In the simplest case of homogeneous and
isotropic (but mirror asymmetric) turbulence, these equations
can be reduced to

∂tB = ∇ × (U × B) + α∇ × B + (η + ηt )∇2B, (7)

where B corresponds to the mean (large-scale) magnetic fields
and α and ηt are the turbulent transport coefficients responsible
for the action of small-scale turbulent pulsations on the mean-
field dynamics. The coefficient α describes the generation
effects and ηt describes the contribution of turbulence to the
diffusion of the large-scale magnetic field and a close analog
of the turbulent viscosity νt .

In our experiments, the indicator of an increase in magnetic
diffusivity is the phase shift between the induced and applied
alternating magnetic fields. Figure 11 illustrates the evolution
of the phase shift measured as described above. The general
shapes of the curves are similar to the curves characterizing
the evolution of the turbulent spin-down flow, which supports
the conclusion that the effect is produced by the action of the
turbulent flow.

Let us now construct the plot of the phase shift versus rms
velocity pulsation for different rotation rates (lower curves,
shown by thick lines in Fig. 12). Note again that the measured
phase shift corresponds to the averaged magnetic diffusivity
in the whole mass of liquid sodium, while the velocity
measurements are done at one fixed point of the flow. However,
apart from the transient stage of evolution that corresponds to
the hook in the upper part of each curve, the data obtained from
different runs lie on the same line, showing that the phase
shift is defined by the intensity of turbulent pulsations. The
turbulent viscosity evaluated by Eq. (6) is shown by the thin
(upper) lines in Fig. 12. For the decaying stage of evolution,
the results obtained at different initial rotation rates of the
channel are very close and display a pronounced power-law
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FIG. 12. (Color online) Turbulent viscosity (thin upper lines) and
turbulent magnetic diffusivity (thick lower lines) versus root-mean-
square velocity fluctuations for � = 20,30,40, and 50 rps (bottom-up,
the lighter the color of the curve, the smaller the value of �). Two
dashed lines correspond to power laws u1.3

rms (top) and u2
rms (bottom).

dependence on the intensity of turbulent pulsations, namely,
νt ∼ u1.3

rms. This slope is shown in Fig. 12 by the top dashed
line. The slope increases only at the highest values of u, which
corresponds to the strongly nonstationary and anisotropic stage
of evolution.

The effective magnetic diffusivity shows different behavior
at low and high levels of turbulent pulsations. At low urms,
diffusivity increases much faster than viscosity and at high
urms, the slope for diffusivity tends to the slope for viscosity,
i.e., ηt ∼ u1.3

rms. To explain this transition from one power law to
another, we introduce the magnetic Reynolds number, defined
via the rms velocity pulsations,

Rmrms = urmsr0

η
.

Such a definition of the magnetic Reynolds number is more
suitable for the analysis of the behavior of turbulent magnetic
diffusivity because the increase in effective diffusivity can be
attributed to small-scale turbulent pulsations. In our case, r0 =
0.08 m and η = 0.078 m2 s−1, thus Rmrms is approximately
equal to the rms velocity pulsations given in m/s; Fig. 12 shows
that the behavior of turbulent magnetic diffusivity changes near
the point Rmrms ≈ 0.8.

The magnetic energy dissipation rate εB provided by the
turbulence is directly related to the power spectral density of
magnetic-field fluctuations EB(k) [19],

εB = η

∫ ∞

0
k2EB(k)dk. (8)

The direct measurement of local magnetic-field fluctuations
was unfortunately beyond the facilities of the experiment.
However, the magnetic dissipation scale kη ≈ (ε/η3)1/4 ≈ 10;
this means that the whole range covered by the spectrum
of kinetic energy (kL < k < kν) includes only k > kη (lη =
2π/kη > 2R). This allows us to relate the magnetic power
spectral density to kinetic power spectral density

EB(k) ∼ B2
0

η2

EV (k)

k2
. (9)
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Here B0 is the applied magnetic field. Equation (9) implies that
the spectrum of magnetic pulsations is governed by the balance
of induction provided by velocity fluctuations and the Ohmic
dissipation and is valid for a weak induced magnetic field
(small Rm). Supposing the Kolmogorov −5/3 power law for
the kinetic-energy spectrum, one gets from Eq. (9) the well-
known −11/3 spectrum for the magnetic energy, predicted
by Golitsyn [20] and Moffat [19] and observed in various
turbulent MHD flows under low Rm (see, e.g., Ref. [21]).
Combining Eqs. (8) and (9) we get

εB ≈ B2
0

η

∫ ∞

kL

EV (k)dk ≈ B2
0

η
u2

rms = ηB2
0

r2
0

Rm2
rms. (10)

The dependence εB ∝ Rm2 for the turbulent magnetic diffu-
sivity (the beta effect) in the limit of small Rm is known from
the mean-field approximation [3,4]. In Fig. 12 this power law
is shown by the bottom dashed line. We see that for Rmrms < 1
the turbulent magnetic diffusivity really follows the law

ηt ∼ ηRm2
rms,

excluding the lowest measured values (at Rmrms < 0.4 the
curves are steeper).

VI. CONCLUSION

The spin-down flow in the abruptly halted torus is nonsta-
tionary and its evolution includes three stages. At the initial
stage of flow formation, the inertial force generates the basic
toroidal flow, whose instability gives rise to the poloidal mode.
This stage is followed by the transient regime, characterized
by strong anisotropy, i.e., the dominance of poloidal velocity
pulsations. The last stage is the free self-similar decay of
turbulence, which is characterized by Kolmogorov’s inertial
range and a power-law decay of kinetic energy. A weak
anisotropy of pulsations still remains valid at this stage.

It is obvious that the three-dimensional flow pattern is fairly
complicated and changes during the evolution of the flow,
which implies a complex spatial distribution of the effective
transport coefficients for the momentum (turbulent viscosity)
and for the magnetic field (turbulent magnetic diffusivity).
Let us emphasize that the turbulent transport coefficients
are evaluated using two different kinds of measurements:
the measurement of the velocity at one fixed point in the

vicinity of the wall and the measurement of the inductance
of the coil wound around the channel. This allowed us to
determine the mean effective magnetic diffusivity of sodium
inside the channel. Thus the velocity measurements are local
and the magnetic-field measurements are global, which re-
quires caution with the comparison of the results of corre-
sponding estimations.

It should be noted that the previous measurements of
effective magnetic diffusivity in spin-down flows have not
been supported by velocity pulsation measurements [16,17].
The increase in magnetic diffusivity has been analyzed as
a function of the rotation rate of the channel. It has been
found that the maximal deviation of magnetic diffusivity in the
nonstationary flow increases with increasing channel rotation
rate �. In the gallium experiment (Rm � 1), the increase in
magnetic diffusivity fits a parabola (max{ηt } ∼ �2) [16]. In
the sodium experiment, at low �, the increase looks linear,
max{ηt } ∼ �, and tends to the root-square dependence at the
highest rotation rates (max{ηt } ∼ √

�) [17].
The two-component velocity probe, installed on the channel

wall, allowed us to relate the evolution of the effective magnetic
diffusivity to the evolution of the turbulent flow. It is shown
that, in the late (self-similar) decay of the turbulent flow, the
turbulent viscosity depends on the rms velocity pulsations as
νt ∼ νRe1.3

rms. The behavior of turbulent magnetic diffusivity
depends then on the magnetic Reynolds numbers, defined
via the rms velocity pulsations. At small magnetic Reynolds
number (Rmrms < 1), the turbulent magnetic diffusivity grows
rapidly with increasing velocity pulsations (ηt ∼ ηRm2

rms). If
the magnetic Reynolds number exceeds unity, the behavior
of the turbulent magnetic diffusivity becomes similar to the
behavior of turbulent viscosity. The highest values of turbulent
magnetic diffusivity are achieved at the end of braking and
the time interval (about 1 s after braking), analyzed in
Ref. [17], corresponds to the transient stage with a strongly
anisotropic turbulent flow with dominating poloidal velocity
oscillations.
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